Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Perspective

Vaccination Opportunities in Multiple Sclerosis Patients Treated with Cladribine Tablets

Author(s): Lucia Moiola, Agostino Riva, Ferdinando Nicoletti, Antonio Uccelli, Marco Salvetti, Luca Battistini and Roberto Furlan*

Volume 20, Issue 10, 2022

Published on: 05 April, 2022

Page: [1811 - 1815] Pages: 5

DOI: 10.2174/1570159X20666211217160451

Abstract

COVID 19 pandemic and mass vaccination campaigns have revealed the situation of the most vulnerable patients. In this work, we focused our attention to patients who have Multiple Sclerosis (MS), particularly in treatment with cladribine tablets, trying to understand if and when it is possible to administer the vaccine successfully. In light of the novel topic, we studied the existing literature and analysed experiences with previous vaccinations, such as influenza and VZV, as well as data from countries where vaccination campaigns had already begun. Overall, we have taken into account the mechanism of action, the pharmacokinetic/pharmacodynamic of cladribine, and the changes in the immune system after its administration, together with the preliminary data about the humoral response to influenza, VZV, and SARS-CoV-2 vaccinations in cladribine treated patients. In conclusion, data showed that the use of cladribine tablets seems to permit flexibility regarding vaccination timing and we suggest that vaccination in those patients should be safe and effective. The current COVID 19 pandemic has re-ignited the interest in vaccines and vaccination procedures. The importance of including fragile individuals has increased as a result of mass vaccination.

Millions of patients with multiple sclerosis (MS) around the world are debating whether they can safely receive their vaccine shot with the same efficacy despite receiving immune-modulating or immune-suppressive treatments. In the absence of conclusive empirical data, we will review and discuss the available evidence and the reasonable conclusions for one specific treatment, namely cladribine tablets (Mavenclad).

Keywords: Multiple sclerosis, cladribine, vaccination, safety, efficacy, viral infections.

[1]
Iwasaki, A.; Omer, S.B. Why and how vaccines work. Cell, 2020, 183(2), 290-295.
[http://dx.doi.org/10.1016/j.cell.2020.09.040] [PMID: 33064982]
[2]
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol., 2011, 30(1), 16-34.
[http://dx.doi.org/10.3109/08830185.2010.529976] [PMID: 21235323]
[3]
Seyed Hosseini, E.; Riahi Kashani, N.; Nikzad, H.; Azadbakht, J.; Hassani Bafrani, H.; Haddad Kashani, H. The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology, 2020, 551, 1-9.
[http://dx.doi.org/10.1016/j.virol.2020.08.011] [PMID: 33010669]
[4]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS- CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[5]
Knoll, M.D.; Wonodi, C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet, 2021, 397(10269), 72-74.
[http://dx.doi.org/10.1016/S0140-6736(20)32623-4] [PMID: 33306990]
[6]
Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol., 2021, 21(2), 73-82.
[http://dx.doi.org/10.1038/s41577-020-00480-0] [PMID: 33340022]
[7]
Livingston, E.H.; Malani, P.N.; Creech, C.B. The johnson & johnson vaccine for COVID-19. JAMA, 2021, 325(15), 1575.
[http://dx.doi.org/10.1001/jama.2021.2927] [PMID: 33646285]
[8]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[9]
Vaxzevria suspension for injection COVID-19 Vaccine 2021.
[10]
Chagla, Z. In adults, the Oxford/AstraZeneca vaccine had 70% efficacy against COVID-19 >14 d after the 2nd dose. Ann. Intern. Med., 2021, 174(3), JC29.
[http://dx.doi.org/10.7326/ACPJ202103160-029] [PMID: 33646835]
[11]
Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; Offergeld, K.; Scheper, G.; Taylor, K.L.; Robb, M.L.; Treanor, J.; Barouch, D.H.; Stoddard, J.; Ryser, M.F.; Marovich, M.A.; Neuzil, K.M.; Corey, L.; Cauwenberghs, N.; Tanner, T.; Hardt, K.; Ruiz-Guiñazú, J.; Le Gars, M.; Schuitemaker, H.; Van Hoof, J.; Struyf, F.; Douoguih, M. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N. Engl. J. Med., 2021, 384(23), 2187-2201.
[http://dx.doi.org/10.1056/NEJMoa2101544] [PMID: 33882225]
[12]
Mantovani, A.; Netea, M.G. Trained Innate Immunity, Epigenetics, and Covid-19. N. Engl. J. Med., 2020, 383(11), 1078-1080.
[http://dx.doi.org/10.1056/NEJMcibr2011679] [PMID: 32905684]
[13]
Laroni, A.; Schiavetti, I.; Sormani, M.P.; Uccelli, A. COVID-19 in patients with multiple sclerosis undergoing disease-modifying treatments. Mult. Scler., 2021, 27(14), 2126-2136.
[PMID: 33205695]
[14]
Möhn, N.; Konen, F.F.; Pul, R.; Kleinschnitz, C.; Prüss, H.; Witte, T.; Stangel, M.; Skripuletz, T. Experience in Multiple Sclerosis Patients with COVID-19 and Disease-Modifying Therapies: A Review of 873 Published Cases. J. Clin. Med., 2020, 9(12), E4067.
[http://dx.doi.org/10.3390/jcm9124067] [PMID: 33339436]
[15]
Beutler, E. The molecular biology of G6PD variants and other red cell enzyme defects. Annu. Rev. Med., 1992, 43, 47-59.
[http://dx.doi.org/10.1146/annurev.me.43.020192.000403] [PMID: 1580603]
[16]
Comi, G.; Cook, S.; Giovannoni, G.; Rieckmann, P.; Sørensen, P.S.; Vermersch, P.; Galazka, A.; Nolting, A.; Hicking, C.; Dangond, F. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult. Scler. Relat. Disord., 2019, 29, 168-174.
[http://dx.doi.org/10.1016/j.msard.2019.01.038] [PMID: 30885375]
[17]
Giovannoni, G.; Leist, T.; Soelberg Sorensen, P.; Kalatskaya, I.; Boschert, U.; DeMartino, J.; Rolfe, A. Increase of Naïve B Cells, M2 Macrophages and Reduction of Memory B/T Cells During Immune Repopulation at 96 Weeks in CLARITY Assessed by Immune Cell Deconvolution; Presented at European Charcot Foundation (ECF): Baveno, Italy, 2019, pp. 21-23.
[18]
Borsellino, G.; Kleinewietfeld, M.; Di Mitri, D.; Sternjak, A.; Diamantini, A.; Giometto, R.; Höpner, S.; Centonze, D.; Bernardi, G.; Dell’Acqua, M.L.; Rossini, P.M.; Battistini, L.; Rötzschke, O.; Falk, K. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood, 2007, 110(4), 1225-1232.
[http://dx.doi.org/10.1182/blood-2006-12-064527] [PMID: 17449799]
[19]
Mitosek-Szewczyk, K.; Tabarkiewicz, J.; Wilczynska, B.; Lobejko, K.; Berbecki, J.; Nastaj, M.; Dworzanska, E.; Kolodziejczyk, B.; Stelmasiak, Z.; Rolinski, J. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis. J. Neurol. Sci., 2013, 332(1-2), 35-40.
[http://dx.doi.org/10.1016/j.jns.2013.06.003] [PMID: 23835090]
[20]
Kraus, S.H.; Luessi, F.; Trinschek, B.; Lerch, S.; Hubo, M.; Poisa-Beiro, L.; Paterka, M.; Jonuleit, H.; Zipp, F.; Jolivel, V. Cladribine exerts an immunomodulatory effect on human and murine dendritic cells. Int. Immunopharmacol., 2014, 18(2), 347-357.
[http://dx.doi.org/10.1016/j.intimp.2013.11.027] [PMID: 24316255]
[21]
Singh, V.; Prajeeth, C.K.; Gudi, V.; Bénardais, K.; Voss, E.V.; Stangel, M. 2-Chlorodeoxyadenosine (cladribine) induces apoptosis in human monocyte-derived dendritic cells. Clin. Exp. Immunol., 2013, 173(2), 288-297.
[http://dx.doi.org/10.1111/cei.12109] [PMID: 23607690]
[22]
Stuve, O.; Soelberg Soerensen, P.; Leist, T.; Giovannoni, G.; Hyvert, Y.; Damian, D.; Dangond, F.; Boschert, U. Effects of cladribine tablets on lymphocyte subsets in patients with multiple sclerosis: an extended analysis of surface markers. Ther. Adv. Neurol. Disord., 2019, 12, 1756286419854986.
[http://dx.doi.org/10.1177/1756286419854986] [PMID: 31244898]
[23]
Ceronie, B.; Jacobs, B.M.; Baker, D.; Dubuisson, N.; Mao, Z.; Ammoscato, F.; Lock, H.; Longhurst, H.J.; Giovannoni, G.; Schmierer, K. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J. Neurol., 2018, 265(5), 1199-1209.
[http://dx.doi.org/10.1007/s00415-018-8830-y] [PMID: 29550884]
[24]
Moser, T.; Schwenker, K.; Seiberl, M.; Feige, J.; Akgün, K.; Haschke-Becher, E.; Ziemssen, T.; Sellner, J. Long-term peripheral immune cell profiling reveals further targets of oral cladribine in MS. Ann. Clin. Transl. Neurol., 2020, 7(11), 2199-2212.
[http://dx.doi.org/10.1002/acn3.51206] [PMID: 33002321]
[25]
Sanjeev, R.U.B. Analysis of influenza and varicella zoster virus vaccine antibody titers in patients with relapsing multiple sclerosis treated with cladribine tablets. Presented at ACTRIMS Forum, 2021, 2021, p. IT-MAV-00042.
[26]
G.F. Wu UB, B. Hayward, L.A. Lebson, A.H. Cross. Evaluating the impact of cladribine tablets on the development of antibody titers: interim results from the CLOCK-MS influenza vaccine substudy. ACTRIMS Forum, 2021, p. 2021.
[27]
Merck KGaA D, Germany. Evaluation of the onset of action in highly active MS (MAGNIFY) 2020 [Phase 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT03364036
[28]
Medicine WUSo. Cladribine Tablets: Collaborative Study to Evaluate Impact On Central Nervous System Biomarkers in Multiple Sclerosis (CLOCK-MS) 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03963375
[29]
De Angelis, M.; Petracca, M.; Lanzillo, R.; Brescia Morra, V.; Moccia, M. Mild or no COVID-19 symptoms in cladribine-treated multiple sclerosis: Two cases and implications for clinical practice. Mult. Scler. Relat. Disord., 2020, 45, 102452.
[http://dx.doi.org/10.1016/j.msard.2020.102452] [PMID: 32823148]
[30]
Celius, E.G. Normal antibody response after COVID-19 during treatment with cladribine. Mult. Scler. Relat. Disord., 2020, 46, 102476.
[http://dx.doi.org/10.1016/j.msard.2020.102476] [PMID: 32882501]
[31]
Preziosa, P.; Rocca, M.A.; Nozzolillo, A.; Moiola, L.; Filippi, M. COVID-19 in cladribine-treated relapsing-remitting multiple sclerosis patients: a monocentric experience. J. Neurol., 2021, 268(8), 2697-2699.
[PMID: 33216223]
[32]
Achiron, A.; Mandel, M.; Dreyer-Alster, S.; Harari, G.; Magalashvili, D.; Sonis, P.; Dolev, M.; Menascu, S.; Flechter, S.; Falb, R.; Gurevich, M. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther. Adv. Neurol. Disord., 2021, 14, 17562864211012835.
[http://dx.doi.org/10.1177/17562864211012835] [PMID: 34035836]
[33]
(FISM) MSSGotISoNSwtIMSAAaiF. Updated COVID-19 recommendations for people with Multiple Sclerosis (MS) - May 2021 2021. Available from: http://www.neuro.it/web/procedure/ contenuto.cfm? List=WsIdEvento, WsPageNameCaller,WsIdRisposta,WsRelease&c1=NWSNEURO&c2=%2Fweb%2Feventi%2FNEURO%2Findex%2Ecfm&c3=215&c4=1
[35]
Caffrey, M. COVID-19 therapies and patients with hematological conditions. The American Journal of Managed Care. 2021 Available from: https://www.ajmc.com/view/taking-immunosuppressants-fauci-says-get-the-covid-19-vaccine

© 2024 Bentham Science Publishers | Privacy Policy