Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Is it Possible to Assess the Functional Status of Hormone Secretion or Non- Secretion of Adrenal Masses Through Their Magnetic Resonance Imaging (MRI) Characteristics?

Author(s): Gamze Akkus*, Ferhat Piskin, Barış Karagun, Murat Sert, Mehtap Evran and Tamer Tetiker

Volume 22, Issue 6, 2022

Published on: 25 February, 2022

Page: [650 - 657] Pages: 8

DOI: 10.2174/1871530322666211220111637

Price: $65

Abstract

Background: Diagnostic imaging techniques, including magnetic resonance imaging (MRI) should be performed on all patients with incidentalomas. However, limited number of studies on whether the quantitative measurements (signal intensity index, adrenal to spleen ratio) in MRI could predict the functional status of adrenal adenomas are available.

Methods: Between 2015-2020, 404 patients (265 females, 139 males) with adrenal mass who were referred to the university hospital for further investigation were included. After detailed diagnostic hormonal evaluation, all patients were examined with the MRI 1.5 T device (Signa, GE Medical Systems; Milwaukee, USA). The signal intensities of the adrenal lesions on T2W images were qualitatively evaluated and noted as homogenous or heterogeneous in comparison with the liver signal intensity (SI). A chemical-shift SI index and chemical shift adrenal-to-spleen SI ratio were also calculated.

Results: While 331(81.9%) of the patients had nonfunctional adrenal mass, the rest (n=73, 18.1%) were patients with functional (autonomous cortisol secretion-ACS, Cushing syndrome-CS, pheochromocytoma, primary hyperaldosteronism-PA) adrenal masses. In phase vs. phase values of patients with NFAI, Pheo(n=17), ACS (n=30), CS (n=11), and PA (n=15) were 474.04±126.7 vs. 226.6±132.4, 495.3±182.8 vs. 282.17±189.1, 445.2±134.8 vs. 203.3±76.2, 506.8±126.5 vs. 212.2±73.6 and 496.2±147.5 vs. 246.6±102.1, respectively. Mean signal intensity index (SII) and adrenal to spleen ratio (ASR) of all groups (NFAI, Pheo, ACS, CS, PA) were 52.0±24.8 and 0.51, 44.9±22.5 and 0.55, 49.5±24.5 and 0.53, 56.2±16.4 and 0.43, 47.6±25.1 and 0.54, respectively. Based on the currently accepted measurements in the case of ASR and SII, all lesions were similar and observed as fat rich adenomas (p*= 0.552, p** = 0.45).

Conclusion: The quantitative assessment (SII, ASR) of intracellular lipids in an incidentally discovered adrenal tumor could only help distinguish adrenal masses in the case of adenomas or non-adenomas. As an initial diagnostic evaluation, clinical and laboratory assessment to distinguish hormone secretion should be done for all patients with adrenal incidentalomas.

Keywords: Pheochromocytoma, autonomous cortisol secretion, signal intensity index, magnetic resonance imaging, adrenal mass, hormone secretion.

Graphical Abstract

[1]
Barile, A.; Brunese, L.; Giovagnoni, A. Gland diseases: new perspectives in diagnostic radiology. Gland Surg., 2019, 8(Suppl. 3), S126-S129.
[http://dx.doi.org/10.21037/gs.2019.03.05] [PMID: 31559178]
[2]
Foti, G.; Malleo, G.; Faccioli, N.; Guerriero, A.; Furlani, L.; Carbognin, G. Characterization of adrenal lesions using MDCT wash-out parameters: diagnostic accuracy of several combinations of intermediate and delayed phases. Radiol. Med. (Torino), 2018, 123(11), 833-840.
[http://dx.doi.org/10.1007/s11547-018-0911-6] [PMID: 29923085]
[3]
Di Dalmazi, G.; Vicennati, V.; Garelli, S.; Casadio, E.; Rinaldi, E.; Giampalma, E.; Mosconi, C.; Golfieri, R.; Paccapelo, A.; Pagotto, U.; Pasquali, R. Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing’s syndrome: a 15-year retrospective study. Lancet Diabetes Endocrinol., 2014, 2(5), 396-405.
[http://dx.doi.org/10.1016/S2213-8587(13)70211-0] [PMID: 24795253]
[4]
Reginelli, A.; Vacca, G.; Belfiore, M.; Sangiovanni, A.; Nardone, V.; Vanzulli, A.; Grassi, R.; Cappabianca, S. Pitfalls and differential diagnosis on adrenal lesions: current concepts in CT/MR imaging: a narrative review. Gland Surg., 2020, 9(6), 2331-2342.
[http://dx.doi.org/10.21037/gs-20-559] [PMID: 33447584]
[5]
Fassnacht, M.; Arlt, W.; Bancos, I.; Dralle, H.; Newell-Price, J.; Sahdev, A.; Tabarin, A.; Terzolo, M.; Tsagarakis, S.; Dekkers, O.M. Management of adrenal incidentalomas: European society of endocrinology clinical practice guideline in collaboration with the european network for the study of adrenal tumors. Eur. J. Endocrinol., 2016, 175(2), G1-G34.
[http://dx.doi.org/10.1530/EJE-16-0467] [PMID: 27390021]
[6]
Ishiwata, K.; Suzuki, S.; Igarashi, K.; Ruike, Y.; Naito, K.; Ishida, A.; Deguchi-Horiuchi, H.; Fujimoto, M.; Koide, H.; Imamura, Y.; Sakamoto, S.; Ichikawa, T.; Ikeda, J.I.; Yokote, K. Characteristics of benign adrenocortical adenomas with 18F-FDG PET accumulation. Eur. J. Endocrinol., 2021, 185(1), 155-165.
[http://dx.doi.org/10.1530/EJE-20-1459] [PMID: 33960957]
[7]
Addeo, G.; Cozzi, D.; Danti, G.; Bertelli, E.; Ferrari, R.; Pradella, S.; Trinci, M.; Miele, V. Multi-detector computed tomography in the diagnosis and characterization of adrenal gland traumatic injuries. Gland Surg., 2019, 8(2), 164-173.
[http://dx.doi.org/10.21037/gs.2019.01.07] [PMID: 31183326]
[8]
Delivanis, D.A.; Bancos, I.; Atwell, T.D.; Schmit, G.D.; Eiken, P.W.; Natt, N.; Erickson, D.; Maraka, S.; Young, W.F.; Nathan, M.A. Diagnostic performance of unenhanced computed tomography and 18 F-fluorodeoxyglucose positron emission tomography in indeterminate adrenal tumours. Clin. Endocrinol. (Oxf.), 2018, 88(1), 30-36.
[http://dx.doi.org/10.1111/cen.13448] [PMID: 28815667]
[9]
Kebebew, E. Adrenal Incidentaloma. N. Engl. J. Med., 2021, 384(16), 1542-1551.
[http://dx.doi.org/10.1056/NEJMcp2031112] [PMID: 33882207]
[10]
Mosconi, C.; Vicennati, V.; Papadopoulos, D.; Dalmazi, G.D.; Morselli-Labate, A.M.; Golfieri, R.; Pasquali, R. Can imaging predict subclinical cortisol secretion in patients with adrenal adenomas? A CT predictive score. AJR Am. J. Roentgenol., 2017, 209(1), 122-129.
[http://dx.doi.org/10.2214/AJR.16.16965] [PMID: 28402131]
[11]
Akkuş, G.; Güney, I.B.; Ok, F.; Evran, M.; Izol, V.; Erdoğan, Ş.; Bayazıt, Y.; Sert, M.; Tetiker, T. Diagnostic efficacy of 18F-FDG PET/CT in patients with adrenal incidentaloma. Endocr. Connect., 2019, 8(7), 838-845.
[http://dx.doi.org/10.1530/EC-19-0204] [PMID: 31137014]
[12]
Olsen, H.; Nordenström, E.; Bergenfelz, A.; Nyman, U.; Valdemarsson, S.; Palmqvist, E. Subclinical hypercortisolism and CT appearance in adrenal incidentalomas: a multicenter study from Southern Sweden. Endocrine, 2012, 42(1), 164-173.
[http://dx.doi.org/10.1007/s12020-012-9622-2] [PMID: 22350586]
[13]
Aresta, C.; Favero, V.; Morelli, V.; Giovanelli, L.; Parazzoli, C.; Falchetti, A.; Pugliese, F.; Gennari, L.; Vescini, F.; Salcuni, A.; Scillitani, A.; Persani, L.; Chiodini, I. Cardiovascular complications of mild autonomous cortisol secretion. Best Pract. Res. Clin. Endocrinol. Metab., 2021, 35(2), 101494.
[http://dx.doi.org/10.1016/j.beem.2021.101494] [PMID: 33814301]
[14]
Funder, J.W.; Carey, R.M.; Mantero, F.; Murad, M.H.; Reincke, M.; Shibata, H.; Stowasser, M.; Young, W.F., Jr The management of primary aldosteronism: Case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab., 2016, 101(5), 1889-1916.
[http://dx.doi.org/10.1210/jc.2015-4061] [PMID: 26934393]
[15]
Weiss, L.M. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am. J. Surg. Pathol., 1984, 8(3), 163-169.
[http://dx.doi.org/10.1097/00000478-198403000-00001] [PMID: 6703192]
[16]
Ierardi, A.M.; Petrillo, M.; Patella, F.; Biondetti, P.; Fumarola, E.M.; Angileri, S.A.; Pesapane, F.; Pinto, A.; Dionigi, G.; Carrafiello, G. Interventional radiology of the adrenal glands: current status. Gland Surg., 2018, 7(2), 147-165.
[http://dx.doi.org/10.21037/gs.2018.01.04] [PMID: 29770310]
[17]
Schieda, N.; Alrashed, A.; Flood, T.A.; Samji, K.; Shabana, W.; McInnes, M.D. Comparison of quantitative mri and ct washout analysis for differentiation of adrenal pheochromocytoma from adrenal adenoma. AJR Am. J. Roentgenol., 2016, 206(6), 1141-1148.
[http://dx.doi.org/10.2214/AJR.15.15318] [PMID: 27011100]
[18]
Dinnes, J.; Bancos, I.; Ferrante di Ruffano, L.; Chortis, V.; Davenport, C.; Bayliss, S.; Sahdev, A.; Guest, P.; Fassnacht, M.; Deeks, J.J.; Arlt, W. Management of endocrine disease: imaging for the diagnosis of malignancy in incidentally discovered adrenal masses: a systematic review and meta-analysis. Eur. J. Endocrinol., 2016, 175(2), R51-R64.
[http://dx.doi.org/10.1530/EJE-16-0461] [PMID: 27257145]
[19]
Giurazza, F.; Corvino, F.; Silvestre, M.; Cangiano, G.; Cavaglià, E.; Amodio, F.; De Magistris, G.; Frauenfelder, G.; Niola, R. Adrenal glands hemorrhages: embolization in acute setting. Gland Surg., 2019, 8(2), 115-122.
[http://dx.doi.org/10.21037/gs.2018.10.06] [PMID: 31183321]
[20]
Platzek, I.; Sieron, D.; Plodeck, V.; Borkowetz, A.; Laniado, M.; Hoffmann, R.T. Chemical shift imaging for evaluation of adrenal masses: a systematic review and meta-analysis. Eur. Radiol., 2019, 29(2), 806-817.
[http://dx.doi.org/10.1007/s00330-018-5626-5] [PMID: 30014203]
[21]
Altinmakas, E.; Perrier, N.D.; Grubbs, E.G.; Lee, J.E.; Prieto, V.G.; Ng, C.S. Diagnostic performance of adrenal CT in the differentiation of adenoma and pheochromocytoma. Acta Radiol., 2020, 61(8), 1080-1086.
[http://dx.doi.org/10.1177/0284185119889568] [PMID: 31791129]
[22]
Wang, F. Liu, J.; Zhang, R.; Bai, Y.; Li, C.; Li, B.; Liu, H.; Zhang, T. CT and MRI of adrenal gland pathologies. Quant. Imaging Med. Surg., 2018, 8(8), 853-875.
[http://dx.doi.org/10.21037/qims.2018.09.13] [PMID: 30306064]
[23]
Maurea, S.; Mainenti, P.P.; Romeo, V.; Mollica, C.; Salvatore, M. Nuclear imaging to characterize adrenal tumors: Comparison with MRI. World J. Radiol., 2014, 6(7), 493-501.
[http://dx.doi.org/10.4329/wjr.v6.i7.493] [PMID: 25071890]
[24]
Yener, S.; Secil, M.; Demir, O.; Ozgen Saydam, B.; Yorukoglu, K. Chemical shift magnetic resonance imaging could predict subclinical cortisol production from an incidentally discovered adrenal mass. Clin. Endocrinol. (Oxf.), 2018, 88(6), 779-786.
[http://dx.doi.org/10.1111/cen.13587] [PMID: 29498083]
[25]
Dalavia, C.C.; Goldman, S.M.; Melo, H.J.F.E.; Kater, C.E.; Szejnfeld, J.; Iared, W.; Ajzen, S.A. The value of signal intensity on T1-weighted chemical shift magnetic resonance imaging combined with proton magnetic resonance spectroscopy for the diagnosis of adrenal adenomas. Radiol. Bras., 2020, 53(2), 86-94.
[http://dx.doi.org/10.1590/0100-3984.2019.0095] [PMID: 32336823]
[26]
Eisenhofer, G.; Goldstein, D.S.; Walther, M.M.; Friberg, P.; Lenders, J.W.; Keiser, H.R.; Pacak, K. Biochemical diagnosis of pheochromocytoma: how to distinguish true- from false-positive test results. J. Clin. Endocrinol. Metab., 2003, 88(6), 2656-2666.
[http://dx.doi.org/10.1210/jc.2002-030005] [PMID: 12788870]
[27]
Mohammed, M.F.; ElBanna, K.Y.; Ferguson, D.; Harris, A.; Khosa, F. Pheochromocytomas versus adenoma: role of venous phase ct enhancement. AJR Am. J. Roentgenol., 2018, 210(5), 1073-1078.
[http://dx.doi.org/10.2214/AJR.17.18472] [PMID: 29570377]
[28]
Lenders, J.W.; Duh, Q.Y.; Eisenhofer, G.; Gimenez-Roqueplo, A.P.; Grebe, S.K.; Murad, M.H.; Naruse, M.; Pacak, K.; Young, W.F. Jr Endocrine Society. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab., 2014, 99(6), 1915-1942.
[http://dx.doi.org/10.1210/jc.2014-1498] [PMID: 24893135]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy