Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Synthesized NaA Nanozeolite as a Catalyst for the Preparation of 3-amino imidazo[1,2-a]pyridines under Solvent-Free Conditions

Author(s): Sara Azargashb, Afshin Sarvary* and Seyed Karim Hassaninejad-Darzi

Volume 19, Issue 9, 2022

Published on: 15 February, 2022

Page: [711 - 718] Pages: 8

DOI: 10.2174/1570178619666211220103759

Price: $65

Abstract

The present study explores a new method for the fabrication of NaA nanozeolite as a simple and efficient catalyst for producing 3-aminoimidazo [1,2-a] pyridines via the 3-component reaction of aldehydes, 2-aminoperidines and isocyanides under solvent-free conditions. The production of the organic template-free (OTF) NaA nanozeolite was performed at room temperature. The prepared nanozeolite was identified by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), Field Emission Scanning Electronic Microscopy (FESEM), N2 sorption isotherm and Particle Size Analysis (PSA). The particle sizes of synthesized spherical NaA nanozeolite were under 100 nm via the FESEM method. BET surface area, total pore volume, and mean pore diameter of the created sample were attained to be 362 m2g-1, 0.44 cm3 g-1 and 5.9 nm, respectively. The developed method has some advantages, such as OTF production of NaA nanozeolite, a simple synthesis method with short reaction time and easy separation using filtration, and the ability to recycle and reuse the catalyst several times without reducing its efficiency.

Keywords: NaA nanozeolite, imidazo[1, 2-a]pyridine, 3-component reaction, solvent-free, isocyanide, 2-aminopridines.

Graphical Abstract

[1]
Pericherla, K.; Kaswan, P.; Pandey, K.; Kumar, A. Synthesis, 2015, 47, 887-912.
[http://dx.doi.org/10.1055/s-0034-1380182]
[2]
Goel, R.; Luxami, V.; Paul, K. RSC Advances, 2015, 5, 81608-81637.
[http://dx.doi.org/10.1039/C5RA14795F]
[3]
Bagdi, A.K.; Santra, S.; Monir, K.; Hajra, A. Chem. Commun. (Camb.), 2015, 51(9), 1555-1575.
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981]
[4]
Koubachi, J.; El-Kazzouli, S.; Bousmina, M.; Guillaumet, G. Eur. J. Org. Chem., 2014, 2014, 5119-5138.
[http://dx.doi.org/10.1002/ejoc.201400065]
[5]
Devi, N.; Singh, D.; Rawal, R.K.; Bariwal, J.; Singh, V. Curr. Top. Med. Chem., 2016, 16(26), 2963-2994.
[http://dx.doi.org/10.2174/1568026616666160506145539] [PMID: 27150367]
[6]
Rival, Y.; Grassy, G.; Taudou, A.; Ecalle, R. Eur. J. Med. Chem., 1991, 26, 13-18.
[http://dx.doi.org/10.1016/0223-5234(91)90208-5]
[7]
Gueiffier, C.E.; Musiu, S.; Henry, N.; Véron, J.B.; Mavel, S.; Neyts, J.; Leyssen, P.; Paeshuyse, J.; Gueiffier, A. Eur. J. Med. Chem., 2013, 64, 448-463.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.054] [PMID: 23665801]
[8]
Shukla, N.M.; Salunke, D.B.; Yoo, E.; Mutz, C.A.; Balakrishna, R.; David, S.A. Bioorg. Med. Chem., 2012, 20(19), 5850-5863.
[http://dx.doi.org/10.1016/j.bmc.2012.07.052] [PMID: 22925449]
[9]
Dahan-Farkas, N.; Langley, C.; Rousseau, A.L.; Yadav, D.B.; Davids, H.; de Koning, C.B. Eur. J. Med. Chem., 2011, 46(9), 4573-4583.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.036] [PMID: 21843907]
[10]
Ismail, M.A.; Brun, R.; Easterbrook, J.D.; Tanious, F.A.; Wilson, W.D.; Boykin, D.W. J. Med. Chem., 2003, 46(22), 4761-4769.
[http://dx.doi.org/10.1021/jm0302602] [PMID: 14561095]
[11]
Cheng, D.; Croft, L.; Abdi, M.; Lightfoot, A.; Gallagher, T. Org. Lett., 2007, 9(25), 5175-5178.
[http://dx.doi.org/10.1021/ol701689z] [PMID: 17999509]
[12]
Ulloora, S.; Shabaraya, R.; Adhikari, A.V. Bioorg. Med. Chem. Lett., 2013, 23(11), 3368-3372.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.086] [PMID: 23623419]
[13]
Guessan, J.; Delaye, P.; Pénichon, M.; Charvet, C.L.; Neveu, C.; Enguehard-Gueiffier, M.; Gueiffier, A.; Allouchi, H. Bioorg. Med. Chem., 2017, 25, 6695-6706.
[http://dx.doi.org/10.1016/j.bmc.2017.11.012] [PMID: 29137938]
[14]
Nigade, G.; Chavan, P.; Deodhar, M. Med. Chem. Res., 2012, 21, 27-37.
[http://dx.doi.org/10.1007/s00044-010-9489-9]
[15]
Moraski, G.C.; Markley, L.D.; Hipskind, P.A.; Boshoff, H.; Cho, S.; Franzblau, S.G.; Miller, M.J. Acc. Med. Chem. Lett., 2011, 2, 466-470.
[http://dx.doi.org/10.1021/ml200036r]
[16]
Kaminsky, J.J.; Puchalski, C.; Solomon, D.M.; Rizvi, R.K.; Conn, D.J.; Lovey, A.J.; Guzik, H. R.G.; Chui, P.J.S.; Long, J.F.; McPhail. A.T. J. Med. Chem., 1989, 32, 1686-1700.
[17]
Humphries, A.C.; Gancia, E.; Gilligan, M.T.; Goodacre, S.; Hallett, D.; Merchant, K.J.; Thomas, S.R. Bioorg. Med. Chem. Lett., 2006, 16(6), 1518-1522.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.037] [PMID: 16386901]
[18]
Hieke, M.; Rödl, C.; Wisniewska, J.M.; Buscató, E.; Stark, H.; Schubert-Zsilavecz, M.; Steinhilber, D.; Hofmann, B.; Proschak, E. Bioorg. Med. Chem. Lett., 2012, 22, 1969-1975.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.038] [PMID: 22326163]
[19]
Byth, K.F.; Culshaw, J.D.; Green, S.; Oakes, S.E.; Thomas, A.P. Bioorg. Med. Chem. Lett., 2004, 14(9), 2245-2248.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.015] [PMID: 15081017]
[20]
Kishino, H.; Moriya, M.; Sakuraba, S.; Sakamoto, T.; Takahashi, H.; Suzuki, T.; Moriya, R.; Ito, M.; Iwaasa, H.; Takenaga, N.; Ishihara, A.; Kanatani, A.; Sato, N.; Fukami, T. Bioorg. Med. Chem. Lett., 2009, 19(16), 4589-4593.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.101] [PMID: 19615899]
[21]
Cai, L.; Cuevas, J.; Temme, S.; Herman, M.M.; Dagostin, C.; Widdowson, D.A.; Innis, R.B.; Pike, V.W. J. Med. Chem., 2007, 50(19), 4746-4758.
[http://dx.doi.org/10.1021/jm0702231] [PMID: 17722900]
[22]
(a) Durant, G.J.; Loynes, J.M.; Wright, H.B. J. Med. Chem., 1973, 16(11), 1272-1276.
(b) Ma, C.H.; Chen, M.M.; Feng, Z.W.; Zhang, Y.; Wang, J.; Jiang, Y.Q.; Yu, B. New J. Chem., 2021, 45, 9302-9314.
[http://dx.doi.org/10.1039/D1NJ00704A]
(c) Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Tetrahedron Lett., 1998, 39, 3635-3638.
[http://dx.doi.org/10.1016/S0040-4039(98)00653-4] [PMID: 4147837]
[23]
Khairnar, B.J.; Mane, D.V.; Shingare, M.S.; Chaudhari, B.R. Iran. J. Catal., 2018, 8, 155-163.
[24]
Bode, M.L.; Gravestock, D.; Moleele, S.S.; van der Westhuyzen, C.W.; Pelly, S.C.; Steenkamp, P.A.; Hoppe, H.C.; Khan, T.; Nkabinde, L.A. Bioorg. Med. Chem., 2011, 19(14), 4227-4237.
[http://dx.doi.org/10.1016/j.bmc.2011.05.062] [PMID: 21700466]
[25]
Adib, M.; Mahdavi, M.; Noghania, M.A.; Mirzaei, P. Tetrahedron Lett., 2007, 48, 7263-7265.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.049]
[26]
Shaabani, A.; Soleimani, E.; Maleki, A. Tetrahedron Lett., 2006, 47, 3031-3034.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.011]
[27]
Vidyacharan, S.; Shinde, A.H.; Satpathi, B.; Sharada, D.S. Green Chem., 2014, 16, 1168-1175.
[http://dx.doi.org/10.1039/c3gc42130a]
[28]
Naeimabadi, M.; Javanshir, S.; Maleki, A.; Dekamin, M.G. Sci. Iran. C., 2016, 23, 2724-2734.
[29]
Shaabani, A.; Soleimani, E.; Maleki, A. Monatsh. Chem., 2007, 138, 73-76.
[http://dx.doi.org/10.1007/s00706-006-0561-6]
[30]
Shaabani, A.; Soleimani, E.; Sarvary, A.; Rezayan, A.H.; Maleki, A. Chin. J. Chem., 2009, 27, 369-371.
[http://dx.doi.org/10.1002/cjoc.200990060]
[31]
Rolison, D.R. Chem. Rev., 1990, 90, 867-878.
[http://dx.doi.org/10.1021/cr00103a011]
[32]
Rama, V.; Kanagaraj, K.; Pitchumani, K. Tetrahedron Lett., 2012, 53, 1018-1024.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.143]
[33]
Hassaninejad-Darzi, S.K. Fuel Cells (Weinh.), 2018, 18, 82-95.
[http://dx.doi.org/10.1002/fuce.201700056]
[34]
Pawar, G.T.; Magar, R.R.; Lande, M.K. Iran. J. Catal., 2016, 6, 355-362.
[35]
Hassaninejad-Darzi, S.K.; Rahimnejad, M.; Mirzababaei, S.N. Microchem. J., 2016, 128, 7-17.
[http://dx.doi.org/10.1016/j.microc.2016.03.016]
[36]
Liu, X-D.; Wang, Y-P.; Cui, X-M.; He, Y.; Mao, J. Powder Technol., 2013, 243, 184-193.
[http://dx.doi.org/10.1016/j.powtec.2013.03.048]
[37]
Treacy, M.M. Collection of Simulated XRD Powder Patterns for Zeolites; Fifth (5th) Revised Edition; Elsevier: Amesterdam, 2007.
[38]
Zhang, X.; Tang, D.; Jiang, G. Adv. Powder Technol., 2013, 24, 689-696.
[http://dx.doi.org/10.1016/j.apt.2012.12.010]
[39]
Valtchev, V.P.; Tosheva, L.; Bozhilov, K.N. Langmuir, 2005, 21(23), 10724-10729.
[http://dx.doi.org/10.1021/la050323e] [PMID: 16262343]
[40]
Castagnola, N.B.; Dutta, P.K. J. Phys. Chem. B, 1998, 102, 1696-1702.
[http://dx.doi.org/10.1021/jp980103s]
[41]
Bohra, S.; Kundu, D.; Naskar, M.K. Ceram. Int., 2014, 40, 1229-1234.
[http://dx.doi.org/10.1016/j.ceramint.2013.06.001]
[42]
a) Loiola, A.R.; Andrade, J.C.; Sasaki, J.M.; da Silva, L.R. J. Colloid Interface Sci., 2012, 367(1), 34-39.
[http://dx.doi.org/10.1016/j.jcis.2010.11.026] [PMID: 22074689]
b) Bordiga, S.; Lamberti, C.; Bonino, F.; Travert, A.; Thibault-Starzyk, F. Chem. Soc. Rev., 2015, 44(20), 7262-7341.
[http://dx.doi.org/10.1039/C5CS00396B] [PMID: 26435467]
[43]
Brunauer, S.; Emmett, P.H.; Teller, E. J. Am. Chem. Soc., 1938, 60, 309-319.
[http://dx.doi.org/10.1021/ja01269a023]
[44]
Hassaninejad-Darzi, S.K. Chin. J. Catal., 2018, 39, 283-296.
[http://dx.doi.org/10.1016/S1872-2067(18)63025-6]
[45]
Sing, K.S. Pure Appl. Chem., 1985, 57, 603-619.
[http://dx.doi.org/10.1351/pac198557040603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy