Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

A Short Appraisal on Gold Nanoparticles: Recent Advances and Applications

Author(s): Dilpreet Singh*, Russel Tonjam, Tanu Chaudhary, Tanuja Bhatia, Karan Razdan, Balak Das Kurmi, Prashant Tiwari and Sakshi Gupta

Volume 11, Issue 3, 2021

Page: [168 - 176] Pages: 9

DOI: 10.2174/2468187312666211220122455

Price: $65

Abstract

Owing to their unique characteristics and diverse surface activities, gold nanoparticles (AuNPs) have been widely used in various fields of biology. The ease with which AuNPs can be functionalized makes it a useful platform for nanobiological assemblies containing oligonucleotides, antibodies, and proteins. AuNPs bioconjugates have also emerged as an interesting candidate for the development of novel biomaterials for the study of biological systems. AuNPs' flexibility has made them valuable in a variety of biomedical applications. The binding of analytes to AuNPs can change the physicochemical features of AuNPs, such as surface plasmon resonance, conductivity, and redox activity, resulting in observable signals in diagnostics. AuNPs can also be used as a therapeutic platform because of their large surface area, which allows for a dense presentation of multifunctional moieties (e.g., drugs and targeting agents). We present a brief summary of green synthesis, characteristics, and applications of gold nanoparticles in this paper, as well as their translational potential.

Keywords: AuNPs, nanotechnology, synthesis, folate, plants, biomedical application.

Graphical Abstract

[1]
Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 2012; 64(2): 190-9.
[http://dx.doi.org/10.1016/j.addr.2011.03.005] [PMID: 21397647]
[2]
Kang H, Buchman JT, Rodriguez RS, et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev 2019; 119(1): 664-99.
[http://dx.doi.org/10.1021/acs.chemrev.8b00341] [PMID: 30346757]
[3]
Kharazian B, Lohse SE, Ghasemi F, et al. Bare surface of gold nanoparticle induces inflammation through unfolding of plasma fibrinogen. Sci Rep 2018; 8(1): 12557.
[http://dx.doi.org/10.1038/s41598-018-30915-7] [PMID: 30135553]
[4]
Sangaru SS, Rai A, Ahmad A, Sastry M. Biosynthesis of silver and gold nanoparticles from extracts of different parts of the geranium plant. Appl Nanosci 2004; 1: 69-77.
[5]
Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nat Mater 2004; 3(7): 482-8.
[http://dx.doi.org/10.1038/nmat1152] [PMID: 15208703]
[6]
Huang CJ, Chiu PH, Wang YH, Chen KL, Linn JJ, Yang CF. Electrochemically controlling the size of gold nanoparticles. Journal of Electrochemistry 2006; 153: 193-8.
[http://dx.doi.org/10.1149/1.2358103]
[7]
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 2006; 22(2): 577-83.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[8]
Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 2007; 24(8): 1415-26.
[http://dx.doi.org/10.1007/s11095-007-9257-9] [PMID: 17380266]
[9]
Huang S, Huang G. Preparation and drug delivery of dextran-drug complex. Drug Deliv 2019; 26(1): 252-61.
[http://dx.doi.org/10.1080/10717544.2019.1580322] [PMID: 30857442]
[10]
Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B Biointerfaces 2010; 80(1): 45-50.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.029] [PMID: 20620890]
[11]
Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2002; 397-401.
[http://dx.doi.org/10.1021/nl015673+]
[12]
Nune SK, Chanda N, Shukla R, et al. Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem 2009; 19(19): 2912-20.
[http://dx.doi.org/10.1039/b822015h] [PMID: 20161162]
[13]
Ramamurthy CH, Padma M, samadanam ID, et al. The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf B Biointerfaces 2013; 102: 808-15.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.025] [PMID: 23107960]
[14]
Suarasan S, Focsan M, Maniu D, Astilean S. Gelatin-nanogold bioconjugates as effective plasmonic platforms for SERS detection and tagging. Colloids Surf B Biointerfaces 2013; 103: 475-81.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.046] [PMID: 23261569]
[15]
Garcia AR, Rahn I, Johnson S, et al. Human insulin fibril-assisted synthesis of fluorescent gold nanoclusters in alkaline media under physiological temperature. Colloids Surf B Biointerfaces 2013; 105: 167-72.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.052] [PMID: 23376093]
[16]
Chen R, Chen Q, Huo D, Ding Y, Hu Y, Jiang X. In situ formation of chitosan-gold hybrid hydrogel and its application for drug delivery. Colloids Surf B Biointerfaces 2012; 97: 132-7.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.027] [PMID: 22609593]
[17]
Joseph MM, Aravind SR, Varghese S, Mini S, Sreelekha TT. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties. Colloids Surf B Biointerfaces 2013; 104: 32-9.
[http://dx.doi.org/10.1016/j.colsurfb.2012.11.046] [PMID: 23298585]
[18]
Dhar S, Reddy EM, Shiras A, Pokharkar V, Prasad BL. Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chemistry 2008; 14(33): 10244-50.
[http://dx.doi.org/10.1002/chem.200801093] [PMID: 18850613]
[19]
Venkatpurwar V, Shiras A, Pokharkar V. Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: In vitro cytotoxicity study. Int J Pharm 2011; 409(1-2): 314-20.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.054] [PMID: 21376108]
[20]
Dhar S, Reddy EM, Prabhune A, Pokharkar V, Shiras A, Prasad BL. Cytotoxicity of sophorolipid-gellan gum-gold nanoparticle conjugates and their doxorubicin loaded derivatives towards human glioma and human glioma stem cell lines. Nanoscale 2011; 3(2): 575-80.
[http://dx.doi.org/10.1039/C0NR00598C] [PMID: 21069248]
[21]
Colombo M, Mazzucchelli S, Collico V, et al. Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells. Angew Chem Int Ed Engl 2012; 51(37): 9272-5.
[http://dx.doi.org/10.1002/anie.201204699] [PMID: 22833476]
[22]
Kawasaki H, Hamaguchi K, Osaka I, Arakawa R. ph-dependent synthesis of pepsin- mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 2011; 21(18): 3508-15.
[http://dx.doi.org/10.1002/adfm.201100886]
[23]
Liu CL, Wu HT, Hsiao YH, et al. Insulin-directed synthesis of fluorescent gold nanoclusters: Preservation of insulin bioactivity and versatility in cell imaging. Angew Chem Int Ed Engl 2011; 50(31): 7056-60.
[http://dx.doi.org/10.1002/anie.201100299] [PMID: 21688357]
[24]
Sun I-C, Ahn CH, Kim K, Emelianov S. Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents. J Biomed Opt 2019; 24(12): 1-5.
[http://dx.doi.org/10.1117/1.JBO.24.12.121903] [PMID: 31385483]
[25]
Moreno-Alvarez SA, Martinez-Castanon GA, Nino-Martinez N, Reyes-Macias JF, Patino Marin N, Loyolo-Rodriquez JP. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles. J Nanopart Res 2010; 12(8): 2741-6.
[http://dx.doi.org/10.1007/s11051-010-0060-x]
[26]
Shakeri-Zadeh A, Mansoori GA, Hashemian AR, Eshghi H, Sazgar-nia A, Montazerabadi AR. Cancerous cells targeting and destruc-tion using folate conjugated gold nanoparticles. Dyn Biochem Process Biotechnol Mol Biol 2010; 4(1): 6-12.
[27]
Nandanan E, Jana NR, Ying JY. Functionalization of gold nanospheres and nanorods by chitosan oligosaccharide derivatives. Adv Mater 2008; 20: 2068-73.
[http://dx.doi.org/10.1002/adma.200702193]
[28]
Krpetić Z, Scarì G, Caneva E, Speranza G, Porta F. Gold nanoparticles prepared using cape aloe active components. Langmuir 2009; 25(13): 7217-21.
[http://dx.doi.org/10.1021/la9009674] [PMID: 19505092]
[29]
Huang X, Wu H, Liao X-P, Shi B. One-step, size-con-trolled synthesis of gold nanoparticles at room temperatureusing plant tannin. Green Chem 2009; 12: 395-9.
[30]
Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005; 4(4): 363-74.
[http://dx.doi.org/10.1177/153303460500400405] [PMID: 16029056]
[31]
Bhattacharya A, Tejero R, Montelione GT. Evaluating protein structures determined by structural genomics consortia. Proteins 2007; 66(4): 778-95.
[http://dx.doi.org/10.1002/prot.21165] [PMID: 17186527]
[32]
Zhang DY, Zheng Y, Tan CP, et al. Graphene oxide decorated with Ru (II)–polyethylene glycol complex for lysosome-targeted imaging and photodynamic/photothermal therapy. ACS Appl Mater Interfaces 2017; 9(8): 6761-71.
[http://dx.doi.org/10.1021/acsami.6b13808] [PMID: 28150943]
[33]
Iglesias-Mayor A, Amor-Gutiérrez O, Costa-García A, de la Escosura-Muñiz A. Nanoparticles as emerging labels in electrochemical immunosensors. Sensors (Basel) 2019; 19(23): 5137.
[http://dx.doi.org/10.3390/s19235137] [PMID: 31771201]
[34]
Cabral RM, Baptista PV. Anti-cancer precision theranostics: A focus on multifunctional gold nanoparticles. Expert Rev Mol Diagn 2014; 14(8): 1041-52.
[http://dx.doi.org/10.1586/14737159.2014.965683] [PMID: 25314939]
[35]
Tabish TA, Dey P, Mosca S, et al. Smart gold nanostructures for light mediated cancer theranostics: Combining optical diagnostics with photothermal therapy. Adv Sci (Weinh) 2020; 7(15): 1903441.
[http://dx.doi.org/10.1002/advs.201903441] [PMID: 32775148]
[36]
Rajkumar S, Prabaharan M. Theranostics based on iron oxide and gold nanoparticles for imaging-guided photothermal and photodynamic therapy of cancer. Curr Top Med Chem 2017; 17(16): 1858-71.
[http://dx.doi.org/10.2174/1568026617666161122120537] [PMID: 27875977]
[37]
Walczak A, Gradzik K, Kabzinski J, Przybylowska-Sygut K, Majsterek I. The role of the ER-induced UPR pathway and the efficacy of its inhibitors and inducers in the inhibition of tumor progression. Oxid Med Cell Longev 2019; 2019(1): 5729710.
[http://dx.doi.org/10.1155/2019/5729710] [PMID: 30863482]
[38]
Leifert A, Pan-Bartnek Y, Simon U, Jahnen-Dechent W. Molecularly stabilised ultrasmall gold nanoparticles: Synthesis, characterization and bioactivity. Nanoscale 2013; 5(14): 6224-42.
[http://dx.doi.org/10.1039/c3nr00916e] [PMID: 23743952]
[39]
Khalid K, Tan X, Mohd Zaid HF, et al. Advanced in developmental organic and inorganic nanomaterial: A review. Bioengineered 2020; 11(1): 328-55.
[http://dx.doi.org/10.1080/21655979.2020.1736240] [PMID: 32138595]
[40]
Bathula NV, Bommadevara H, Hayes JM. Nanobodies: The future of antibody-based immune therapeutics. Cancer Biother Radiopharm 2021; 36(2): 109-22.
[http://dx.doi.org/10.1089/cbr.2020.3941] [PMID: 32936001]
[41]
Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: Targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem Rev 2016; 116(5): 3436-86.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[42]
Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 2012; 64(2): 200-16.
[http://dx.doi.org/10.1016/j.addr.2011.08.006] [PMID: 21925556]
[43]
Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 2012; 64: 342-52.
[http://dx.doi.org/10.1016/j.addr.2012.09.020] [PMID: 12204598]
[44]
Chen S, Zhao X, Chen J, et al. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug Chem 2010; 21(5): 979-87.
[http://dx.doi.org/10.1021/bc9005656] [PMID: 20429547]
[45]
Qi L, Guo Y, Luan J, Zhang D, Zhao Z, Luan Y. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor-targeting delivery system. J Mater Chem B Mater Biol Med 2014; 2(47): 8361-71.
[http://dx.doi.org/10.1039/C4TB01102C] [PMID: 32262006]
[46]
Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67(18): 8699-707.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1936] [PMID: 17875710]
[47]
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances. Adv Drug Deliv Rev 2013; 65(1): 121-38.
[http://dx.doi.org/10.1016/j.addr.2012.09.041] [PMID: 23026636]
[48]
Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: A review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv 2010; 7(8): 895-913.
[http://dx.doi.org/10.1517/17425247.2010.501792] [PMID: 20629604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy