Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Inhibition of Fenton Reaction of Glucose by Alcohols and Tetrahydrofuran in Catalytic Concentrations: Calculation of the Stability Constants of ROH/Fe2+ Complexes

Author(s): Arturo Alberto Vitale*, Eduardo Alberto Bernatene and Alicia Beatriz Pomilio

Volume 12, Issue 1, 2022

Published on: 24 January, 2022

Page: [76 - 87] Pages: 12

DOI: 10.2174/1877946812666211217152703

Price: $65

Abstract

Background: The Fenton reaction is of growing interest due to its primary function in bodily processes and industrial waste disposal. However, the effects of alcohol on this reaction have not been addressed. Therefore, we analyze for the first time the role that catalytic concentrations of alcohols play in the Fenton reaction.

Methods: The Fenton reaction was carried out by measuring oxidation-reduction potential and pH monitoring under dark conditions to avoid photochemical reactions. The reaction end point was established using the first derivative of plotting potential versus time. This point was also checked by the dichromate test for hydrogen peroxide detection. Gas-liquid chromatography was used to measure alcohol content. The Fenton reaction of glucose was performed first, and then each alcohol, including ethanol, methanol, iso-propanol, and terbutanol, was added separately in catalytic amounts, as well as the cyclic ether tetrahydrofuran. The reaction rate constants and the stability constants of each complex formed were measured.

Results: Alcohols were shown to inhibit the Fenton reaction by forming iron-alcohol complexes. An iron-tetrahydrofuran complex was also formed. The crucial oxygen role in the functional group of alcohols and ethers is supported by a reaction with tetrahydrofuran. These results also explain the difficulties in the disposal of sugar-enriched alcoholic industrial effluents.

Conclusion: Our findings show that alcohols, such as ethanol, methanol, iso-propanol, and ter-butanol at catalytic concentrations, slow down the Fenton reaction due to decreased iron availability by forming iron (II)-alcohol complexes. The method is also useful for calculating stability constants for iron-alcohol and iron-tetrahydrofuran complexes, which are not otherwise easy to assess.

Keywords: Fenton reaction, alcohol inhibition, glucose, alcohol-iron complexes, kinetics, reaction rate constants, stability constants.

Graphical Abstract

[1]
Caban, M.; Stepnowski, P. How to decrease pharmaceuticals in the environment? A review. Environ. Chem. Lett., 2021, 19, 3115-3138.
[http://dx.doi.org/10.1007/s10311-021-01194-y]
[2]
Xu, M.; Wu, C.; Zhou, Y. Advancements in the fenton process for wastewater treatment. In: Advanced Oxidation Processes - Applica-tions, Tr ends, and Prospects; Min, X.; Changyong, W.; Yuexi, Z., Eds.; IntechOpen: London, 2020.
[http://dx.doi.org/10.5772/intechopen.90256]
[3]
Rezania, S.; Taib, S.M.; Md Din, M.F.; Dahalan, F.A.; Kamyab, H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater., 2016, 318, 587-599.
[http://dx.doi.org/10.1016/j.jhazmat.2016.07.053] [PMID: 27474848]
[4]
Silva, S.B.; Pádua, R.M.; Barbosa, F.A.R.; Silva, M.A.N.; Azevedo, F.R.; Starling Magalhães, S.M. Phytoplankton cultures for tannin biodegradation. Water Air Soil Pollut., 2019, 230, 170.
[http://dx.doi.org/10.1007/s11270-019-4199-5]
[5]
Jaiswal, S.; Sharma, B.; Shukla, P. Integrated approaches in microbial degradation of plastics. Environ. Technol. Innov., 2020, 17, 100567.
[http://dx.doi.org/10.1016/j.eti.2019.100567]
[6]
Paniagua-Michel, J.; Fathepure, B.Z. Microbial consortia and biodegradation of petroleum hydrocarbons in marine environments. In: Microbial Action on Hydrocarbons; Kumar, V.; Kumar, M.; Prasad, R., Eds.; Springer: Singapore, 2018; pp. 1-20.
[http://dx.doi.org/10.1007/978-981-13-1840-5_1]
[7]
Ashraf, S.; Naveed, M.; Afzal, M.; Ashraf, S.; Rehman, K.; Hussain, A.; Zahir, Z.A. Bioremediation of tannery effluent by Cr- and salt-tolerant bacterial strains. Environ. Monit. Assess., 2018, 190(12), 716.
[http://dx.doi.org/10.1007/s10661-018-7098-0] [PMID: 30421243]
[8]
Aanand, S.; Divya, M.; Deepak, T.; Padmavathi, P.; Manimekalai, D. Review on seafood processing plant wastewater bioremediation -A potential tool for waste management. Int. J. Appl. Res., 2017, 3(7), 1-4.
[9]
Devasena, S.S.; Padmavathy, P.; Manimekalai, D.; Shakila, R.J.J. Assessment of fish scale biosorbent in the treatment of seafood pro-cessing plant wastewater. J. Chem. Technol. Biotechnol., 2021, 96(3), 723-731.
[http://dx.doi.org/10.1002/jctb.6585]
[10]
Warmoota, R.; Kumar, A.; Angural, S.; Rana, M.; Jassal, S.; Puri, N.; Gupta, N. Bioremediation of sea food waste in solid state fermen-tation along with production of bioactive agents. Int. J. Adv. Sci. Res., 2021, 12(2), 165-170.
[11]
Ikekwem, C.C.; Oyeleke, S.B.; Oyewole, O.A.; Bala, J.D.; Adamu, B.B.; Suleiman, A. Biodegradation of abattoir wastewater using indigenous bacterial strains. J. Sci. Technol. Math. Ed, 2017, 13(4), 12-24.
[12]
Eniolorunda, M.F.; Bala, J.D.; Umar, A.O.; Atuluku, S.A.; Aliu, M.O.; Abdulllahi, A.A. Microbial bioremediation of selected wastewaters-A review. Int. J. Appl. Biol. Res., 2019, 10(1), 25-36.
[13]
Jasmin, M.Y.; Syukri, F.; Kamarudin, M.S.; Karim, M. Potential of bioremediation in treating aquaculture sludge: Review article. Aquaculture, 2020, 519, 734905.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734905]
[14]
Wu, Y.; Song, K. Source, treatment, and disposal of aquaculture solid waste: A review. J. Environ. Eng., 2021, 147(3)
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0001850]
[15]
Soltani, M.; Ghosh, K.; Hoseinifar, S.H.; Kumar, V.; Lymbery, A.J.; Roy, S.; Ringø, E. Genus Bacillus, promising probiotics in aqua-culture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev. Fish. Sci. Aquacult., 2019, 27(3), 331-379.
[http://dx.doi.org/10.1080/23308249.2019.1597010]
[16]
Hlordzi, V.; Kuebutornye, F.K.A.; Afriyie, G.; Abarike, E.D.; Lu, Y.; Chi, S.; Anokyewaa, M.A. The use of Bacillus species in mainte-nance of water quality in aquaculture: A review. Aquacult. Rep., 2020, 18, 100503.
[http://dx.doi.org/10.1016/j.aqrep.2020.100503]
[17]
James, G.; Das, B.C.; Jose, S.; Rejish Kumar, V.J. Bacillus as an aquaculture friendly microbe. Aquacult. Int., 2021, 29, 323-353.
[http://dx.doi.org/10.1007/s10499-020-00630-0]
[18]
He, Z.; Cheng, X.; Kyzas, G.Z.; Fu, J. Pharmaceuticals pollution of aquaculture and its management in China. J. Mol. Liq., 2016, 223, 781-789.
[http://dx.doi.org/10.1016/j.molliq.2016.09.005]
[19]
Kumar, M.; Jaiswal, S.; Sodhi, K.K.; Shree, P.; Singh, D.K.; Agrawal, P.K.; Shukla, P. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environ. Int., 2019, 124, 448-461.
[http://dx.doi.org/10.1016/j.envint.2018.12.065] [PMID: 30684803]
[20]
Suresh, S. Treatment of textile dye containing effluents. Curr. Environ. Eng., 2014, 1(3), 162-184.
[http://dx.doi.org/10.2174/2212717801666141021235246]
[21]
Pérez-Sánchez, T.; Mora-Sánchez, B.; Balcázar, J.L. Biological approaches for disease control in aquaculture: Advantages, limitations and challenges. Trends Microbiol., 2018, 26(11), 896-903.
[http://dx.doi.org/10.1016/j.tim.2018.05.002] [PMID: 29801773]
[22]
Wang, A.; Ran, C.; Wang, Y.; Zhang, Z.; Ding, Q.; Yang, Y.; Olsen, R.E.; Ringø, E.; Bindelle, J.; Zhou, Z. Use of probiotics in aqua-culture of China-a review of the past decade. Fish Shellfish Immunol., 2019, 86, 734-755.
[http://dx.doi.org/10.1016/j.fsi.2018.12.026] [PMID: 30553887]
[23]
Spain, O.; Plöhn, M.; Funk, C. The cell wall of green microalgae and its role in heavy metal removal. Physiol. Plant., 2021, 173(2), 526-535.
[http://dx.doi.org/10.1111/ppl.13405] [PMID: 33764544]
[24]
Mona, S.; Kumar, V.; Deepak, B.; Kaushik, A. Cyanobacteria: The eco-friendly tool for the treatment of industrial wastewaters. In: Bioremediation of Industrial Waste for Environmental Safety; Bharagava, R.; Saxena, G., Eds.; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-13-3426-9_16]
[25]
Hamida, R.S.; Ali, M.A.; Redhwan, A.; Bin-Meferij, M.M. Cyanobacteria - A promising platform in Green Nanotechnology: A review on nanoparticles fabrication and their prospective applications. Int. J. Nanomedicine, 2020, 15, 6033-6066.
[http://dx.doi.org/10.2147/IJN.S256134] [PMID: 32884261]
[26]
Leong, Y.K.; Chang, J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol., 2020, 303, 122886.
[http://dx.doi.org/10.1016/j.biortech.2020.122886] [PMID: 32046940]
[27]
Alfadaly, R.A.; Elsayed, A.; Hassan, R.Y.A.; Noureldeen, A.; Darwish, H.; Gebreil, A.S. Microbial Sensing and Removal of heavy metals: Bioelectrochemical detection and removal of chromium(VI) and cadmium(II). Molecules, 2021, 26(9), 2549.
[http://dx.doi.org/10.3390/molecules26092549] [PMID: 33925636]
[28]
Danouche, M.; El Ghachtouli, N.; El Arroussi, H. Phycoremediation mechanisms of heavy metals using living green microalgae: Physi-cochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon, 2021, 7(7), e07609.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07609] [PMID: 34355100]
[29]
Balzano, S.; Sardo, A.; Blasio, M.; Chahine, T.B.; Dell’Anno, F.; Sansone, C.; Brunet, C. Microalgal metallothioneins and phytochela-tins and their potential use in bioremediation. Front. Microbiol., 2020, 11, 517.
[http://dx.doi.org/10.3389/fmicb.2020.00517] [PMID: 32431671]
[30]
Mazur, L.P.; Cechinel, M.A.P.; de Souza, S.M.A.G.U.; Boaventura, R.A.R.; Vilar, V.J.P. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review. J. Environ. Manage., 2018, 223, 215-253.
[http://dx.doi.org/10.1016/j.jenvman.2018.05.086] [PMID: 29933140]
[31]
Pacheco, D.; Rocha, A.C.; Pereira, L.; Verdelhos, T. Microalgae water bioremediation: Trends and hot topics. Appl. Sci. (Basel), 2020, 10(5), 1886.
[http://dx.doi.org/10.3390/app10051886]
[32]
Ahmed, S.F.; Mofijur, M.; Parisa, T.A.; Islam, N.; Kusumo, F.; Inayat, A.; Le, V.G.; Badruddin, I.A.; Khan, T.M.Y.; Ong, H.C. Pro-gress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere, 2021, 286(Pt 1), 131656.
[PMID: 34325255]
[33]
Verma, K.; Kumar, P.K.; Krishna, S.V.; Himabindu, V. Phycoremediation of sewage-contaminated lake water using microalgae-bacteria co-culture. Water Air Soil Pollut., 2020, 231, 299.
[http://dx.doi.org/10.1007/s11270-020-04652-5]
[34]
Fallahi, A.; Rezvani, F.; Asgharnejad, H.; Khorshidi Nazloo, E.; Hajinajaf, N.; Higgins, B. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere, 2021, 272, 129878.
[http://dx.doi.org/10.1016/j.chemosphere.2021.129878]
[35]
Delgadillo-Mirquez, L.; Lopes, F.; Taidi, B.; Pareau, D. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol. Rep. (Amst.), 2016, 11, 18-26.
[http://dx.doi.org/10.1016/j.btre.2016.04.003] [PMID: 28352536]
[36]
Nayyar, D.; Nawaz, T.; Noore, S.; Singh, A.P. Food processing wastewater treatment: Current practices and future challenges. In: Pollu-tion Control Technologies. Energy, Environment, and Sustainability; Singh, S.P.; Rathinam, K.; Gupta, T.; Agarwal, A.K., Eds.; Springer: Singapore, 2021; pp. 177-208.
[37]
Weems, A.C.; Wacker, K.T.; Maitland, D.J. Improved oxidative biostability of porous shape memory polymers by substituting triethano-lamine for glycerol. J. Appl. Polym. Sci., 2019, 136(35), 47857.
[http://dx.doi.org/10.1002/app.47857] [PMID: 32601505]
[38]
Bustillo-Lecompte, C. Advanced Oxidation Processes - Applications, Trends, and Prospects; IntechOpen: London, 2020.
[http://dx.doi.org/10.5772/intechopen.85681]
[39]
Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng., 2014, 2(1), 557-572.
[http://dx.doi.org/10.1016/j.jece.2013.10.011]
[40]
Vitale, A.A.; Bernatene, E.A.; Vitale, M.G.; Pomilio, A.B. New insights of the fenton reaction using glycerol as the experimental model. Effect of O2, inhibition by Mg(2+), and oxidation state of Fe. J. Phys. Chem. A, 2016, 120(28), 5435-5445.
[http://dx.doi.org/10.1021/acs.jpca.6b03805] [PMID: 27340836]
[41]
Sanabria, P.; Wilde, M.L.; Ruiz-Padillo, A.; Sirtori, C. Trends in Fenton and photo-Fenton processes for degradation of antineoplastic agents in water matrices: Current knowledge and future challenges evaluation using a bibliometric and systematic analysis. Environ. Sci. Pollut. Res. Int., 2021. Epub ahead of print
[http://dx.doi.org/10.1007/s11356-021-15938-4] [PMID: 34403053]
[42]
Gu, H.; Xie, W.; Du, A.; Pan, D.; Guo, Z. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater. Catal. Rev., 2021. Epub ahead of print
[http://dx.doi.org/10.1080/01614940.2021.1960009]
[43]
Nguyen, D.D.D.; Quang, H.H.P.; Nguyen, X.H.; Nguyen, T.P. The treatment of real dyeing wastewater by the electro-Fenton process using drinking water treatment sludge as a catalyst. RCS Adv., 2021, 11(44), 27443-27452.
[44]
Wang, J.; Li, S.; Qin, Q.; Peng, C. Sustainable and feasible reagent-free electro-Fenton via sequential dual-cathode electrocatalysis. Proc. Natl. Acad. Sci. USA, 2021, 118(34), e2108573118.
[http://dx.doi.org/10.1073/pnas.2108573118] [PMID: 34404732]
[45]
Song, G.; Du, X.; Zheng, Y.; Su, P.; Tang, Y.; Zhou, M. A novel electro-Fenton process coupled with sulfite: Enhanced Fe3+ reduction and TOC removal. J. Hazard. Mater., 2021, 422, 126888.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126888] [PMID: 34416701]
[46]
Nidheesh, P.V.; Zhou, M.; Oturan, M.A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxida-tion processes. Chemosphere, 2018, 197, 210-227.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.195] [PMID: 29366952]
[47]
Adityosulindro, S.; Barthe, L.; González-Labrada, K.; Jáuregui Haza, U.J.; Delmas, H.; Julcour, C. Sonolysis and sono-Fenton oxida-tion for removal of ibuprofen in (waste)water. Ultrason. Sonochem., 2017, 39, 889-896.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.008] [PMID: 28733020]
[48]
González Labrada, K.; Alcorta Cuello, D.R.; Saborit Sánchez, I.; García Batle, M.; Manero, M.H.; Barthe, L.; Jáuregui-Haza, U.J. Opti-mization of ciprofloxacin degradation in wastewater by homogeneous sono-Fenton process at high frequency. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2018, 53(13), 1139-1148.
[http://dx.doi.org/10.1080/10934529.2018.1530177] [PMID: 30623707]
[49]
Chauhan, R.; Dinesh, G.K.; Alawa, B.; Chakma, S. A critical analysis of sono-hybrid advanced oxidation process of ferrioxalate system for degradation of recalcitrant pollutants. Chemosphere, 2021, 277, 130324.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130324] [PMID: 33789218]
[50]
Liu, P.; Wu, Z.; Abramova, A.V.; Cravotto, G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A re-view. Ultrason. Sonochem., 2021, 74, 105566.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105566] [PMID: 33975189]
[51]
Khan, A.; Valicsek, Z.; Horváth, O. Synthesis, characterization and application of iron(II) doped copper ferrites (CuII(x)FeII(1-x)FeIII2O4) as novel heterogeneous photo-Fenton catalysts. Nanomaterials (Basel), 2020, 10(5), 921.
[http://dx.doi.org/10.3390/nano10050921] [PMID: 32397537]
[52]
Ramos, R.O.; Albuquerque, M.V.C.; Lopes, W.S.; Sousa, J.T.; Leite, V.D. Degradation of indigo carmine by photo-Fenton, Fenton, H2O2/UV-C and direct UV-C: comparison of pathways, products and kinetics. J. Water Process Eng., 2020, 37, 101535.
[http://dx.doi.org/10.1016/j.jwpe.2020.101535]
[53]
Lojo-López, M.; Andrades, J.A.; Egea-Corbacho, A.; Coello, M.D.; Quiroga, J.M. Degradation of simazine by photolysis of hydrogen peroxide Fenton and photo-Fenton under darkness, sunlight and UV light. J. Water Process Eng., 2021, 42, 102115.
[http://dx.doi.org/10.1016/j.jwpe.2021.102115]
[54]
Cabrera-Reina, A.; Miralles-Cuevas, S.; Sánchez Pérez, J.A.; Salazar, R. Application of solar photo-Fenton in raceway pond reactors: A review. Sci. Total Environ., 2021, 800, 149653.
[http://dx.doi.org/10.1016/j.scitotenv.2021.149653] [PMID: 34426350]
[55]
Panda, D.; Manickam, S. Recent advancements in the sonophotocatalysis (SPC) and doped-sonophotocatalysis (DSPC) for the treatment of recalcitrant hazardous organic water pollutants. Ultrason. Sonochem., 2017, 36, 481-496.
[http://dx.doi.org/10.1016/j.ultsonch.2016.12.022] [PMID: 28069236]
[56]
Liu, R.; Xu, Y.; Chen, B. Self-assembled nano-FeO(OH)/reduced graphene oxide aerogel as a reusable catalyst for photo-Fenton degra-dation of phenolic organics. Environ. Sci. Technol., 2018, 52(12), 7043-7053.
[http://dx.doi.org/10.1021/acs.est.8b01043] [PMID: 29799731]
[57]
Serna-Galvis, E.A.; Botero-Coy, A.M.; Martínez-Pachón, D.; Moncayo-Lasso, A.; Ibáñez, M.; Hernández, F.; Torres-Palma, R.A. Deg-radation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation process-es. Water Res., 2019, 154, 349-360.
[http://dx.doi.org/10.1016/j.watres.2019.01.045] [PMID: 30818100]
[58]
Bagal, M.V.; Gogate, P.R. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: A review. Ultrason. Sonochem., 2014, 21(1), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2013.07.009] [PMID: 23968578]
[59]
Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem., 2021, 76, 105656.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105656] [PMID: 34274706]
[60]
Nieto-Sandoval, J.; di Luca, C.; Gomez-Herrero, E.; Inchaurrondo, N.; Munoz, M.; de Pedro, Z.M.; Casas, J.A. Innovative iron oxide foams for the removal of micropollutants by catalytic wet peroxide oxidation: Assessment of long-term operation under continuous mode. J. Environ. Chem. Eng., 2021, 9(5), 105914.
[http://dx.doi.org/10.1016/j.jece.2021.105914]
[61]
Ahmed, N.; Vione, D.; Rivoira, L.; Carena, L.; Castiglioni, M.; Bruzzoniti, M.C. A review on the degradation of pollutants by fenton-like systems based on zero-valent iron and persulfate: Effects of reduction potentials, pH, and anions occurring in waste waters. Molecules, 2021, 26(15), 4584.
[http://dx.doi.org/10.3390/molecules26154584] [PMID: 34361737]
[62]
Haneef, T.; Ul Mustafa, M.R.; Rasool, K.; Ho, Y.C.; Mohamed Kutty, S.R. Removal of polycyclic aromatic hydrocarbons in a heteroge-neous Fenton like oxidation system using nanoscale zero-valent iron as a catalyst. Water, 2020, 12(9), 2430.
[http://dx.doi.org/10.3390/w12092430]
[63]
Trakal, L.; Vítková, M.; Hudcová, B.; Beesley, L.; Komárek, M. Biochar and its composites for Metal(loid) removal from aqueous solu-tions. In: Biochar from Biomass and Waste; Ok, Y.S.; Tsang, D.C.W.; Bolan, N.; Novak, J.M., Eds.; Elsevier: Amsterdam, 2019; pp. 113-141.
[http://dx.doi.org/10.1016/B978-0-12-811729-3.00007-8]
[64]
Zhang, T.; Yang, Y.; Gao, J.; Li, X.; Yu, H.; Wang, N.; Du, P.; Yu, R.; Li, H.; Fan, X.; Zhou, Z. Synergistic degradation of chloram-phenicol by ultrasound-enhanced nanoscale zero-valent iron/persulfate treatment. Separ. Purif. Tech., 2020, 240(8), 116575.
[http://dx.doi.org/10.1016/j.seppur.2020.116575]
[65]
Li, Q.; Chen, Z.; Wang, H.; Yang, H.; Wen, T.; Wang, S.; Hu, B.; Wang, X. Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci. Total Environ., 2021, 792, 148546.
[http://dx.doi.org/10.1016/j.scitotenv.2021.148546] [PMID: 34465057]
[66]
Montazeri, B.; Koba-Ucun, O.; Arslan-Alaton, I.; Olmez-Hanci, T. Iprodione removal by UV-light-, zero-valent iron- and zero-valent aluminium-activated persulfate oxidation processes in pure water and simulated tertiary treated urban wastewater. Water, 2021, 13(12), 1679.
[http://dx.doi.org/10.3390/w13121679]
[67]
Santos, A.; Firak, S.D.; Melo, F.V.; Ribeiro, R.R.; Peralta-Zamora, P. Understanding the nature of Fenton processes in soil matrices: The role of iron forms and organic matter. Sci. Total Environ., 2021, 796, 148804.
[http://dx.doi.org/10.1016/j.scitotenv.2021.148804] [PMID: 34271390]
[68]
Burchillan, C.E.; Ginns, I.S. The radiation-induced oxidation of ethanol and methanol by hydrogen peroxide in aqueous solution. Can. J. Chem., 1970, 48, 2628-2632.
[http://dx.doi.org/10.1139/v70-441]
[69]
Walling, C.; Kato, S. The oxidation of alcohols by Fenton’s reagent. The effect of copper ion. J. Am. Chem. Soc., 1971, 93(17), 4275-4281.
[http://dx.doi.org/10.1021/ja00746a031]
[70]
Ingles, D.L. Studies of oxidations by Fenton reagents using redox titrations IV. Oxidation of ethanol and t-butyl alcohol. Aust. J. Chem., 1973, 26(5), 1015-1019.
[http://dx.doi.org/10.1071/CH9731015]
[71]
Zeyer, K-P.; Mangold, M.; Obertopp, T.; Gilles, E.D. The Iron(III)-catalyzed oxidation of ethanol by hydrogen peroxide: A thermokinet-ic oscillator. J. Phys. Chem. A, 1999, 103(28), 5515-5522.
[http://dx.doi.org/10.1021/jp990710v]
[72]
Kremer, M.L. Is *OH the active Fenton intermediate in the oxidation of ethanol? J. Inorg. Biochem., 2000, 78(3), 255-257.
[http://dx.doi.org/10.1016/S0162-0134(00)00017-9] [PMID: 10805183]
[73]
Kremer, M.L. Kinetics of aerobic and anaerobic oxidations of ethanol by Fenton’s reagent. Int. J. Chem. Kinet., 2008, 40(9), 541-553.
[http://dx.doi.org/10.1002/kin.20333]
[74]
Kremer, M.L. Strong inhibition of the Fe3+ + H2O2 reaction by ethanol: Evidence against the free radical theory. Prog. React. Kinet. Mech., 2017, 42(4), 397-413.
[http://dx.doi.org/10.3184/146867817X14954764850496]
[75]
Rachmilovich-Calis, S.; Masarwa, A.; Meyerstein, N.; Meyerstein, D. The Fenton reaction in aerated aqueous solutions revisited. Eur. J. Inorg. Chem., 2005, 2005(14), 2875-2880.
[http://dx.doi.org/10.1002/ejic.200500097]
[76]
Masoudian, S.; Yahyaei, H. Oxidation of alcohols with hydrogen peroxide catalyzed by supported Fe(III) porphyrins. Indian J. Chem., 2011, 50A, 1002-1005.
[77]
Yang, G.; Lin, Q.; Hu, X.; Wu, Y.; Zhang, Z. Improvement the activity and selectivity of Fenton system in the oxidation of alcohols. J. Catal., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/823054]
[78]
Gutierrez-Mata, A.G.; Velazquez-Martínez, S.; Álvarez-Gallegos, A.; Ahmadi, M.; Hernández-Pérez, J.A.; Ghanbari, F.; Silva-Martínez, S. Recent overview of solar photocatalysis and solar Photo-Fenton processes for wastewater treatment. Int. J. Photoenergy, 2017, 2017, 8528063.
[http://dx.doi.org/10.1155/2017/8528063]
[79]
The reaction between hydrogen peroxide and dichromate ions. Royal Society of Chemistry, 2018.Available from: https://edu.rsc.org/download?ac=11678 (Accessed on August 22, 2021)
[80]
Istasse, T.; Richel, A. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design. RSC Advances, 2020, 10, 23720.
[http://dx.doi.org/10.1039/D0RA03892J]
[81]
Van Leeuwen, P.W.N.M. Alcohols as ligands. I. Crystalline hexa-ethanol metal salts. Recl. Trav. Chim. Pays Bas, 1967, 86(3), 247-253.
[http://dx.doi.org/10.1002/recl.19670860304]
[82]
Newall, C.E.; Eastham, A.M. The relative basicities of water, methanol, and ethanol. Can. J. Chem., 1961, 39(9), 1752-1756.
[http://dx.doi.org/10.1139/v61-229]
[83]
Deno, N.C.; Turner, J.O. The basicity of alcohols and ethers. J. Org. Chem., 1966, 31(6), 1969-1970.
[http://dx.doi.org/10.1021/jo01344a506]
[84]
Lee, D.G.; Cameron, R. The basicity of aliphatic ethers. Can. J. Chem., 1972, 50(3), 445-448.
[http://dx.doi.org/10.1139/v72-066]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy