Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

β-estradiol Induces Mitochondrial Apoptosis in Cervical Cancer through the Suppression of AKT/NF-κB Signaling Pathway

Author(s): Yuqing Huang, Shouguo Chen, Yuhe Lei, Chiwing Chung, Meiching Chan, Lei Chen, Yinqin Zhong, Enxin Zhang*, Jiaxu Chen* and Lijuan Deng*

Volume 17, Issue 3, 2022

Published on: 07 March, 2022

Page: [312 - 321] Pages: 10

DOI: 10.2174/1574892817666211222150409

Price: $65

Abstract

Background: Cervical cancer is the fourth most prevalent gynecological cancer worldwide, which threatens women's health and causes cancer-related mortality. In the search for effective anticervical cancer drugs, we discovered that β-estradiol (E2), a potent drug for estrogen deficiency syndrome treatment, displays the most potent cytotoxicity against HeLa cells.

Objective: This study aims to evaluate the growth inhibitory effect of β-estradiol on HeLa cells and explore its underlying mechanisms.

Methods: CCK-8 assay was used to evaluate the cytotoxicity of 6 compounds against HeLa cells. Flow cytometric analysis and Hoechst 33258 staining assay were performed to detect cell cycle arrest and apoptosis induction. The collapse of the mitochondrial potential was observed by the JC-1 staining assay. The expression levels of proteins were examined by western blotting.

Results: β-Estradiol, at high concentration, displays potent cytotoxicity against HeLa cells with an IC50 value of 18.71 ± 1.57 μM for 72 h treatment. β-Estradiol induces G2/M cell cycle arrest through downregulating Cyclin B1 and p-CDK1. In addition, β-estradiol-induced apoptosis is accompanied by the loss of mitochondrial potential, activation of the Caspase family, and altered Bax/Bcl-2 ratio. β-Estradiol markedly decreased the expression level of p-AKT and p-NF-κB.

Conclusion: This study demonstrated that β-estradiol induces mitochondrial apoptosis in cervical cancer through the suppression of AKT/NF-κB signaling pathway, indicating that β-estradiol may serve as a potential agent for cervical cancer treatment.

Keywords: Cervical Cancer, β-estradiol, Mitochondrial Apoptosis, Cell Cycle Arrest, AKT, NF-κB.

[1]
Gan H, Qi M, Chan C, et al. Digitoxin inhibits HeLa cell growth through the induction of G2/M cell cycle arrest and apoptosis in vitro and in vivo. Int J Oncol 2020; 57(2): 562-73.
[http://dx.doi.org/10.3892/ijo.2020.5070] [PMID: 32468057]
[2]
Bonde JH, Sandri MT, Gary DS, Andrews JC. Clinical utility of Human papillomavirus genotyping in cervical cancer screening: A systematic review. J Low Genit Tract Dis 2020; 24(1): 1-13.
[http://dx.doi.org/10.1097/LGT.0000000000000494] [PMID: 31714325]
[3]
Liontos M, Kyriazoglou A, Dimitriadis I, Dimopoulos MA, Bamias A. Systemic therapy in cervical cancer: 30 years in review. Crit Rev Oncol Hematol 2019; 137: 9-17.
[http://dx.doi.org/10.1016/j.critrevonc.2019.02.009] [PMID: 31014518]
[4]
Tapiero H, Ba GN, Tew KD. Estrogens and environmental estrogens. Biomed Pharmacother 2002; 56(1): 36-44.
[http://dx.doi.org/10.1016/S0753-3322(01)00155-X] [PMID: 11905507]
[5]
Wozniak M, Murias M. Xenoestrogens: Endocrine disrupting compounds. Ginekol Pol 2008; 79(11): 785-90.
[PMID: 19140503]
[6]
Renoir JM. Estradiol receptors in breast cancer cells: Associated co-factors as targets for new therapeutic approaches. Steroids 2012; 77(12): 1249-61.
[http://dx.doi.org/10.1016/j.steroids.2012.07.019] [PMID: 22917634]
[7]
Evers NM, van den Berg JH, Wang S, et al. Cell proliferation and modulation of interaction of estrogen receptors with coregulators induced by ERα and ERβ agonists. J Steroid Biochem Mol Biol 2014; 143: 376-85.
[http://dx.doi.org/10.1016/j.jsbmb.2014.06.002] [PMID: 24923734]
[8]
Shull JD, Dennison KL, Chack AC, Trentham-Dietz A. Rat models of 17β-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention. Physiol Genomics 2018; 50(3): 215-34.
[http://dx.doi.org/10.1152/physiolgenomics.00105.2017] [PMID: 29373076]
[9]
Bronowicka-Kłys DE, Lianeri M, Jagodziński PP. The role and impact of estrogens and xenoestrogen on the development of cervical cancer. Biomed Pharmacother 2016; 84: 1945-53.
[http://dx.doi.org/10.1016/j.biopha.2016.11.007] [PMID: 27863841]
[10]
Liu Y, Tian LB, Yang HY, Zhang HP. Effects of estradiol and progesterone on the growth of HeLa cervical cancer cells. Eur Rev Med Pharmacol Sci 2017; 21(17): 3959-65.
[PMID: 28975965]
[11]
Auborn KJ, Woodworth C, DiPaolo JA, Bradlow HL. The interaction between HPV infection and estrogen metabolism in cervical carcinogenesis. Int J Cancer 1991; 49(6): 867-9.
[http://dx.doi.org/10.1002/ijc.2910490611] [PMID: 1660039]
[12]
Li D, Chen J, Ai Y, et al. Estrogen-related hormones induce apoptosis by stabilizing schlafen-12 protein turnover. Mol Cell 2019; 75(6): 1103-1116.e9.
[http://dx.doi.org/10.1016/j.molcel.2019.06.040] [PMID: 31420216]
[13]
Zhong JC, Li XB, Lyu WY, Ye WC, Zhang DM. Natural products as potent inhibitors of hypoxia-inducible factor-1α in cancer therapy. Chin J Nat Med 2020; 18(9): 696-703.
[http://dx.doi.org/10.1016/S1875-5364(20)60008-5] [PMID: 32928513]
[14]
Deng LJ, Lei YH, Quan JY, et al. 1β-OH-arenobufagin induces mitochondrial apoptosis in hepatocellular carcinoma through the suppression of mTOR signaling pathway. J Ethnopharmacol 2021; 266: 113443.
[http://dx.doi.org/10.1016/j.jep.2020.113443] [PMID: 33022344]
[15]
Zhang H, Yin SL, Wang LH, et al. Seed oil of Brucea javanica induces apoptosis through the PI3K/Akt signaling pathway in acute lymphocytic leukemia Jurkat cells. Chin J Nat Med 2021; 19(8): 608-20.
[http://dx.doi.org/10.1016/S1875-5364(21)60060-2] [PMID: 34419260]
[16]
Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta 2015; 1855(1): 104-21.
[http://dx.doi.org/10.1016/j.bbcan.2014.09.008] [PMID: 25450577]
[17]
Psyrri A, Arkadopoulos N, Vassilakopoulou M, Smyrniotis V, Dimitriadis G. Pathways and targets in hepatocellular carcinoma. Expert Rev Anticancer Ther 2012; 12(10): 1347-57.
[http://dx.doi.org/10.1586/era.12.113] [PMID: 23176622]
[18]
Sun LT, Zhang LY, Shan FY, Shen MH, Ruan SM. Jiedu Sangen decoction inhibits chemoresistance to 5-fluorouracil of colorectal cancer cells by suppressing glycolysis via PI3K/AKT/HIF-1α signaling pathway. Chin J Nat Med 2021; 19(2): 143-52.
[http://dx.doi.org/10.1016/S1875-5364(21)60015-8] [PMID: 33641785]
[19]
Pramanik KC, Makena MR, Bhowmick K, Pandey MK. Advancement of NF-κB Signaling Pathway: A novel target in pancreatic cancer. Int J Mol Sci 2018; 19(12): 3890.
[http://dx.doi.org/10.3390/ijms19123890] [PMID: 30563089]
[20]
Patel M, Horgan PG, McMillan DC, Edwards J. NF-κB pathways in the development and progression of colorectal cancer. Transl Res 2018; 197: 43-56.
[http://dx.doi.org/10.1016/j.trsl.2018.02.002] [PMID: 29550444]
[21]
Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431(7007): 461-6.
[http://dx.doi.org/10.1038/nature02924] [PMID: 15329734]
[22]
Spangler JB, Neil JR, Abramovitch S, et al. Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 2010; 107(30): 13252-7.
[http://dx.doi.org/10.1073/pnas.0913476107] [PMID: 20616078]
[23]
Du CX, Wang Y. Expression of P-Akt, NFkappaB and their correlation with human papillomavirus infection in cervical carcinoma. Eur J Gynaecol Oncol 2012; 33(3): 274-7.
[PMID: 22873098]
[24]
Jin Y, Qiu S, Shao N, Zheng J. Fucoxanthin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically promotes apoptosis of human cervical cancer cells by targeting PI3K/Akt/NF-κB signaling pathway. Med Sci Monit 2018; 24: 11-8.
[http://dx.doi.org/10.12659/MSM.905360] [PMID: 29291370]
[25]
Liu J, Sun Y, Zhang H, et al. Theanine from tea and its semi-synthetic derivative TBrC suppress human cervical cancer growth and migration by inhibiting EGFR/Met-Akt/NF-κB signaling. Eur J Pharmacol 2016; 791: 297-307.
[http://dx.doi.org/10.1016/j.ejphar.2016.09.007] [PMID: 27612630]
[26]
Bai C, Yang X, Zou K, et al. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(6): 573-84.
[http://dx.doi.org/10.1007/s00210-016-1217-7] [PMID: 26935715]
[27]
den Boon JA, Pyeon D, Wang SS, et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proc Natl Acad Sci USA 2015; 112(25): E3255-64.
[http://dx.doi.org/10.1073/pnas.1509322112] [PMID: 26056290]
[28]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[29]
Dehn D, Torkko KC, Shroyer KR. Human papillomavirus testing and molecular markers of cervical dysplasia and carcinoma. Cancer 2007; 111(1): 1-14.
[http://dx.doi.org/10.1002/cncr.22425] [PMID: 17219448]
[30]
Jiménez-Wences H, Peralta-Zaragoza O, Fernández-Tilapa G. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep 2014; 31(6): 2467-76.
[http://dx.doi.org/10.3892/or.2014.3142] [PMID: 24737381]
[31]
Singh M, Singh N. Curcumin counteracts the proliferative effect of estradiol and induces apoptosis in cervical cancer cells. Mol Cell Biochem 2011; 347(1-2): 1-11.
[http://dx.doi.org/10.1007/s11010-010-0606-3] [PMID: 20941532]
[32]
Migliaccio A, Di Domenico M, Castoria G, et al. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 1996; 15(6): 1292-300.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00471.x] [PMID: 8635462]
[33]
Song RX, Santen RJ. Apoptotic action of estrogen. Apoptosis 2003; 8(1): 55-60.
[http://dx.doi.org/10.1023/A:1021649019025] [PMID: 12510152]
[34]
Germain D. Estrogen carcinogenesis in breast cancer. Endocrinol Metab Clin North Am 2011; 40(3): 473-84.
[http://dx.doi.org/10.1016/j.ecl.2011.05.009] [PMID: 21889715]
[35]
Reese JM, Bruinsma ES, Nelson AW, et al. ERβ-mediated induction of cystatins results in suppression of TGFβ signaling and inhibition of triple-negative breast cancer metastasis. Proc Natl Acad Sci USA 2018; 115(41): E9580-9.
[http://dx.doi.org/10.1073/pnas.1807751115] [PMID: 30257941]
[36]
Kim CJ, Um SJ, Kim TY, et al. Regulation of cell growth and HPV genes by exogenous estrogen in cervical cancer cells. Int J Gynecol Cancer 2000; 10(2): 157-64.
[http://dx.doi.org/10.1046/j.1525-1438.2000.00016.x] [PMID: 11240668]
[37]
Kedzia W, Goździcka-Józefiak A, Kwaśniewska A, Schmidt M, Miturski R, Spaczyński M. Relationship between HPV infection of the cervix and blood serum levels of steroid hormones among pre- and postmenopausal women. Eur J Gynaecol Oncol 2000; 21(2): 177-9.
[PMID: 10843480]
[38]
Riera Leal A, Ortiz-Lazareno PC, Jave-Suárez LF, et al. 17β-estradiol-induced mitochondrial dysfunction and Warburg effect in cervical cancer cells allow cell survival under metabolic stress. Int J Oncol 2020; 56(1): 33-46.
[PMID: 31746421]
[39]
Yao N, Wang C, Hu N, et al. Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog. Cell Death Dis 2019; 10(3): 232.
[http://dx.doi.org/10.1038/s41419-019-1470-z] [PMID: 30850585]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy