Abstract
Background: Therapeutic peptide prediction is critical for drug development and therapy. Researchers have been studying this essential task, developing several computational methods to identify different therapeutic peptide types.
Objective: Most predictors are the specific methods for certain peptides. Currently, developing methods to predict the presence of multiple peptides remains a challenging problem. Moreover, it is still challenging to combine different features to make the therapeutic prediction.
Methods: In this paper, we proposed a new ensemble method TP-MV for general therapeutic peptide recognition. TP-MV is developed using the stacking framework in conjunction with the KNN, SVM, ET, RF, and XGB. Then TP-MV constructs a multi-view learning model as meta-classifiers to extract the discriminative feature for different peptides.
Results: In the experiment, the proposed method outperforms the other existing methods on the benchmark datasets, indicating that the proposed method has the ability to predict multiple therapeutic peptides simultaneously.
Conclusion: The TP-MV is a useful tool for predicting therapeutic peptides.
Keywords: Therapeutic peptide recognition, stacking method, multi-view learning method, ensemble learning, sequence analysis, AAC.
Graphical Abstract
[PMID: 33313672]
[http://dx.doi.org/10.2174/1574893613666180828095737]
[http://dx.doi.org/10.1093/bioinformatics/bty451] [PMID: 29868903]
[PMID: 33316035]
[http://dx.doi.org/10.1093/bib/bby091] [PMID: 30239616]
[http://dx.doi.org/10.2174/1574893614666181212102749]
[http://dx.doi.org/10.1016/j.ab.2007.10.012] [PMID: 17976365]
[http://dx.doi.org/10.2174/1574893615666200129110450]
[http://dx.doi.org/10.2174/1574893615999200424085947]
[http://dx.doi.org/10.2174/1574893614666191202152328]
[http://dx.doi.org/10.2174/1574893614666190723114923]
[http://dx.doi.org/10.1093/bioinformatics/btaa275] [PMID: 32348463]
[http://dx.doi.org/10.1093/nar/gku892] [PMID: 25270878]
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[http://dx.doi.org/10.1093/bib/bbx165] [PMID: 29272359]
[http://dx.doi.org/10.1093/nar/gkz740] [PMID: 31504851]
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[http://dx.doi.org/10.3390/molecules24101973] [PMID: 31121946]
[http://dx.doi.org/10.1093/bioinformatics/btz246] [PMID: 30994882]
[http://dx.doi.org/10.1093/bioinformatics/btaa160] [PMID: 32145017]
[http://dx.doi.org/10.3390/ijms17122118] [PMID: 27999256]
[http://dx.doi.org/10.1093/bioinformatics/btz040] [PMID: 30668845]
[http://dx.doi.org/10.1186/1471-2105-8-263] [PMID: 17645800]
[http://dx.doi.org/10.1021/acs.jproteome.7b00019] [PMID: 28436664]
[http://dx.doi.org/10.1371/journal.pone.0120066] [PMID: 25781990]
[http://dx.doi.org/10.1007/s10822-020-00343-9] [PMID: 32964284]
[http://dx.doi.org/10.1186/s12859-019-3006-z] [PMID: 31492094]
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[http://dx.doi.org/10.1038/nmeth.1818] [PMID: 22198341]
[http://dx.doi.org/10.1093/bioinformatics/btv177] [PMID: 25812743]
[http://dx.doi.org/10.1186/1471-2105-9-510] [PMID: 19046430]
[http://dx.doi.org/10.1093/bioinformatics/btt709] [PMID: 24318998]
[http://dx.doi.org/10.1371/journal.pone.0106691] [PMID: 25184541]
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[http://dx.doi.org/10.1109/TCBB.2021.3069263] [PMID: 33780341]
[http://dx.doi.org/10.1186/1752-0509-9-S1-S10] [PMID: 25708928]
[http://dx.doi.org/10.3390/ijms18091856] [PMID: 28841194]
[http://dx.doi.org/10.1007/s00726-016-2274-4] [PMID: 27299433]
[http://dx.doi.org/10.1093/bioinformatics/btaa131] [PMID: 32105326]
[http://dx.doi.org/10.1016/j.jneumeth.2014.11.011] [PMID: 25448384]
[http://dx.doi.org/10.1016/j.aap.2021.106153 ] [PMID: 34034073]