Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

A Review on Recent Controlled Release Strategies for Oral Drug Delivery of Repaglinide (a BCS Class II Drug)

Author(s): Saba Albetawi*, Amer Abdalhafez and Ala Abu-Zaid

Volume 9, Issue 5, 2021

Published on: 28 December, 2021

Page: [326 - 338] Pages: 13

DOI: 10.2174/2211738510666211221165318

Price: $65

Abstract

Abstract: Repaglinide is an antidiabetic drug that works by stimulating insulin secretion from pancreatic beta cells. Repaglinide is practically insoluble in water with a water solubility of 34 μg/mL at 37°C, and it has a high absorption rate from the gastrointestinal tract following oral administration since the log P value of repaglinide is 3.97. The low aqueous solubility and the high permeability of repaglinide represent a typical behavior for drugs that belong to class II Biopharmaceutical Classification System (BCS II). Managing type-2 diabetes mellitus with repaglinide is considered a burdensome therapy, as it requires frequent dosing of repaglinide before each meal to maintain its therapeutic plasma concentration due to its short plasma half-life of approximately one hour. Hence the present review aims to discuss thoroughly the various approaches investigated in recent years to develop drug delivery systems that improve oral delivery of repaglinide, including nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, sustained-release hydrophilic matrix, floating microspheres, and nanocomposites.

Keywords: Repaglinide, nanoemulsions, nanoparticles, crosslinking, floating microspheres, controlled release.

Graphical Abstract

[1]
Van GLF, Van AKL, De Leeuw IH. Repaglinide improves blood glucose control in sulphonylurea-naive type 2 diabetes. Diabetes Res Clin Pract 2001; 53(3): 141-8.
[http://dx.doi.org/10.1016/S0168-8227(01)00253-4] [PMID: 11483229]
[2]
Gumieniczek A, Krzywdzińska M, Nowak M. Modulation of nitrosative/oxidative stress in the lung of hyperglycemic rabbits by two antidiabetics, pioglitazone and repaglinide. Exp Lung Res 2009; 35(5): 371-9.
[http://dx.doi.org/10.1080/01902140902718536] [PMID: 19842839]
[3]
Kassem AA, Abd El-Alim SH, Basha M, Salama A. Phospholipid complex enriched micelles: a novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur J Pharm Sci 2017; 99: 75-84.
[http://dx.doi.org/10.1016/j.ejps.2016.12.005] [PMID: 27998799]
[4]
Jain S, Saraf S. Repaglinide-loaded long-circulating biodegradable nanoparticles: rational approach for the management of type 2 diabetes mellitus. J Diabetes 2009; 1(1): 29-35.
[http://dx.doi.org/10.1111/j.1753-0407.2008.00001.x] [PMID: 20923517]
[5]
Fuhlendorff J, Rorsman P, Kofod H, et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 1998; 47(3): 345-51.
[http://dx.doi.org/10.2337/diabetes.47.3.345] [PMID: 9519738]
[6]
Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci 2005; 10(3-4): 102-10.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[7]
Aulton ME, Taylor KM. Aulton’s Pharmaceutics E-Book: The Design and Manufacture of Medicines. The Netherlands: Elsevier 2017.
[8]
Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 2006; 18(41): R635.
[http://dx.doi.org/10.1088/0953-8984/18/41/R01]
[9]
McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 2011; 51(4): 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[10]
Gibaldi M, Boyes RN, Feldman S. Influence of first-pass effect on availability of drugs on oral administration. J Pharm Sci 1971; 60(9): 1338-40.
[http://dx.doi.org/10.1002/jps.2600600909] [PMID: 5567579]
[11]
Maali A, Mosavian MH. Preparation and application of nanoemulsions in the last decade (2000-2010). J Dispers Sci Technol 2013; 34(1): 92-105.
[http://dx.doi.org/10.1080/01932691.2011.648498]
[12]
Mason T, Graves S, Wilking J, Lin M. Extreme emulsification: Formation and structure of nanoemulsions. Condens Matter Phys 2006.
[http://dx.doi.org/10.5488/CMP.9.1.193]
[13]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[14]
Lamaallam S, Bataller H, Dicharry C, Lachaise J. Formation and stability of miniemulsions produced by dispersion of water/oil/surfactants concentrates in a large amount of water. Colloids Surf A Physicochem Eng Asp 2005; 270: 44-51.
[http://dx.doi.org/10.1016/j.colsurfa.2005.05.035]
[15]
Izquierdo P, Feng J, Esquena J, et al. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. J Colloid Interface Sci 2005; 285(1): 388-94.
[http://dx.doi.org/10.1016/j.jcis.2004.10.047] [PMID: 15797437]
[16]
Pey C, Maestro A, Solé I, González C, Solans C, Gutiérrez JM. Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids Surf A Physicochem Eng Asp 2006; 288(1-3): 144-50.
[http://dx.doi.org/10.1016/j.colsurfa.2006.02.026]
[17]
Forgiarini A, Esquena J, Gonzalez C, Solans C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 2001; 17(7): 2076-83.
[http://dx.doi.org/10.1021/la001362n]
[18]
Akhtar J, Siddiqui HH, Fareed S, Badruddeen , Khalid M, Aqil M. Nanoemulsion: for improved oral delivery of repaglinide. Drug Deliv 2016; 23(6): 2026-34.
[http://dx.doi.org/10.3109/10717544.2015.1077290] [PMID: 27187792]
[19]
Karami Z, Saghatchi ZMR, Nasihatsheno N, Hamidi M. Improved oral bioavailability of repaglinide, a typical BCS Class II drug, with a chitosan-coated nanoemulsion. J Biomed Mater Res B Appl Biomater 2020; 108(3): 717-28.
[http://dx.doi.org/10.1002/jbm.b.34426] [PMID: 31187938]
[20]
Muller R, Mader K, Gohla S. Enzymatic degradation of Dynasan 114 SLN-effect of surfactants and particle size. Eur J Pharm Biopharm 2000; 50: 161-70.
[PMID: 10840199]
[21]
Westesen K, Bunjes H, Koch M. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 1997; 48(2-3): 223-36.
[http://dx.doi.org/10.1016/S0168-3659(97)00046-1]
[22]
Westesen K. Novel lipid-based colloidal dispersions as potential drug administration systems-expectations and reality. Colloid Polym Sci 2000; 278(7): 608-18.
[http://dx.doi.org/10.1007/s003969900257]
[23]
Bunjes H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J Pharm Pharmacol 2010; 62(11): 1637-45.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01024.x] [PMID: 21039547]
[24]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[25]
Almeida AJ, Runge S, Müller RH. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int J Pharm 1997; 149(2): 255-65.
[http://dx.doi.org/10.1016/S0378-5173(97)04885-0]
[26]
Ailaja AK, Amareshwar P, Chakravarty P. Formulation of solid lipid nanoparticles and their applications. J Curr Pharm Res 2011; 1(2): 197.
[http://dx.doi.org/10.33786/JCPR.2011.v01i02.019]
[27]
Cavalli R, Caputo O, Gasco MR. Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur J Pharm Sci 2000; 10(4): 305-9.
[http://dx.doi.org/10.1016/S0928-0987(00)00081-6] [PMID: 10838020]
[28]
Ugazio E, Marengo E, Pellizzaro C, et al. The effect of formulation and concentration of cholesteryl butyrate solid lipid nanospheres (SLN) on NIH-H460 cell proliferation. Eur J Pharm Biopharm 2001; 52(2): 197-202.
[http://dx.doi.org/10.1016/S0939-6411(01)00176-X] [PMID: 11522486]
[29]
Schubert MA, Müller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles-Evaluation of the method and process parameters. Eur J Pharm Biopharm 2003; 55(1): 125-31.
[http://dx.doi.org/10.1016/S0939-6411(02)00130-3] [PMID: 12551713]
[30]
Ebrahimi HA, Javadzadeh Y, Hamidi M, Jalali MB. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru 2015; 23(1): 46.
[http://dx.doi.org/10.1186/s40199-015-0128-3] [PMID: 26392174]
[31]
Swidan SA, Ghonaim HM, Samy AM, Ghorab MM. Efficacy and in vitro cytotoxicity of nanostructured lipid carriers for paclitaxel delivery. J Appl Pharm Sci 2016; 6: 18-26.
[http://dx.doi.org/10.7324/JAPS.2016.60903]
[32]
Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 2014; 86(1): 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[33]
Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 2012; 20(10): 813-30.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[34]
Mendes AI, Silva AC, Catita JA, Cerqueira F, Gabriel C, Lopes CM. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids Surf B Biointerfaces 2013; 111: 755-63.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.041] [PMID: 23954816]
[35]
Ranpise NS, Korabu SS, Ghodake VN. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf B Biointerfaces 2014; 116: 81-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.012] [PMID: 24445002]
[36]
Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. J Adv Res 2016; 7(3): 423-34.
[http://dx.doi.org/10.1016/j.jare.2016.03.002] [PMID: 27222747]
[37]
Fangueiro JF, Andreani T, Egea MA, Garcia ML, Souto SB, Souto EB. Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. Colloids Surf B Biointerfaces 2012; 100: 84-9.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.014] [PMID: 22766285]
[38]
Kasongo KW, Müller RH, Walker RB. The use of hot and cold high pressure homogenization to enhance the loading capacity and encapsulation efficiency of nanostructured lipid carriers for the hydrophilic antiretroviral drug, didanosine for potential administration to paediatric patients. Pharm Dev Technol 2012; 17(3): 353-62.
[http://dx.doi.org/10.3109/10837450.2010.542163] [PMID: 21241166]
[39]
Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S. Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf B Biointerfaces 2014; 113: 15-24.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.032] [PMID: 24060926]
[40]
Tan S, Billa N, Roberts C, Burley J. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 2010; 372(1-3): 73-9.
[http://dx.doi.org/10.1016/j.colsurfa.2010.09.030]
[41]
Charcosset C, El-Harati A, Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release 2005; 108(1): 112-20.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.023] [PMID: 16169111]
[42]
Swidan SA, Mansour ZN, Mourad ZA, et al. DOE, formulation, and optimization of Repaglinide nanostructured lipid carriers. J Appl Pharm Sci 2018; 8(10): 008-16.
[43]
Wu L, Zhao L, Su X, Zhang P, Ling G. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug Deliv 2019; 1-10.
[PMID: 31729898]
[44]
Wen X, Nokhodchi A, Rajabi-Siahboomi A. Oral extended release hydrophilic matrices: formulation and design Oral controlled release formulation design and drug delivery: theory to practice. New Jersey: John Wiley & Sons, Inc. 2010; pp. 89-100.
[http://dx.doi.org/10.1002/9780470640487.ch6]
[45]
Borgquist P, Körner A, Piculell L, Larsson A, Axelsson A. A model for the drug release from a polymer matrix tablet-Effects of swelling and dissolution. J Control Release 2006; 113(3): 216-25.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.004] [PMID: 16797098]
[46]
Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release 2011; 154(1): 2-19.
[http://dx.doi.org/10.1016/j.jconrel.2011.04.002] [PMID: 21497624]
[47]
Siepmann J, Siegel RA, Rathbone MJ. Fundamentals and applications of controlled release drug delivery. Heidelberg: Springer 2012.
[http://dx.doi.org/10.1007/978-1-4614-0881-9]
[48]
Awasthi R, Kulkarni GT, Ramana MV, et al. Dual crosslinked pectin-alginate network as sustained release hydrophilic matrix for repaglinide. Int J Biol Macromol 2017; 97: 721-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.050] [PMID: 28115226]
[49]
Kroll E, Winnik FM, Ziolo RF. In situ preparation of nanocrystalline γ-Fe2O3 in iron (II) cross-linked alginate gels. Chem Mater 1996; 8(8): 1594-6.
[http://dx.doi.org/10.1021/cm960095x]
[50]
Llanes F, Ryan DH, Marchessault RH. Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix. Int J Biol Macromol 2000; 27(1): 35-40.
[http://dx.doi.org/10.1016/S0141-8130(99)00115-4] [PMID: 10704984]
[51]
Nila MV, Sudhir MR, Cinu TA, Aleykutty NA, Jose S. Floating microspheres of carvedilol as gastro retentive drug delivery system: 3(2) full factorial design and in vitro evaluation. Drug Deliv 2014; 21(2): 110-7.
[http://dx.doi.org/10.3109/10717544.2013.834414] [PMID: 24028280]
[52]
Sathish D, Himabindu S, Kumar YS, Shayeda , Rao YM. Floating drug delivery systems for prolonging gastric residence time: a review. Curr Drug Deliv 2011; 8(5): 494-510.
[http://dx.doi.org/10.2174/156720111796642273] [PMID: 21696354]
[53]
Jain SK, Agrawal GP, Jain NK. Floating microspheres as drug delivery system: Newer approaches. Curr Drug Deliv 2008; 5(3): 220-3.
[http://dx.doi.org/10.2174/156720108784911721] [PMID: 18673266]
[54]
Bhadouriya P, Kumar M, Pathak K. Floating microspheres: To prolong the gastric retention time in stomach. Curr Drug Deliv 2012; 9(3): 315-24.
[http://dx.doi.org/10.2174/156720112800389061] [PMID: 22023206]
[55]
Hoffman A, Stepensky D, Lavy E, Eyal S, Klausner E, Friedman M. Pharmacokinetic and pharmacodynamic aspects of gastroretentive dosage forms. Int J Pharm 2004; 277(1-2): 141-53.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.047] [PMID: 15158977]
[56]
Sharma M, Kohli S, Dinda A. In vitro and in vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer. Saudi Pharm J 2015; 23(6): 675-82.
[http://dx.doi.org/10.1016/j.jsps.2015.02.013] [PMID: 26702263]
[57]
Kamel S, Ali N, Jahangir K, Shah S, El-Gendy A. Pharmaceutical significance of cellulose: a review. Express Polym Lett 2008; 2(11): 758-78.
[http://dx.doi.org/10.3144/expresspolymlett.2008.90]
[58]
Lin N. Cellulose nanocrystals: surface modification and advanced materials. Université de Grenoble 2014. Availabe at: https://tel.archives-ouvertes.fr/tel-01296967/file/LIN-NING_2014_archivage.pdf
[59]
Vijay S, Dr C. Ion exchange resins and their applications. J Drug Deliv Ther 2014; 4(4): 115-23.
[60]
Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: where do we stand? J Control Release 2012; 161(2): 496-504.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.017] [PMID: 22480607]
[61]
Gao L, Liu G, Ma J, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res 2013; 30(2): 307-24.
[http://dx.doi.org/10.1007/s11095-012-0889-z] [PMID: 23073665]
[62]
Abdul Khalil HPS, Saurabh CK, Adnan AS, et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr Polym 2016; 150: 216-26.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.028] [PMID: 27312632]
[63]
Abo-Elseoud WS, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol 2018; 111: 604-13.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.044] [PMID: 29325745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy