Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Synthetic Approaches to the Total Synthesis of Tubulysin and its Fragments: A Review

Author(s): Nosheen Iqbal, Ameer Fawad Zahoor*, Nasir Rasool, Samreen Gul Khan, Rabia Akhtar and Raheel Ahmad

Volume 19, Issue 4, 2022

Published on: 17 March, 2022

Page: [507 - 542] Pages: 36

DOI: 10.2174/1570179419666211222163417

Price: $65

Abstract

Background: Tubulysins, linear tetrapeptides, show extraordinary cytotoxicity against various cancer cells, with IC50 values in the nano or picomolar range. Due to their extremely vigorous anti-proliferative and antiangiogenic characteristics, tubulysins exhibit captivating prospects in the development of anticancer drugs. This review focuses on diverse routes for the total synthesis of natural and synthetic tubulysins as well as their fragments.

Objective: The purpose of this review is to present the synthetic strategies for the development of antitumor agents, tubulysins.

Conclusion: A range of synthetic pathways adopted for the total synthesis of tubulysins and their fragments have been described in this review. Synthesis of fragments, Tuv, Tup, and Tut can be accomplished by adopting appropriate strategies, such as Manganese-mediated synthesis, Ireland-Claisen rearrangement, Mukaiyama aldol reaction, Mannich process, etc. Tubulysins B, D, U, V, and N14-desacetoxytubulysin H have been prepared through Mitsunobu reaction, tertbutanesulfinamide method, Tandem reaction, aza-Barbier reaction, Evans aldol reaction, C-H activation strategies, etc. The remarkable anticancer potential of tubulysins toward a substantiate target makes them prominent leads for developing novel drugs against multidrug-resistant cancers.

Keywords: Tubulysins, tubuvaline, tubuphenylalanine, mitsunobu reaction, aza-barbier reaction, anticancer potential.

Graphical Abstract

[1]
Leamon, C.P.; Reddy, J.A.; Bloomfield, A.; Dorton, R.; Nelson, M.; Vetzel, M.; Kleindl, P.; Hahn, S.; Wang, K.; Vlahov, I.R. Prostate-specific membrane antigen-specific antitumor activity of a self-immolative tubulysin conjugate. Bioconjug. Chem., 2019, 30(6), 1805-1813.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00335] [PMID: 31075200]
[2]
Neri, D.; Fossati, G.; Zanda, M. Efforts toward the total synthesis of tubulysins: new hopes for a more effective targeted drug delivery to tumors. ChemMedChem, 2006, 1(2), 175-180.
[http://dx.doi.org/10.1002/cmdc.200500043] [PMID: 16892348]
[3]
Sasse, F.; Steinmetz, H.; Heil, J.; Höfle, G.; Reichenbach, H. Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. (Tokyo), 2000, 53(9), 879-885.
[http://dx.doi.org/10.7164/antibiotics.53.879] [PMID: 11099220]
[4]
Steinmetz, H.; Glaser, N.; Herdtweck, E.; Sasse, F.; Reichenbach, H.; Höfle, G. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins--powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed., 2004, 43(37), 4888-4892.
[http://dx.doi.org/10.1002/anie.200460147] [PMID: 15372566]
[5]
Murray, B.C.; Peterson, M.T.; Fecik, R.A. Chemistry and biology of tubulysins: antimitotic tetrapeptides with activity against drug resistant cancers. Nat. Prod. Rep., 2015, 32(5), 654-662.
[http://dx.doi.org/10.1039/C4NP00036F] [PMID: 25677951]
[6]
Khalil, M.W.; Sasse, F.; Lünsdorf, H.; Elnakady, Y.A.; Reichenbach, H. Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. ChemBioChem, 2006, 7(4), 678-683.
[http://dx.doi.org/10.1002/cbic.200500421] [PMID: 16491500]
[7]
Braig, S.; Wiedmann, R.M.; Liebl, J.; Singer, M.; Kubisch, R.; Schreiner, L.; Abhari, B.A.; Wagner, E.; Kazmaier, U.; Fulda, S.; Vollmar, A.M. Pretubulysin: a new option for the treatment of metastatic cancer. Cell Death Dis., 2014, 5(1), e1001.
[http://dx.doi.org/10.1038/cddis.2013.510] [PMID: 24434509]
[8]
(a) Jackson, D.; Stover, D. Using the lessons learned from the clinic to improve the preclinical development of antibody drug conjugates. Pharm. Res., 2015, 32(11), 3458-3469.,
[http://dx.doi.org/10.1007/s11095-014-1536-7] [PMID: 25339341]
(b) PENG X.; SHAO, M.; MA, S.; YAO, L Synthesis and antitumor activities of 2-(piperidin-4-yl)-thiazole-4-carboxamides analogues of tubulysins. Turk. J. Chem., 2019, 43(2), 676-686.
[http://dx.doi.org/10.3906/kim-1810-69]
[9]
Park, Y.; Bae, S.Y.; Hah, J.M.; Lee, S.K.; Ryu, J.S. Synthesis of stereochemically diverse cyclic analogs of tubulysins. Bioorg. Med. Chem., 2015, 23(21), 6827-6843.
[http://dx.doi.org/10.1016/j.bmc.2015.10.003] [PMID: 26474666]
[10]
Kubisch, R.; von Gamm, M.; Braig, S.; Ullrich, A.; Burkhart, J.L.; Colling, L.; Hermann, J.; Scherer, O.; Müller, R.; Werz, O.; Kazmaier, U.; Vollmar, A.M. Simplified pretubulysin derivatives and their biological effects on cancer cells. J. Nat. Prod., 2014, 77(3), 536-542.
[http://dx.doi.org/10.1021/np4008014] [PMID: 24437936]
[11]
Höfle, G.; Glaser, N.; Leibold, T.; Karama, U.; Sasse, F.; Steinmetz, H. Semisynthesis and degradation of the tubulin inhibitors epothilone and tubulysin. Pure Appl. Chem., 2003, 75(2-3), 167-178.
[http://dx.doi.org/10.1351/pac200375020167]
[12]
Friestad, G.K.; Marié, J.C.; Deveau, A.M. Stereoselective Mn-mediated coupling of functionalized iodides and hydrazones: a synthetic entry to the tubulysin -amino acids. Org. Lett., 2004, 6(19), 3249-3252.
[http://dx.doi.org/10.1021/ol048986v] [PMID: 15355024]
[13]
Becker, D.; Kazmaier, U. Synthesis of tubuphenylalanines via ireland-claisen rearrangement. J. Org. Chem., 2013, 78(1), 59-65.
[http://dx.doi.org/10.1021/jo301693d] [PMID: 23035838]
[14]
Marshall, J.A.; Garofalo, A.W. Oxidative cleavage of mono-, di-, and trisubstituted olefins to methyl esters through ozonolysis in methanolic sodium hydroxide. J. Org. Chem., 1993, 58(14), 3675-3680.
[http://dx.doi.org/10.1021/jo00066a019]
[15]
Park, Y.; Sim, M.; Chang, T.S.; Ryu, J.S. A concise synthesis of tubuphenylalanine and epi-tubuphenylalanine via a diastereo-selective Mukaiyama aldol reaction of silyl ketene acetal. Org. Biomol. Chem., 2016, 14(3), 913-919.
[http://dx.doi.org/10.1039/C5OB02239H] [PMID: 26608925]
[16]
Reddy, R.B.; Dudhe, P.; Chauhan, P.; Sengupta, S.; Chelvam, V. Synthesis of tubuphenylalanine and epi-tubuphenylalanine via regioselective aziridine ring opening with carbon nucleophiles followed by hydroboration-oxidation of 1,1-substituted amino alkenes. Tetrahedron, 2018, 74(48), 6946-6953.
[http://dx.doi.org/10.1016/j.tet.2018.10.024]
[17]
Paladhi, S.; Das, J.; Samanta, M.; Dash, J. Asymmetric aldol reaction of thiazole;carbaldehydes: regio;and stereoselective synthesis of tubuvalin analogues. Adv. Synth. Catal., 2014, 356(16), 3370-3376.
[http://dx.doi.org/10.1002/adsc.201400640]
[18]
Wang, X.M.; Liu, Y.W.; Wang, Q.E.; Zhou, Z.; Si, C.M.; Wei, B.G. A divergent method to key unit of tubulysin V through one-pot diastereoselective Mannich process of N,O-acetal with ketone. Tetrahedron, 2019, 75(2), 260-268.
[http://dx.doi.org/10.1016/j.tet.2018.11.053]
[19]
Tao, W.; Zhou, W.; Zhou, Z.; Si, C.M.; Sun, X.; Wei, B.G. An enantioselective total synthesis of tubulysin V. Tetrahedron, 2016, 72(39), 5928-5933.
[http://dx.doi.org/10.1016/j.tet.2016.08.038]
[20]
Wipf, P.; Takada, T.; Rishel, M.J. Synthesis of the tubuvaline-tubuphenylalanine (Tuv-Tup) fragment of tubulysin. Org. Lett., 2004, 6(22), 4057-4060.
[http://dx.doi.org/10.1021/ol048252i] [PMID: 15496098]
[21]
Appella, D.H.; Moritani, Y.; Shintani, R.; Ferreira, E.M.; Buchwald, S.L. Asymmetric conjugate reduction of α, β-unsaturated esters using a chiral phosphine-copper catalyst. J. Am. Chem. Soc., 1999, 121(40), 9473-9474.
[http://dx.doi.org/10.1021/ja992366l]
[22]
Chandrasekhar, S.; Mahipal, B.; Kavitha, M. Toward tubulysin: gram-scale synthesis of tubuvaline-tubuphenylalanine fragment. J. Org. Chem., 2009, 74(24), 9531-9534.
[http://dx.doi.org/10.1021/jo9015503] [PMID: 19928810]
[23]
Chandrasekhar, S.; Yaragorla, S.R.; Sreelakshmi, L.; Reddy, C.R. Formal total synthesis of (-)-spongidepsin. Tetrahedron, 2008, 64(22), 5174-5183.
[http://dx.doi.org/10.1016/j.tet.2008.03.041]
[24]
Ye, W.; Leow, D.; Goh, S.L.M.; Tan, C.T.; Chian, C.H.; Tan, C.H. Chiral bicyclic guanidines: a concise and efficient aziridine-based synthesis. Tetrahedron Lett., 2006, 47(6), 1007-1010.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.133]
[25]
Shibue, T.; Hirai, T.; Okamoto, I.; Morita, N.; Masu, H.; Azumaya, I.; Tamura, O. Stereoselective synthesis of tubuvaline methyl ester and tubuphenylalanine, components of tubulysins, tubulin polymerization inhibitors. Tetrahedron Lett., 2009, 50(27), 3845-3848.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.046]
[26]
Barton, D.H.R.; McCombie, S.W. J. Chem. Soc. Perkin Trans., 1975, 1, 1574-1585.
[http://dx.doi.org/10.1039/p19750001574]
[27]
Pando, O.; Dörner, S.; Preusentanz, R.; Denkert, A.; Porzel, A.; Richter, W.; Wessjohann, L. First total synthesis of tubulysin B. Org. Lett., 2009, 11(24), 5567-5569.
[http://dx.doi.org/10.1021/ol902320w] [PMID: 19919080]
[28]
Dömling, A.; Beck, B.; Eichelberger, U.; Sakamuri, S.; Menon, S.; Chen, Q.Z.; Lu, Y.; Wessjohann, L.A. Total synthesis of tubulysin U and V. Angew. Chem. Int. Ed. Angew. Chem., 2006, 118, 7393-7397.
[29]
(a) Peltier, H.M.; McMahon, J.P.; Patterson, A.W.; Ellman, J.A. The total synthesis of tubulysin D. J. Am. Chem. Soc., 2006, 128(50), 16018-16019.
[http://dx.doi.org/10.1021/ja067177z] [PMID: 17165738]
(b) Sasse, F.; Menche, D. Success in tubulysin D synthesis. Nat. Chem. Biol., 2007, 3(2), 87-89.
[http://dx.doi.org/10.1038/nchembio0207-87] [PMID: 17235344]
[30]
Kaoru, I.; Tetsuo, S. Total synthesis of antibiotic althiomycin. Bull. Chem. Soc. Jpn., 1985, 58(1), 352-360.
[http://dx.doi.org/10.1246/bcsj.58.352]
[31]
Nicolaou, K.C.; Estrada, A.A.; Zak, M.; Lee, S.H.; Safina, B.S. A mild and selective method for the hydrolysis of esters with trimethyltin hydroxide. Angew. Chem. Int. Ed., 2005, 44(9), 1378-1382.
[http://dx.doi.org/10.1002/anie.200462207] [PMID: 15674985]
[32]
Shibue, T.; Okamoto, I.; Morita, N.; Morita, H.; Hirasawa, Y.; Hosoya, T.; Tamura, O. Synthesis and biological evaluation of tubulysin D analogs related to stereoisomers of tubuvaline. Bioorg. Med. Chem. Lett., 2011, 21(1), 431-434.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.118] [PMID: 21106374]
[33]
Wang, R.; Tian, P.; Lin, G. Stereoselective total synthesis of tubulysin V. Chin. J. Chem., 2013, 31(1), 40-48.
[http://dx.doi.org/10.1002/cjoc.201200984]
[34]
Sani, M.; Fossati, G.; Huguenot, F.; Zanda, M. Total synthesis of tubulysins U and V. Angew. Chem. Int. Ed., 2007, 46(19), 3526-3529.
[http://dx.doi.org/10.1002/anie.200604557] [PMID: 17397123]
[35]
Corey, E.J.; Helal, C.J. Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: a new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Ed. Engl., 1998, 37(15), 1986-2012.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980817)37:15<1986:AID-ANIE1986>3.0.CO;2-Z] [PMID: 29711061]
[36]
Balasubramanian, R.; Raghavan, B.; Begaye, A.; Sackett, D.L.; Fecik, R.A. Total synthesis and biological evaluation of tubulysin U, tubulysin V, and their analogues. J. Med. Chem., 2009, 52(2), 238-240.
[http://dx.doi.org/10.1021/jm8013579] [PMID: 19102699]
[37]
Yang, X.D.; Dong, C.M.; Chen, J.; Ding, Y.H.; Liu, Q.; Ma, X.Y.; Zhang, Q.; Chen, Y. Total synthesis of tubulysin U and its C-4 epimer. Chem. Asian J., 2013, 8(6), 1213-1222.
[http://dx.doi.org/10.1002/asia.201300051] [PMID: 23576385]
[38]
Oppolzer, W.; Moretti, R.; Thomi, S. Asymmetric alkylation of N-acylsultams: A general route to enantiomerically pure, crystalline C (α,α)-disubstituted carboxylic acid derivatives. Tetrahedron Lett., 1989, 30(41), 5603-5606.
[http://dx.doi.org/10.1016/S0040-4039(01)93810-9]
[39]
Ma, J.Y.; Huang, W.; Wei, B.G. Asymmetric synthesis of (E)-dehydroapratoxin A. Tetrahedron Lett., 2011, 52(36), 4598-4601.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.107]
[40]
Zhou, Q.R.; Wei, X.Y.; Li, Y.Q.; Huang, D.; Wei, B.G. An efficient method for the preparation of 3-hydroxyl-5-substituted 2-pyrrolidones and application in the divergent synthesis of (-)-preussin and its analogues. Tetrahedron, 2014, 70(32), 4799-4808.
[http://dx.doi.org/10.1016/j.tet.2014.05.037]
[41]
Nicolaou, K.C.; Erande, R.D.; Yin, J.; Vourloumis, D.; Aujay, M.; Sandoval, J.; Munneke, S.; Gavrilyuk, J. Improved total synthesis of tubulysins and design, synthesis, and biological evaluation of new tubulysins with highly potent cytotoxicities against cancer cells as potential payloads for antibody-drug conjugates. J. Am. Chem. Soc., 2018, 140(10), 3690-3711.
[http://dx.doi.org/10.1021/jacs.7b12692] [PMID: 29381062]
[42]
Wipf, P.; Wang, Z. Total synthesis of N14-desacetoxytubulysin H. Org. Lett., 2007, 9(8), 1605-1607.
[http://dx.doi.org/10.1021/ol070415q] [PMID: 17367155]
[43]
Wang, Z.; McPherson, P.A.; Raccor, B.S.; Balachandran, R.; Zhu, G.; Day, B.W.; Vogt, A.; Wipf, P. Structure-activity and high-content imaging analyses of novel tubulysins. Chem. Biol. Drug Des., 2007, 70(2), 75-86.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00541.x] [PMID: 17683369]
[44]
Colombo, R.; Wang, Z.; Han, J.; Balachandran, R.; Daghestani, H.N.; Camarco, D.P.; Vogt, A.; Day, B.W.; Mendel, D.; Wipf, P. Total synthesis and biological evaluation of tubulysin analogues. J. Org. Chem., 2016, 81(21), 10302-10320.
[http://dx.doi.org/10.1021/acs.joc.6b01314] [PMID: 27447195]
[45]
Abarbri, M.; Thibonnet, J.; Bérillon, L.; Dehmel, F.; Rottländer, M.; Knochel, P. Preparation of new polyfunctional magnesiated heterocycles using a chlorine-, bromine-, or iodine-magnesium exchange. J. Org. Chem., 2000, 65(15), 4618-4634.
[http://dx.doi.org/10.1021/jo000235t] [PMID: 10959867]
[46]
Nicolaou, K.C.; Yin, J.; Mandal, D.; Erande, R.D.; Klahn, P.; Jin, M.; Aujay, M.; Sandoval, J.; Gavrilyuk, J.; Vourloumis, D. Total synthesis and biological evaluation of natural and designed tubulysins. J. Am. Chem. Soc., 2016, 138(5), 1698-1708.
[http://dx.doi.org/10.1021/jacs.5b12557] [PMID: 26829208]
[47]
In, J.K.; Lee, M.S.; Lee, M.W.; Kwak, J.H.; Lee, H.; Hong, J.T.; Chung, Y.; Choi, Y.; Jung, J.K. Stereoselective synthesis of (E)- and (Z)-enol ethers from β--amino aldehydes. Arch. Pharm. Res., 2007, 30(6), 695-700.
[http://dx.doi.org/10.1007/BF02977630] [PMID: 17679546]
[48]
Khemnar, A.B.; Bhanage, B.M. Direct C-2 acylation of thiazoles with aldehydes via metal-and solvent-free C-H activation in the presence of tert-butyl hydroperoxide. Synlett, 2014, 25(01), 110-114.
[49]
Vishwanatha, T.M.; Giepmans, B.; Goda, S.K.; Dömling, A. Tubulysin synthesis featuring stereoselective catalysis and highly convergent multicomponent assembly. Org. Lett., 2020, 22(14), 5396-5400.
[http://dx.doi.org/10.1021/acs.orglett.0c01718] [PMID: 32584589]
[50]
Long, B.; Tao, C.; Li, Y.; Zeng, X.; Cao, M.; Wu, Z. Total synthesis of tubulysin U and N14-desacetoxytubulysin H. Org. Biomol. Chem., 2020, 18(28), 5349-5353.
[http://dx.doi.org/10.1039/D0OB01109F] [PMID: 32643750]
[51]
Liu, Y.; Sun, X.; Zhang, X.; Liu, J.; Du, Y. Concise synthesis of 2,4-disubstituted thiazoles from -azido disulfides and carboxylic acids or anhydrides: asymmetric synthesis of cystothiazole C. Org. Biomol. Chem., 2014, 12(42), 8453-8461.
[http://dx.doi.org/10.1039/C4OB01460J] [PMID: 25223403]
[52]
Shibue, T.; Hirai, T.; Okamoto, I.; Morita, N.; Masu, H.; Azumaya, I.; Tamura, O. Total syntheses of tubulysins. Chemistry, 2010, 16(38), 11678-11688.
[http://dx.doi.org/10.1002/chem.201000963] [PMID: 20734394]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy