Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Drug Delivery Systems and Strategies to Overcome the Barriers of Brain

Author(s): Yogesh Garg, Deepak N. Kapoor, Abhishek K. Sharma and Amit Bhatia*

Volume 28, Issue 8, 2022

Published on: 01 February, 2022

Page: [619 - 641] Pages: 23

DOI: 10.2174/1381612828666211222163025

Price: $65

Abstract

The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. The reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tends to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.

Keywords: Nanomedicine, novel drug delivery, blood-brain barrier, neurological disorders, nose to brain, non-invasive.

[1]
Kaisar MA, Sajja RK, Prasad S, Abhyankar VV, Liles T, Cucullo L. New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opin Drug Discov 2017; 12(1): 89-103.
[http://dx.doi.org/10.1080/17460441.2017.1253676] [PMID: 27782770]
[2]
Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020; 17(1): 69.
[http://dx.doi.org/10.1186/s12987-020-00230-3] [PMID: 33208141]
[3]
Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018; 10(3): 116.
[http://dx.doi.org/10.3390/pharmaceutics10030116] [PMID: 30081536]
[4]
Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. J Drug Deliv Sci Technol 2020; 102018.
[http://dx.doi.org/10.1016/j.jddst.2020.102018]
[5]
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv Mater 2018; 30(46): e1801362.
[http://dx.doi.org/10.1002/adma.201801362] [PMID: 30066406]
[6]
Cui W, Fu W, Lin Y, Zhang T. Application of nanomaterials in neurodegenerative diseases. Curr Stem Cell Res Ther 2021; 16(1): 83-94.
[http://dx.doi.org/10.2174/1574888X15666200326093410] [PMID: 32213159]
[7]
Bawa R, Audette GF, Rubinstein I. Handbook of clinical nanomedicine: Nanoparticles, imaging, therapy and clinical applications. Boca Raton, Florida: CRC Press 2016.
[8]
Kumar A, Pandey AN, Jain SK. Nasal-nanotechnology: Revolution for efficient therapeutics delivery. Drug Deliv 2016; 23(3): 681-93.
[http://dx.doi.org/10.3109/10717544.2014.920431] [PMID: 24901207]
[9]
Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 2018; 281: 139-77.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[10]
Wong KH, Riaz MK, Xie Y, et al. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int J Mol Sci 2019; 20(2): 381.
[http://dx.doi.org/10.3390/ijms20020381] [PMID: 30658419]
[11]
Peng Y, Chen L, Ye S, et al. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15(2): 220-36.
[http://dx.doi.org/10.1016/j.ajps.2020.02.004] [PMID: 32373201]
[12]
Wilson CM, Magnaudeix A, Naves T, Vincent F, Lalloue F, Jauberteau MO. The ins and outs of nanoparticle technology in neurodegenerative diseases and cancer. Curr Drug Metab 2015; 16(8): 609-32.
[http://dx.doi.org/10.2174/1389200216666150812121902] [PMID: 26264207]
[13]
Giri SS, Kim SG, Kang JW, Kim SW, Kwon J, Lee S. Applications of carbon nanotubes and polymeric micro-/nanoparticles in fish vaccine delivery: Progress and future perspectives. Rev Aquacult 2021; 13(4): 1844-63.
[http://dx.doi.org/10.1111/raq.12547]
[14]
Alam S, Khan ZI, Mustafa G, et al. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose- to-brain targeting: A pharmacoscintigraphic study. Int J Nanomedicine 2012; 7: 5705-18.
[http://dx.doi.org/10.2147/IJN.S35329] [PMID: 23180965]
[15]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[16]
Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech 2014; 15(6): 1598-602.
[http://dx.doi.org/10.1208/s12249-014-0189-5] [PMID: 25142821]
[17]
Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 2014; 190: 189-200.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.003] [PMID: 24818769]
[18]
Yeh T-H, Hsu L-W, Tseng MT, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 2011; 32(26): 6164-73.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.056] [PMID: 21641031]
[19]
Patel D, Naik S, Misra A. Improved transnasal transport and brain uptake of tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J Pharm Sci 2012; 101(2): 690-706.
[http://dx.doi.org/10.1002/jps.22780] [PMID: 22006260]
[20]
Kumar M, Pandey RS, Patra KC, et al. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol 2013; 61: 189-95.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.041] [PMID: 23831532]
[21]
Md S, Khan RA, Mustafa G, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci 2013; 48(3): 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007] [PMID: 23266466]
[22]
Patel D, Naik S, Chuttani K, Mathur R, Mishra AK, Misra A. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief. J Drug Target 2013; 21(8): 759-69.
[http://dx.doi.org/10.3109/1061186X.2013.818676] [PMID: 23879335]
[23]
Bari NK, Fazil M, Hassan MQ, et al. Brain delivery of buspirone hydrochloride chitosan nanoparticles for the treatment of general anxiety disorder. Int J Biol Macromol 2015; 81: 49-59.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.041] [PMID: 26210037]
[24]
Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci 2016; 92: 224-34.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[25]
Shah B, Khunt D, Misra M, Padh H. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route. Int J Biol Macromol 2016; 89: 206-18.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.076] [PMID: 27130654]
[26]
Nagpal K, Singh SK, Mishra DN. Formulation, optimization, in vivo pharmacokinetic, behavioral and biochemical estimations of minocycline loaded chitosan nanoparticles for enhanced brain uptake. Chem Pharm Bull (Tokyo) 2013; 61(3): 258-72.
[http://dx.doi.org/10.1248/cpb.c12-00732] [PMID: 23449195]
[27]
Nagpal K, Singh SK, Mishra DN. Nanoparticle mediated brain targeted delivery of gallic acid: In vivo behavioral and biochemical studies for protection against scopolamine-induced amnesia. Drug Deliv 2013; 20(3-4): 112-9.
[http://dx.doi.org/10.3109/10717544.2013.779330] [PMID: 23651033]
[28]
Nagpal K, Singh SK, Mishra D. Evaluation of safety and efficacy of brain targeted chitosan nanoparticles of minocycline. Int J Biol Macromol 2013; 59: 20-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.011] [PMID: 23587996]
[29]
Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Expert Opin Drug Deliv 2013; 10(7): 957-72.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[30]
Kumar H, Mishra G, Sharma AK, Gothwal A, Kesharwani P, Gupta U. Intranasal drug delivery: A non-invasive approach for the better delivery of neurotherapeutics. Pharm Nanotechnol 2017; 5(3): 203-14.
[http://dx.doi.org/10.2174/2211738505666170515113936] [PMID: 28521670]
[31]
Nagpal K, Singh SK, Mishra DN. Optimization of brain targeted chitosan nanoparticles of rivastigmine for improved efficacy and safety. Int J Biol Macromol 2013; 59: 72-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.024] [PMID: 23597710]
[32]
Kast CE, Bernkop-Schnürch A. Thiolated polymers-thiomers: Development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 2001; 22(17): 2345-52.
[http://dx.doi.org/10.1016/S0142-9612(00)00421-X] [PMID: 11511031]
[33]
Zheng X, Pang X, Yang P, et al. A hybrid siRNA delivery complex for enhanced brain penetration and precise amyloid plaque targeting in Alzheimer’s disease mice. Acta Biomater 2017; 49: 388-401.
[http://dx.doi.org/10.1016/j.actbio.2016.11.029] [PMID: 27845275]
[34]
Sharma D, Sharma RK, Sharma N, et al. Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech 2015; 16(5): 1108-21.
[http://dx.doi.org/10.1208/s12249-015-0294-0] [PMID: 25698083]
[35]
Peter Christoper GV, Vijaya Raghavan C, Siddharth K, Siva Selva Kumar M, Hari Prasad R. Formulation and optimization of coated PLGA - Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency. Saudi Pharm J 2014; 22(2): 133-40.
[http://dx.doi.org/10.1016/j.jsps.2013.04.002] [PMID: 24648825]
[36]
Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CCW, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater 2014; 10(6): 2643-52.
[http://dx.doi.org/10.1016/j.actbio.2014.01.033] [PMID: 24512977]
[37]
Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: Preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 2010; 76(2): 189-99.
[http://dx.doi.org/10.1016/j.ejpb.2010.07.007] [PMID: 20637869]
[38]
Engineer C, Parikh J, Raval A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 2011; 25(2): 79-85.
[39]
Liang R, Zhang R, Li X, et al. Stability of exenatide in poly(D,L-lactide-co-glycolide) solutions: A simplified investigation on the peptide degradation by the polymer. Eur J Pharm Sci 2013; 50(3-4): 502-10.
[http://dx.doi.org/10.1016/j.ejps.2013.08.014] [PMID: 23994054]
[40]
Zhang X, Chen G, Wen L, et al. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: In vitro and in vivo evaluation. Eur J Pharm Sci 2013; 48(4-5): 595-603.
[http://dx.doi.org/10.1016/j.ejps.2013.01.007] [PMID: 23354153]
[41]
Jose S, Juna BC, Cinu TA, Jyoti H, Aleykutty NA. Carboplatin loaded surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies. Colloids Surf B Biointerfaces 2016; 142: 307-14.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.026] [PMID: 26970818]
[42]
Han L, Cai Q, Tian D, et al. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. Nanomedicine 2016; 12(7): 1833-42.
[http://dx.doi.org/10.1016/j.nano.2016.03.005] [PMID: 27039220]
[43]
Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release 2017; 268: 364-89.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.001] [PMID: 28887135]
[44]
Du Y, Wang S, Li F, Ling D. The strategies of nanomaterials for therapy. In: Xue X, Ed. Nanomedicine in Brain Diseases. Singapore: Springer 2019; pp. 83-114.
[http://dx.doi.org/10.1007/978-981-13-8731-9_4]
[45]
Samal J, Rebelo AL, Pandit A. A window into the brain: Tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv Drug Deliv Rev 2019; 148: 68-145.
[http://dx.doi.org/10.1016/j.addr.2019.01.012] [PMID: 30710594]
[46]
Curcio M, Cirillo G, Rouaen JRC, et al. Natural polysaccharide carriers in brain delivery: Challenge and perspective. Pharmaceutics 2020; 12(12): 1183.
[http://dx.doi.org/10.3390/pharmaceutics12121183] [PMID: 33291284]
[47]
Zhang B, Sun X, Mei H, et al. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 2013; 34(36): 9171-82.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.039] [PMID: 24008043]
[48]
Gao S, Xu Y, Asghar S, et al. Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems. J Drug Target 2015; 23(6): 481-96.
[http://dx.doi.org/10.3109/1061186X.2015.1020426] [PMID: 25738991]
[49]
Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater 2019; 10(1): 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[50]
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, et al. Polymeric nanoparticles for nasal drug delivery to the brain: Relevance to Alzheimer’s disease. Adv Ther 2021; 4(3): 2000076.
[http://dx.doi.org/10.1002/adtp.202000076]
[51]
Couvreur P, Kante B, Roland M, Speiser P. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 1979; 68(12): 1521-4.
[http://dx.doi.org/10.1002/jps.2600681215] [PMID: 529043]
[52]
Iyer A, Ganta S, Amiji M. Polymeric nanoparticles as target-specific delivery systems. In: V. Torchilin, M.M. Amiji, Eds. Handb Mater Nanomedicine. 2nd. Singapore: Jenny Stanford Publishing 2011; pp. 81-130.
[http://dx.doi.org/10.1201/9780429111570]
[53]
Bernocchi B. Porous maltodextrin nanoparticles for the intranasal delivery of vaccines. University of Law and Health-Lille II 2016.
[54]
Bagad M, Khan ZA. Poly(n-butylcyanoacrylate) nanoparticles for oral delivery of quercetin: Preparation, characterization, and pharmacokinetics and biodistribution studies in Wistar rats. Int J Nanomedicine 2015; 10: 3921-35.
[http://dx.doi.org/10.2147/IJN.S80706] [PMID: 26089668]
[55]
Kolter M, Ott M, Hauer C, Reimold I, Fricker G. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo. J Control Release 2015; 197: 165-79.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.005] [PMID: 25445700]
[56]
Sulheim E, Baghirov H, von Haartman E, et al. Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles. J Nanobiotechnology 2016; 14(1): 1-14.
[http://dx.doi.org/10.1186/s12951-015-0156-7] [PMID: 26743777]
[57]
O’Sullivan C, Birkinshaw C. Hydrolysis of poly (n-butylcyanoacrylate) nanoparticles using esterase. Polym Degrad Stabil 2002; 78(1): 7-15.
[http://dx.doi.org/10.1016/S0141-3910(02)00113-1]
[58]
Kuo Y-C, Chen H-H. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. Int J Pharm 2006; 327(1-2): 160-9.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.044] [PMID: 16939704]
[59]
Tian X-H, Lin X-N, Wei F, et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine 2011; 6: 445-52.
[http://dx.doi.org/10.2147/IJN.S16570] [PMID: 21445277]
[60]
Sun M, Gao Y, Guo C, Cao F, Song Z, Xi Y, et al. Enhancement of transport of curcumin to brain in mice by poly (n-butylcyanoacrylate) nanoparticle. J Nanopart Res 2010; 12(8): 3111-22.
[http://dx.doi.org/10.1007/s11051-010-9907-4]
[61]
Zhao L, Liu A, Sun M, et al. Enhancement of oral bioavailability of puerarin by polybutylcyanoacrylate nanoparticles. J Nanomater 2011; 2011(6): 1-8.
[http://dx.doi.org/10.1155/2011/126562]
[62]
Fang Z, Chen S, Qin J, et al. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy. Biomaterials 2016; 97: 110-21.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.021] [PMID: 27162079]
[63]
Chung C-Y, Lin MH-C, Lee IN, Lee T-H, Lee M-H, Yang J-T. Brain-derived neurotrophic factor loaded PS80 PBCA nanocarrier for in vitro neural differentiation of mouse induced pluripotent stem cells. Int J Mol Sci 2017; 18(3): 663.
[http://dx.doi.org/10.3390/ijms18030663] [PMID: 28335495]
[64]
Byeon HJ, Thao Q, Lee S, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual- targeting in brain tumors. J Control Release 2016; 225: 301-13.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.046] [PMID: 26826308]
[65]
Lamichhane S, Lee S. Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res 2020; 43(1): 118-33.
[http://dx.doi.org/10.1007/s12272-020-01204-7] [PMID: 31916145]
[66]
Pedrozo RC, Antônio E, Khalil NM, Mainardes RM. Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying. Braz J Pharm Sci 2020; 56.
[http://dx.doi.org/10.1590/s2175-97902019000317692]
[67]
Sozer SC, Egesoy TO, Basol M, Cakan-Akdogan G, Akdogan Y. A simple desolvation method for production of cationic albumin nanoparticles with improved drug loading and cell uptake. J Drug Deliv Sci Technol 2020; 60: 101931.
[http://dx.doi.org/10.1016/j.jddst.2020.101931]
[68]
Esim O, Hascicek C. Albumin-based nanoparticles as promising drug delivery systems for cancer treatment. Curr Pharm Anal 2021; 17(3): 346-59.
[http://dx.doi.org/10.2174/1573412916999200421142008]
[69]
Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 2016; 13(11): 1609-23.
[http://dx.doi.org/10.1080/17425247.2016.1193149] [PMID: 27216915]
[70]
Dal Magro R, Albertini B, Beretta S, et al. Artificial apolipoprotein corona enables nanoparticle brain targeting. Nanomedicine 2018; 14(2): 429-38.
[http://dx.doi.org/10.1016/j.nano.2017.11.008] [PMID: 29157979]
[71]
Hartl N, Adams F, Merkel OM. From adsorption to covalent bonding: Apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood-brain barrier. Adv Ther (Weinh) 2020; 4(1): 2000092.
[http://dx.doi.org/10.1002/adtp.202000092] [PMID: 33542947]
[72]
Wilson B, Selvam J, Mukundan GK, Premakumari KB, Jenita JL. Albumin nanoparticles coated with polysorbate 80 for the targeted delivery of antiepileptic drug levetiracetam into the brain. Drug Deliv Transl Res 2020; 10(6): 1853-61.
[http://dx.doi.org/10.1007/s13346-020-00831-3] [PMID: 32783151]
[73]
Jenita JL, Chocalingam V, Wilson B. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug-Efavirenz. Int J Pharm Investig 2014; 4(3): 142-8.
[http://dx.doi.org/10.4103/2230-973X.138348] [PMID: 25126528]
[74]
Bode DC, Stanyon HF, Hirani T, Baker MD, Nield J, Viles JH. Serum albumin’s protective inhibition of amyloid-β fiber formation is suppressed by cholesterol, fatty acids and warfarin. J Mol Biol 2018; 430(7): 919-34.
[http://dx.doi.org/10.1016/j.jmb.2018.01.008] [PMID: 29409811]
[75]
Dou Y, Zhao D, Yang F, Tang Y, Chang J. Natural phyto-antioxidant albumin nanoagents to treat advanced Alzheimer’s disease. ACS Appl Mater Interfaces 2021; 13(26): 30373-82.
[http://dx.doi.org/10.1021/acsami.1c07281] [PMID: 34180234]
[76]
Prabha G, Raj V. Sodium alginate-polyvinyl alcohol-bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: Doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater Sci Eng C 2017; 79: 410-22.
[http://dx.doi.org/10.1016/j.msec.2017.04.075] [PMID: 28629035]
[77]
Baneshi M, Dadfarnia S, Shabani AMH, Sabbagh SK, Haghgoo S, Bardania H. A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. Int J Pharm 2019; 564: 145-52.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.025] [PMID: 30978484]
[78]
Girotra P, Singh SK. A comparative study of orally delivered PBCA and ApoE coupled BSA nanoparticles for brain targeting of sumatriptan succinate in therapeutic management of migraine. Pharm Res 2016; 33(7): 1682-95.
[http://dx.doi.org/10.1007/s11095-016-1910-8] [PMID: 27003706]
[79]
Abu-Dief AM, Abdel-Mawgoud AAH. Functionalization of magnetic nanoparticles for drug delivery. SF J Nanochem Nanotechnol 2018; 2018(1): 1005.
[80]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[81]
Sintov AC, Velasco-Aguirre C, Gallardo-Toledo E, Araya E, Kogan MJ. Metal nanoparticles as targeted carriers circumventing the blood–brain barrier. Int Rev Neurobiol 2016; 130: 199-227.
[http://dx.doi.org/10.1016/bs.irn.2016.06.007] [PMID: 27678178]
[82]
Hepel M. Magnetic nanoparticles for nanomedicine. Magnetochemistry 2020; 6(1): 3.
[http://dx.doi.org/10.3390/magnetochemistry6010003]
[83]
Beik J, Khademi S, Attaran N, et al. A nanotechnology-based strategy to increase the efficiency of cancer diagnosis and therapy: Folate-conjugated gold nanoparticles. Curr Med Chem 2017; 24(39): 4399-416.
[http://dx.doi.org/10.2174/0929867324666170810154917] [PMID: 28799495]
[84]
Boomi P, Ganesan R, Prabu Poorani G, et al. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int J Nanomedicine 2020; 15: 7553-68.
[http://dx.doi.org/10.2147/IJN.S257499] [PMID: 33116487]
[85]
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 2018; 7(5): 1700845.
[http://dx.doi.org/10.1002/adhm.201700845] [PMID: 29280314]
[86]
Mujtaba J, Liu J, Dey KK, et al. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, microfluidics, and nanozymes for biomedical applications. Adv Mater 2021; 33(22): e2007465.
[http://dx.doi.org/10.1002/adma.202007465] [PMID: 33893682]
[87]
Singh D, McMillan JM, Kabanov AV, Sokolsky-Papkov M, Gendelman HE. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond) 2014; 9(4): 501-16.
[http://dx.doi.org/10.2217/nnm.14.5] [PMID: 24910878]
[88]
Singh D, McMillan JM, Liu X-M, et al. Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine (Lond) 2014; 9(3): 469-85.
[http://dx.doi.org/10.2217/nnm.14.4] [PMID: 24646020]
[89]
Shevtsov M, Multhoff G. Recent developments of magnetic nanoparticles for theranostics of brain tumor. Curr Drug Metab 2016; 17(8): 737-44.
[http://dx.doi.org/10.2174/1389200217666160607232540] [PMID: 27280470]
[90]
Lazaro-Carrillo A, Filice M, Guillén MJ, et al. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. Mater Sci Eng C Mater Biol Appl 2020; 107: 110262.
[http://dx.doi.org/10.1016/j.msec.2019.110262] [PMID: 31761230]
[91]
Stueber DD, Villanova J, Aponte I, Xiao Z, Colvin VL. Magnetic nanoparticles in biology and medicine: Past, present, and future trends. Pharmaceutics 2021; 13(7): 943.
[http://dx.doi.org/10.3390/pharmaceutics13070943] [PMID: 34202604]
[92]
Persano F, Batasheva S, Fakhrullina G, Gigli G, Leporatti S, Fakhrullin R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J Mater Chem B Mater Biol Med 2021; 9(12): 2756-84.
[http://dx.doi.org/10.1039/D0TB02957B] [PMID: 33596293]
[93]
Busquets MA, Espargaró A, Sabaté R, Estelrich J. Magnetic nanoparticles cross the blood-brain barrier: When physics rises to a challenge. Nanomaterials (Basel) 2015; 5(4): 2231-48.
[http://dx.doi.org/10.3390/nano5042231] [PMID: 28347118]
[94]
Lahkar S, Das MK. Brain-targeted drug delivery with surface- modified nanoparticles. In: Pathak YV, Ed. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer 2019; pp. 277-310.
[http://dx.doi.org/10.1007/978-3-030-06115-9_15]
[95]
Amin FU, Hoshiar AK, Do TD, et al. Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale 2017; 9(30): 10619-32.
[http://dx.doi.org/10.1039/C7NR00772H] [PMID: 28534925]
[96]
Dean SN, Turner KB, Medintz IL, Walper SA. Targeting and delivery of therapeutic enzymes. Ther Deliv 2017; 8(7): 577-95.
[http://dx.doi.org/10.4155/tde-2017-0020] [PMID: 28633594]
[97]
Kruger CA, Abrahamse H. Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Molecules 2018; 23(10): 2628.
[http://dx.doi.org/10.3390/molecules23102628] [PMID: 30322132]
[98]
Luo B, Wang S, Rao R, et al. Conjugation magnetic PAEEP-PLLA nanoparticles with lactoferrin as a specific targeting MRI contrast agent for detection of brain glioma in rats. Nanoscale Res Lett 2016; 11(1): 227.
[http://dx.doi.org/10.1186/s11671-016-1421-x] [PMID: 27119155]
[99]
Zhao X, Shang T, Zhang X, Ye T, Wang D, Rei L. Passage of magnetic Tat-conjugated Fe3O4@ SiO2 nanoparticles across in vitro blood-brain barrier. Nanoscale Res Lett 2016; 11(1): 1-12.
[http://dx.doi.org/10.1186/s11671-016-1676-2] [PMID: 26729219]
[100]
Huang Y, Zhang B, Xie S, Yang B, Xu Q, Tan J. Superparamagnetic iron oxide nanoparticles modified with tween 80 pass through the intact blood–brain barrier in rats under magnetic field. ACS Appl Mater Interfaces 2016; 8(18): 11336-41.
[http://dx.doi.org/10.1021/acsami.6b02838] [PMID: 27092793]
[101]
Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 2010; 49(19): 3280-94.
[http://dx.doi.org/10.1002/anie.200904359] [PMID: 20401880]
[102]
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112(5): 2739-79.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[103]
Shilo M, Sharon A, Baranes K, Motiei M, Lellouche J-PM, Popovtzer R. The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in-vitro endothelial cell model. J Nanobiotechnology 2015; 13(1): 19.
[http://dx.doi.org/10.1186/s12951-015-0075-7] [PMID: 25880565]
[104]
Ruan S, Hu C, Tang X, et al. Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano 2016; 10(11): 10086-98.
[http://dx.doi.org/10.1021/acsnano.6b05070] [PMID: 27934068]
[105]
P Farrell N. Platinum formulations as anticancer drugs clinical and pre-clinical studies. Curr Top Med Chem 2011; 11(21): 2623-31.
[http://dx.doi.org/10.2174/156802611798040714] [PMID: 22039867]
[106]
v A, Cutinho LI, Mourya P, Maxwell A, Thomas G, Rajput BS. Approaches for encephalic drug delivery using nanomaterials: The current status. Brain Res Bull 2020; 155: 184-90.
[http://dx.doi.org/10.1016/j.brainresbull.2019.11.017] [PMID: 31790722]
[107]
Heidari A, Schmitt K, Henderson M, Besana E. Study of human cancer cells, tissues and tumors treatment through interaction between synchrotron radiation and cerium nanoparticles. Sci Lett 2020; 8(1): 7-17.
[108]
Sathishkumar P, Li Z, Govindan R, Jayakumar R, Wang C, Gu FL. Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies. Appl Surf Sci 2021; 536: 147741.
[http://dx.doi.org/10.1016/j.apsusc.2020.147741]
[109]
Shirodkar RK, Kumar L, Mutalik S, Lewis S. Solid lipid nanoparticles and nanostructured lipid carriers: Emerging lipid based drug delivery systems. Pharm Chem J 2019; 53(5): 440-53.
[http://dx.doi.org/10.1007/s11094-019-02017-9]
[110]
Posadas I, Monteagudo S, Ceña V. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine (Lond) 2016; 11(7): 833-49.
[http://dx.doi.org/10.2217/nnm.16.15] [PMID: 26980585]
[111]
Muheem A, Jahangir MA, Jaiswal CP, et al. Recent patents, regulatory issues, and toxicity of nanoparticles in neuronal disorders. Curr Drug Metab 2021; 22(4): 263-79.
[http://dx.doi.org/10.2174/1389200221999201210213036] [PMID: 33305703]
[112]
Ganesan P, Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 2017; 6: 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[113]
Kanwar R, Uppal S, Mehta SK. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): Fabrication and functionalization for impending therapeutic applications. In: Kumar V, Guleria P, Dasgupta N, Ranjan S, Eds. Functionalized Nanomaterials II. Boca Raton, Florida: CRC Press 2021; pp. 57-70.
[http://dx.doi.org/10.1201/9781351021388-4]
[114]
Kuo Y-C, Shih-Huang C-Y. Solid lipid nanoparticles with surface antibody for targeting the brain and inhibiting lymphatic phagocytosis. J Taiwan Inst Chem Eng 2014; 45(4): 1154-63.
[http://dx.doi.org/10.1016/j.jtice.2014.01.017]
[115]
Meng F, Asghar S, Xu Y, et al. Design and evaluation of lipoprotein resembling curcumin-encapsulated protein-free nanostructured lipid carrier for brain targeting. Int J Pharm 2016; 506(1-2): 46-56.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.033] [PMID: 27094357]
[116]
Sarma A, Chakraborty T, Das MK. CNS delivery of drug via low- density lipoprotein receptor (LDLr) mediated transcytosis. Curr Trends Pharm Res 2017; 4(1): 26-46.
[117]
Moura RP, Martins C, Pinto S, Sousa F, Sarmento B. Blood-brain barrier receptors and transporters: An insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Deliv 2019; 16(3): 271-85.
[http://dx.doi.org/10.1080/17425247.2019.1583205] [PMID: 30767695]
[118]
Pawar S, Koneru T, McCord E, Tatiparti K, Sau S, Iyer AK. LDL receptors and their role in targeted therapy for glioma: A review. Drug Discov Today 2021; 26(5): 1212-25.
[http://dx.doi.org/10.1016/j.drudis.2021.02.008] [PMID: 33609780]
[119]
Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces 2017; 152: 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031] [PMID: 28126681]
[120]
Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015; 10(2): 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[121]
Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials (Basel) 2016; 6(7): 125.
[http://dx.doi.org/10.3390/nano6070125] [PMID: 28335253]
[122]
Poovaiah N, Davoudi Z, Peng H, et al. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. Nanoscale 2018; 10(36): 16962-83.
[http://dx.doi.org/10.1039/C8NR04073G] [PMID: 30182106]
[123]
Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements in liposome technology. Adv Drug Deliv Rev 2020; 156: 4-22.
[http://dx.doi.org/10.1016/j.addr.2020.06.022] [PMID: 32593642]
[124]
Charest G, Sanche L, Fortin D, Mathieu D, Paquette B. Glioblastoma treatment: Bypassing the toxicity of platinum compounds by using liposomal formulation and increasing treatment efficiency with concomitant radiotherapy. Int J Radiat Oncol Biol Phys 2012; 84(1): 244-9.
[http://dx.doi.org/10.1016/j.ijrobp.2011.10.054] [PMID: 22284691]
[125]
Zhao M, Hu J, Zhang L, et al. Study of amphotericin B magnetic liposomes for brain targeting. Int J Pharm 2014; 475(1-2): 9-16.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.035] [PMID: 25151436]
[126]
Chen W, Li H, Liu Z, Yuan W. Lipopolyplex for therapeutic gene delivery and its application for the treatment of Parkinson’s disease. Front Aging Neurosci 2016; 8: 68.
[http://dx.doi.org/10.3389/fnagi.2016.00068] [PMID: 27092073]
[127]
Pelegri-O’Day EM, Lin E-W, Maynard HD. Therapeutic protein-polymer conjugates: Advancing beyond PEGylation. J Am Chem Soc 2014; 136(41): 14323-32.
[http://dx.doi.org/10.1021/ja504390x] [PMID: 25216406]
[128]
Zhou J, Rossi J. Aptamers as targeted therapeutics: Current potential and challenges. Nat Rev Drug Discov 2017; 16(3): 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[129]
Mozar FS, Chowdhury EH. Impact of PEGylated nanoparticles on tumor targeted drug delivery. Curr Pharm Des 2018; 24(28): 3283-96.
[http://dx.doi.org/10.2174/1381612824666180730161721] [PMID: 30062957]
[130]
Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 2020; 12(2): 298.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[131]
Narayan R, Singh M, Ranjan O, et al. Development of risperidone liposomes for brain targeting through intranasal route. Life Sci 2016; 163: 38-45.
[http://dx.doi.org/10.1016/j.lfs.2016.08.033] [PMID: 27593571]
[132]
Hu Y, Rip J, Gaillard PJ, de Lange ECM, Hammarlund-Udenaes M. The Impact of liposomal formulations on the release and brain delivery of methotrexate: An in vivo microdialysis study. J Pharm Sci 2017; 106(9): 2606-13.
[http://dx.doi.org/10.1016/j.xphs.2017.03.009] [PMID: 28322936]
[133]
Kuo Y-C, Lee Y-J. Rescuing cholinergic neurons from apoptotic degeneration by targeting of serotonin modulator-and apolipoprotein E-conjugated liposomes to the hippocampus. Int J Nanomedicine 2016; 11: 6809-24.
[http://dx.doi.org/10.2147/IJN.S123442] [PMID: 28008255]
[134]
Bode GH, Coué G, Freese C, et al. An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: The importance of selective blood-brain barrier uptake. Nanomedicine 2017; 13(3): 1289-300.
[http://dx.doi.org/10.1016/j.nano.2016.11.009] [PMID: 27884636]
[135]
Belhadj Z, Ying M, Cao X, et al. Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. J Control Release 2017; 255: 132-41.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.006] [PMID: 28390902]
[136]
Vieira DB, Gamarra LF. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11: 5381-414.
[http://dx.doi.org/10.2147/IJN.S117210] [PMID: 27799765]
[137]
Jiang X-C, Gao J-Q. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 2017; 521(1-2): 167-75.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.038] [PMID: 28216464]
[138]
Norouzi-Barough L, Asgari Khosro Shahi A, Mohebzadeh F, Masoumi L, Haddadi MR, Shirian S. Early diagnosis of breast and ovarian cancers by body fluids circulating tumor-derived exosomes. Cancer Cell Int 2020; 20: 187.
[http://dx.doi.org/10.1186/s12935-020-01276-x] [PMID: 32489323]
[139]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[140]
Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 2011; 19(10): 1769-79.
[http://dx.doi.org/10.1038/mt.2011.164] [PMID: 21915101]
[141]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[142]
Ayala-Mar S, Donoso-Quezada J, Gallo-Villanueva RC, Perez- Gonzalez VH, González-Valdez J. Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis 2019; 40(23-24): 3036-49.
[http://dx.doi.org/10.1002/elps.201800526] [PMID: 31373715]
[143]
Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules 2019; 9(12): 790.
[http://dx.doi.org/10.3390/biom9120790] [PMID: 31783573]
[144]
Salieb-Beugelaar GB, Wolf M, Lehner R, Liu K, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies—state of the art. In: Balogh LP, Ed. Nano-Enabled Medical Applications. Singapore: Jenny Stanford Publishing 2020; pp. 1-60.
[http://dx.doi.org/10.1201/9780429399039-1]
[145]
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano 2018; 12(11): 10636-64.
[http://dx.doi.org/10.1021/acsnano.8b06104] [PMID: 30335963]
[146]
Mishra V, Yadav N, Saraogi GK, Tambuwala MM, Giri N. Dendrimer based nanoarchitectures in diabetes management: An overview. Curr Pharm Des 2019; 25(23): 2569-83.
[http://dx.doi.org/10.2174/1381612825666190716125332] [PMID: 31333099]
[147]
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017; 22(9): 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[148]
Rabiee N, Ahmadvand S, Ahmadi S, et al. Carbosilane dendrimers: Drug and gene delivery applications. J Drug Deliv Sci Technol 2020; 59: 101879.
[http://dx.doi.org/10.1016/j.jddst.2020.101879]
[149]
Lo S-T, Kumar A, Hsieh J-T, Sun X. Dendrimer nanoscaffolds for potential theranostics of prostate cancer with a focus on radiochemistry. Mol Pharm 2013; 10(3): 793-812.
[http://dx.doi.org/10.1021/mp3005325] [PMID: 23294202]
[150]
Gauro R, Nandave M, Jain VK, Jain K. Advances in dendrimer- mediated targeted drug delivery to the brain. J Nanopart Res 2021; 23(3): 1-20.
[http://dx.doi.org/10.1007/s11051-021-05175-8]
[151]
Jain K. Dendrimers: Smart nanoengineered polymers for bioinspired applications in drug delivery. In: Jana S, Maiti S, Jana S, Eds. Biopolymer-Based Composites. Sawston: Elsevier 2017; pp. 169-220.
[http://dx.doi.org/10.1016/B978-0-08-101914-6.00007-7]
[152]
Sapra R, Verma RP, Maurya GP, Dhawan S, Babu J, Haridas V. Designer peptide and protein dendrimers: A cross-sectional analysis. Chem Rev 2019; 119(21): 11391-441.
[http://dx.doi.org/10.1021/acs.chemrev.9b00153] [PMID: 31556597]
[153]
Tomalia DA, Christensen JB, Boas U. Dendrimers, dendrons, and dendritic polymers: Discovery, applications, and the future. Cambridge University Press 2012.
[http://dx.doi.org/10.1017/CBO9781139048859]
[154]
Luong D, Kesharwani P, Deshmukh R, et al. PEGylated pamam dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 2016; 43: 14-29.
[http://dx.doi.org/10.1016/j.actbio.2016.07.015] [PMID: 27422195]
[155]
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278: 102125.
[http://dx.doi.org/10.1016/j.cis.2020.102125] [PMID: 32109595]
[156]
Sadekar S, Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery. Adv Drug Deliv Rev 2012; 64(6): 571-88.
[http://dx.doi.org/10.1016/j.addr.2011.09.010] [PMID: 21983078]
[157]
Zhang F, Mastorakos P, Mishra MK, et al. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers. Biomaterials 2015; 52: 507-16.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.053] [PMID: 25818456]
[158]
Patel HK, Gajbhiye V, Kesharwani P, Jain NK. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment. J Colloid Interface Sci 2016; 482: 142-50.
[http://dx.doi.org/10.1016/j.jcis.2016.07.047] [PMID: 27501037]
[159]
Serramía MJ, Álvarez S, Fuentes-Paniagua E, et al. in vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release 2015; 200: 60-70.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.042] [PMID: 25559178]
[160]
Liu L, Guo K, Lu J, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 2008; 29(10): 1509-17.
[http://dx.doi.org/10.1016/j.biomaterials.2007.11.014] [PMID: 18155137]
[161]
Bragagni M, Mennini N, Furlanetto S, Orlandini S, Ghelardini C, Mura P. Development and characterization of functionalized niosomes for brain targeting of dynorphin-B. Eur J Pharm Biopharm 2014; 87(1): 73-9.
[http://dx.doi.org/10.1016/j.ejpb.2014.01.006] [PMID: 24462793]
[162]
Dieu L-H, Wu D, Palivan CG, Balasubramanian V, Huwyler J. Polymersomes conjugated to 83-14 monoclonal antibodies: In vitro targeting of brain capillary endothelial cells. Eur J Pharm Biopharm 2014; 88(2): 316-24.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.021] [PMID: 24929212]
[163]
Ye Y, Sun Y, Zhao H, et al. A novel lactoferrin-modified β-cyclodextrin nanocarrier for brain-targeting drug delivery. Int J Pharm 2013; 458(1): 110-7.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.005] [PMID: 24126038]
[164]
Yi T, Tang D, Wang F, et al. Enhancing both oral bioavailability and brain penetration of puerarin using borneol in combination with preparation technologies. Drug Deliv 2017; 24(1): 422-9.
[http://dx.doi.org/10.1080/10717544.2016.1259372] [PMID: 28165806]
[165]
Volnova AB, Gordeev SK, Lenkov DN. Targeted delivery of 4-aminopyridine into the rat brain by minicontainers from carbon- nanodiamonds composite. J Neurosci Neuroeng 2013; 2(6): 569-73.
[http://dx.doi.org/10.1166/jnsne.2013.1088]
[166]
Xi G, Robinson E, Mania-Farnell B, et al. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine 2014; 10(2): 381-91.
[http://dx.doi.org/10.1016/j.nano.2013.07.013] [PMID: 23916888]
[167]
Leung HM, Lau CH, Ho JW-T, et al. Targeted brain tumor imaging by using discrete biopolymer-coated nanodiamonds across the blood-brain barrier. Nanoscale 2021; 13(5): 3184-93.
[http://dx.doi.org/10.1039/D0NR06765B] [PMID: 33527933]
[168]
Tang J, Huang N, Zhang X, et al. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 2017; 12: 3899-911.
[http://dx.doi.org/10.2147/IJN.S133166] [PMID: 28579776]
[169]
Huang N, Cheng S, Zhang X, et al. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine 2017; 13(1): 83-93.
[http://dx.doi.org/10.1016/j.nano.2016.08.029] [PMID: 27682740]
[170]
Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 2012; 33(11): 3324-33.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.025] [PMID: 22281423]
[171]
Alam MI, Beg S, Samad A, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci 2010; 40(5): 385-403.
[http://dx.doi.org/10.1016/j.ejps.2010.05.003] [PMID: 20497904]
[172]
Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 2008; 5(2): 155-74.
[http://dx.doi.org/10.1517/17425247.5.2.155] [PMID: 18248316]
[173]
Tripathi KD. Essentials of medical pharmacology. JP Medical Ltd 2013.
[174]
Huh AJ, Kwon YJ. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[175]
Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv 2012; 9(1): 19-31.
[http://dx.doi.org/10.1517/17425247.2012.636801] [PMID: 22171740]
[176]
William HFII. Method for administering neurologic agents to the brain. Google Patents 2001.
[177]
Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[178]
Day NL, Floyd CL, D’Alessandro TL, Hubbard WJ, Chaudry IH. 17β-estradiol confers protection after traumatic brain injury in the rat and involves activation of G protein-coupled estrogen receptor 1. J Neurotrauma 2013; 30(17): 1531-41.
[http://dx.doi.org/10.1089/neu.2013.2854] [PMID: 23659385]
[179]
Slot WB, Merkus FW, Van Deventer SJ, Tytgat GN. Normalization of plasma vitamin B12 concentration by intranasal hydroxocobalamin in vitamin B12-deficient patients. Gastroenterology 1997; 113(2): 430-3.
[http://dx.doi.org/10.1053/gast.1997.v113.pm9247460] [PMID: 9247460]
[180]
Illum L. Nasal drug delivery: New developments and strategies. Drug Discov Today 2002; 7(23): 1184-9.
[http://dx.doi.org/10.1016/S1359-6446(02)02529-1] [PMID: 12547019]
[181]
Bourganis V, Kammona O, Alexopoulos A, Kiparissides C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 2018; 128: 337-62.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[182]
Sonvico F, Clementino A, Buttini F, et al. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics 2018; 10(1): 34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[183]
Veening JG, Olivier B. Intranasal administration of oxytocin: Behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013; 37(8): 1445-65.
[http://dx.doi.org/10.1016/j.neubiorev.2013.04.012] [PMID: 23648680]
[184]
Bojsen-Møller F. Topography of the nasal glands in rats and some other mammals. Anat Rec 1964; 150(1): 11-24.
[http://dx.doi.org/10.1002/ar.1091500103] [PMID: 14218413]
[185]
Moore KL, Dalley AF, Agur AMR. Clinically oriented anatomy. Lippincott Williams & Wilkins 2013.
[186]
Watelet J-B, Van Cauwenberge P. Applied anatomy and physiology of the nose and paranasal sinuses. Allergy 1999; 54(Suppl. 57): 14-25.
[http://dx.doi.org/10.1111/j.1398-9995.1999.tb04402.x] [PMID: 10565476]
[187]
Djupesland PG. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res 2013; 3(1): 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[188]
Tandel H, Florence K, Misra A. Protein and peptide delivery through respiratory pathway. In: Misra A, Ed. Challenges in Delivery of Therapeutic Genomics and Proteomics. Amsterdam: Elsevier 2011; pp. 429-79.
[http://dx.doi.org/10.1016/B978-0-12-384964-9.00009-8]
[189]
Marimuthu P, Schätzlein AG. Biological barriers: Transdermal, oral, mucosal, blood brain barrier, and the blood eye barrier. In: Uchegbu IF, Schätzlein AG, Cheng WP, Lalatsa A, Eds. Fundamentals of pharmaceutical nanoscience. New York: Springer 2013; pp. 301-36.
[http://dx.doi.org/10.1007/978-1-4614-9164-4_12]
[190]
Migliore MM. Intranasal delivery of GDNF for the treatment of Parkinson’s disease. Northeastern University 2008.
[191]
Katt ME, Xu ZS, Gerecht S, Searson PC. Human brain microvascular endothelial cells derived from the BC1 iPS cell line exhibit a blood-brain barrier phenotype. PLoS One 2016; 11(4): e0152105.
[http://dx.doi.org/10.1371/journal.pone.0152105] [PMID: 27070801]
[192]
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-brain barrier: From physiology to disease and back. Physiol Rev 2019; 99(1): 21-78.
[http://dx.doi.org/10.1152/physrev.00050.2017] [PMID: 30280653]
[193]
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front Neurosci 2020; 14: 494.
[http://dx.doi.org/10.3389/fnins.2020.00494] [PMID: 32581676]
[194]
Sim TM, Tarini D, Dheen ST, Bay BH, Srinivasan DK. Nanoparticle-based technology approaches to the management of neurological disorders. Int J Mol Sci 2020; 21(17): 6070.
[http://dx.doi.org/10.3390/ijms21176070] [PMID: 32842530]
[195]
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[196]
Mukhtar M, Bilal M, Rahdar A, et al. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors (Basel) 2020; 8(4): 117.
[http://dx.doi.org/10.3390/chemosensors8040117]
[197]
Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr Pharm Des 2017; 23(17): 2504-31.
[http://dx.doi.org/10.2174/1381612822666161201143600] [PMID: 27908273]
[198]
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev 2016; 116(4): 2602-63.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[199]
Hartshorn CM, Bradbury MS, Lanza GM, et al. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano 2018; 12(1): 24-43.
[http://dx.doi.org/10.1021/acsnano.7b05108] [PMID: 29257865]
[200]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based Theranostic approaches in Alzheimer’s disease management: Current status and future perspective. Curr Alzheimer Res 2017; 14(11): 1164-81.
[http://dx.doi.org/10.2174/1567205014666170508121031] [PMID: 28482786]
[201]
Kunjiappan S, Pavadai P, Vellaichamy S, et al. Surface receptor- mediated targeted drug delivery systems for enhanced cancer treatment: A state-of-the-art review. Drug Dev Res 2021; 82(3): 309-40.
[http://dx.doi.org/10.1002/ddr.21758] [PMID: 33170541]
[202]
Llinàs MC, Martínez-Edo G, Cascante A, Porcar I, Borrós S, Sánchez-García D. Preparation of a mesoporous silica-based nano-vehicle for dual DOX/CPT pH-triggered delivery. Drug Deliv 2018; 25(1): 1137-46.
[http://dx.doi.org/10.1080/10717544.2018.1472678] [PMID: 29779394]
[203]
Ghosh S, Banerjee M. A smart viral vector for targeted delivery of hydrophobic drugs. Sci Rep 2021; 11(1): 7030.
[http://dx.doi.org/10.1038/s41598-021-86198-y] [PMID: 33782428]
[204]
Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 2014; 114(12): 6130-78.
[http://dx.doi.org/10.1021/cr200359p] [PMID: 24779710]
[205]
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater 2020; 9(9): e1901058.
[http://dx.doi.org/10.1002/adhm.201901058] [PMID: 32196144]
[206]
Dogra P, Adolphi NL, Wang Z, et al. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat Commun 2018; 9(1): 4551.
[http://dx.doi.org/10.1038/s41467-018-06730-z] [PMID: 30382084]
[207]
Nejati S, Vadeghani EM, Khorshidi S, Karkhaneh A. Role of particle shape on efficient and organ-based drug delivery. Eur Polym J 2020; 122: 109353.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109353]
[208]
Doncom KEB, Blackman LD, Wright DB, Gibson MI, O’Reilly RK. Dispersity effects in polymer self-assemblies: A matter of hierarchical control. Chem Soc Rev 2017; 46(14): 4119-34.
[http://dx.doi.org/10.1039/C6CS00818F] [PMID: 28598465]
[209]
Smith AAA, Autzen HE, Laursen T, et al. Controlling styrene maleic acid lipid particles through RAFT. Biomacromolecules 2017; 18(11): 3706-13.
[http://dx.doi.org/10.1021/acs.biomac.7b01136] [PMID: 28934548]
[210]
Sava V, Fihurka O, Khvorova A, Sanchez-Ramos J. Enriched chitosan nanoparticles loaded with siRNA are effective in lowering Huntington’s disease gene expression following intranasal administration. Nanomedicine 2020; 24: 102119.
[http://dx.doi.org/10.1016/j.nano.2019.102119] [PMID: 31666200]
[211]
Bhattamisra SK, Shak AT, Xi LW, et al. Nose to brain delivery of rotigotine loaded chitosan nanoparticles in human SH-SY5Y neuroblastoma cells and animal model of Parkinson’s disease. Int J Pharm 2020; 579: 119148.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119148] [PMID: 32084576]
[212]
Dalvi A, Ravi PR, Uppuluri CT. Rufinamide-loaded chitosan nanoparticles in xyloglucan-based thermoresponsive in situ gel for direct nose to brain delivery. Front Pharmacol 2021; 12: 691936.
[http://dx.doi.org/10.3389/fphar.2021.691936] [PMID: 34234679]
[213]
Ahmad N, Ahmad R, Naqvi AA, et al. Rutin-encapsulated chitosan nanoparticles targeted to the brain in the treatment of cerebral ischemia. Int J Biol Macromol 2016; 91: 640-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.001] [PMID: 27264648]
[214]
Spindler LM, Feuerhake A, Ladel S, et al. Nano-in-micro-particles consisting of PLGA nanoparticles embedded in chitosan microparticles via spray-drying enhances their uptake in the olfactory mucosa. Front Pharmacol 2021; 12: 732954.
[http://dx.doi.org/10.3389/fphar.2021.732954] [PMID: 34539414]
[215]
Bi C, Wang A, Chu Y, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomedicine 2016; 11: 6547-59.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[216]
Jahansooz F, Hosseinzade BE, Zarmi AH, Hadi F, Massood Hojjati SM, Shahpasand K. Dopamine-loaded poly (butyl cyanoacrylate) nanoparticles reverse behavioral deficits in Parkinson’s animal models. Ther Deliv 2020; 11(6): 387-99.
[http://dx.doi.org/10.4155/tde-2020-0026] [PMID: 32578497]
[217]
Thammasit P, Tharinjaroen CS, Tragoolpua Y, et al. Targeted propolis-loaded poly (butyl) cyanoacrylate nanoparticles: An alternative drug delivery tool for the treatment of cryptococcal meningitis. Front Pharmacol 2021; 12: 723727.
[http://dx.doi.org/10.3389/fphar.2021.723727] [PMID: 34489710]
[218]
Wong LR, Ho PC. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: Implications for the treatment of Alzheimer’s disease. J Pharm Pharmacol 2018; 70(1): 59-69.
[http://dx.doi.org/10.1111/jphp.12836] [PMID: 29034965]
[219]
Yang Z-Z, Li L, Wang L, et al. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: A mechanism for acute morphine tolerance suppression. Sci Rep 2016; 6(1): 33338.
[http://dx.doi.org/10.1038/srep33338] [PMID: 27629937]
[220]
An S, Kuang Y, Shen T, et al. Brain-targeting delivery for RNAi neuroprotection against cerebral ischemia reperfusion injury. Biomaterials 2013; 34(35): 8949-59.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.060] [PMID: 23968852]
[221]
Sukumar UK, Bose RJC, Malhotra M, et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 2019; 218: 119342.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119342] [PMID: 31326657]
[222]
Bernocchi B, Carpentier R, Lantier I, Ducournau C, Dimier-Poisson I, Betbeder D. Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles. J Control Release 2016; 232: 42-50.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.014] [PMID: 27080572]
[223]
Kalani A, Chaturvedi P, Kamat PK, et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol 2016; 79: 360-9.
[http://dx.doi.org/10.1016/j.biocel.2016.09.002] [PMID: 27594413]
[224]
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 2015; 32(6): 2003-14.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[225]
Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013; 7(9): 7698-710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[226]
Rompicherla SKL, Arumugam K, Bojja SL, Kumar N, Rao CM. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(8): 1737-55.
[http://dx.doi.org/10.1007/s00210-021-02096-0] [PMID: 34086100]
[227]
Qin J, Yang X, Zhang R-X, et al. Monocyte mediated brain targeting delivery of macromolecular drug for the therapy of depression. Nanomedicine 2015; 11(2): 391-400.
[http://dx.doi.org/10.1016/j.nano.2014.09.012] [PMID: 25461282]
[228]
Parikh RH, Patel RJ. Nanoemulsions for intranasal delivery of riluzole to improve brain bioavailability: Formulation development and pharmacokinetic studies. Curr Drug Deliv 2016; 13(7): 1130-43.
[http://dx.doi.org/10.2174/1567201813666151202195729] [PMID: 26638977]
[229]
Afzal SM, Shareef MZ, Kishan V. Transferrin tagged lipid nanoemulsion of docetaxel for enhanced tumor targeting. J Drug Deliv Sci Technol 2016; 36: 175-82.
[http://dx.doi.org/10.1016/j.jddst.2016.10.008]
[230]
Nasr M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv 2016; 23(4): 1444-52.
[http://dx.doi.org/10.3109/10717544.2015.1092619] [PMID: 26401600]
[231]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[232]
Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 2014; 21(2): 148-54.
[http://dx.doi.org/10.3109/10717544.2013.838014] [PMID: 24128122]
[233]
Pangeni R, Sharma S, Mustafa G, Ali J, Baboota S. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology 2014; 25(48): 485102.
[http://dx.doi.org/10.1088/0957-4484/25/48/485102] [PMID: 25392203]
[234]
Hanafy AS, Farid RM, Helmy MW, ElGamal SS. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: Future potential contribution in Alzheimer’s disease management. Drug Deliv 2016; 23(8): 3111-22.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[235]
Fazil M, Md S, Haque S, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 2012; 47(1): 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[236]
Yang Z-Z, Zhang Y-Q, Wang Z-Z, Wu K, Lou J-N, Qi X-R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 2013; 452(1-2): 344-54.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[237]
Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol 2012; 34(2): 272-9.
[http://dx.doi.org/10.1016/j.etap.2012.04.012] [PMID: 22613079]
[238]
Liu Z, Jiang M, Kang T, et al. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 2013; 34(15): 3870-81.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.003] [PMID: 23453061]
[239]
Zhang C, Chen J, Feng C, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 2014; 461(1-2): 192-202.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.049] [PMID: 24300213]
[240]
Picone P, Ditta LA, Sabatino MA, et al. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials 2016; 80: 179-94.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.057] [PMID: 26708643]
[241]
Qian S, Wong YC, Zuo Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm 2014; 468(1-2): 272-82.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.015] [PMID: 24709220]
[242]
Meng Q, Wang A, Hua H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 705-18.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[243]
Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 2008; 358(1-2): 285-91.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.029] [PMID: 18455333]
[244]
Wang C-Y, Zheng W, Wang T, et al. Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology 2011; 36(5): 1073-89.
[http://dx.doi.org/10.1038/npp.2010.245] [PMID: 21289607]
[245]
Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J Pharm Sci 2015; 104(10): 3544-56.
[http://dx.doi.org/10.1002/jps.24557]
[246]
Zheng X, Shao X, Zhang C, et al. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res 2015; 32(12): 3837-49.
[http://dx.doi.org/10.1007/s11095-015-1744-9] [PMID: 26113236]
[247]
Fine JM, Renner DB, Forsberg AC, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett 2015; 584: 362-7.
[http://dx.doi.org/10.1016/j.neulet.2014.11.013] [PMID: 25445365]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy