Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Nanopolymers: Powerful Tools in Neuroprotection and Neuroregeneration

Author(s): Marcelo Garrido dos Santos, João Pedro Prestes and Patricia Pranke*

Volume 18, Issue 6, 2022

Published on: 18 January, 2022

Page: [668 - 674] Pages: 7

DOI: 10.2174/1573413718666211217123809

Price: $65

Abstract

Disorders of the central and peripheral nervous systems are still major human health issues. Researchers have been seeking ways to boost neuroregeneration and neuroprotection since ancient times in order to overcome the brain's, spinal cord's, and peripheral nerves' limited ability to regenerate spontaneously. In this scenario, nanopolymers have shown great potential in terms of drug delivery systems and scaffolds, diminishing the scale of tissue damage and promoting functional recovery in both acute and chronic injuries. A diversity of natural and synthetic polymers has been exploited due to the unique characteristics of these polymers regarding their mechanical and biological properties. These properties dictate how the biomaterial interact with biological systems and how they are distinct in each polymer. This makes them suitable for numerous applications that range from the controlled release of an anti-inflammatory drug to axonal guidance. The versatility of nanopolymers makes them a rich source for therapeutic approaches in the neuroscience field, especially in neuroprotection and neuroregeneration.

Keywords: Nanotechnology, nanopolymers, neuroscience, drug delivery, scaffolds, neuroprotection, neuroregeneration.

Graphical Abstract

[1]
Minagar, A.; Ragheb, J.; Kelley, R.E. The edwin smith surgical papyrus: description and analysis of the earliest case of aphasia. J. Med. Biogr., 2003, 11(2)
[http://dx.doi.org/10.1177/096777200301100214] [PMID: 12717541]
[2]
Amiryaghoubi, N.; Fathi, M.; Pesyan, N.N.; Samiei, M.; Barar, J.; Omidi, Y. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med. Res. Rev., 2020, 40(5), 1833-1870.
[http://dx.doi.org/10.1002/med.21672] [PMID: 32301138]
[3]
Abid, S.; Hussain, T.; Raza, Z.A.; Nazir, A. Current applications of electrospun polymeric nanofibers in cancer therapy. Mater. Sci. Eng. C, 2019, 97, 966-977.
[http://dx.doi.org/10.1016/j.msec.2018.12.105] [PMID: 30678985]
[4]
Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials (Basel), 2020, 10(5), 847.
[http://dx.doi.org/10.3390/nano10050847] [PMID: 32354008]
[5]
Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm., 2007, 65(3), 259-269.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.009] [PMID: 17196803]
[6]
Vilchez, A.; Acevedo, F.; Cea, M.; Seeger, M.; Navia, R. Applications of electrospun nanofibers with antioxidant properties: a review. Nanomaterials (Basel), 2020, 10(1), 175.
[http://dx.doi.org/10.3390/nano10010175] [PMID: 31968539]
[7]
Cano, A.; Ettcheto, M.; Espina, M.; Auladell, C.; Calpena, A.C.; Folch, J.; Barenys, M.; Sánchez-López, E.; Camins, A.; García, M.L. Epi-gallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: a new anti-seizure strategy for temporal lobe epilepsy. Nanomedicine, 2018, 14(4), 1073-1085.
[http://dx.doi.org/10.1016/j.nano.2018.01.019] [PMID: 29454994]
[8]
Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol., 2021, 69, 166-177.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002] [PMID: 31715247]
[9]
Salehi, M.; Naseri-Nosar, M.; Ebrahimi-Barough, S.; Nourani, M.; Khojasteh, A.; Farzamfar, S.; Mansouri, K.; Ai, J. Polyurethane/Gelatin nanofibrils neural guidance conduit containing platelet-rich plasma and melatonin for transplantation of schwann cells. Cell. Mol. Neurobiol., 2018, 38(3), 703-713.
[http://dx.doi.org/10.1007/s10571-017-0535-8] [PMID: 28823058]
[10]
Woodson, M.; Liu, J. Functional nanostructures from surface chemistry patterning. Phys. Chem. Chem. Phys., 2007, 9(2), 207-225.
[http://dx.doi.org/10.1039/B610651J] [PMID: 17186065]
[11]
Perumal, V.; Sivakumar, P.M.; Zarrabi, A.; Muthupandian, S.; Vijayaraghavalu, S.; Sahoo, K.; Das, A.; Das, S.; Payyappilly, S.S.; Das, S. Near infra-red polymeric nanoparticle based optical imaging in cancer diagnosis. J. Photochem. Photobiol. B, 2019, 199(September), 111630.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111630] [PMID: 31610429]
[12]
Tsintou, M.; Dalamagkas, K.; Makris, N. Taking central nervous system regenerative therapies to the clinic: curing rodents versus nonhu-man primates versus humans. Neural Regen. Res., 2020, 15(3), 425-437.
[http://dx.doi.org/10.4103/1673-5374.266048] [PMID: 31571651]
[13]
Blesch, A.; Tuszynski, M.H. Spinal cord injury: plasticity, regeneration and the challenge of translational drug development. Trends Neurosci., 2009, 32(1), 41-47.
[http://dx.doi.org/10.1016/j.tins.2008.09.008] [PMID: 18977039]
[14]
Jones, E.V.; Bouvier, D.S. Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast., 2014, 2014, 321209.
[http://dx.doi.org/10.1155/2014/321209] [PMID: 24551460]
[15]
Grabrucker, A.M.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Forni, F.; Vandelli, M.A.; Tosi, G. Nanoparticle transport across the blood brain barrier. Tissue Barriers, 2016, 4(1), e1153568.
[http://dx.doi.org/10.1080/21688370.2016.1153568] [PMID: 27141426]
[16]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 8416763.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[17]
Mohajeri, M.; Sadeghizadeh, M.; Najafi, F.; Javan, M. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology, 2015, 99, 156-167.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.013] [PMID: 26211978]
[18]
Dolati, S.; Aghebati-Maleki, L.; Ahmadi, M.; Marofi, F.; Babaloo, Z.; Ayramloo, H.; Jafarisavari, Z.; Oskouei, H.; Afkham, A.; Younesi, V.; Nouri, M.; Yousefi, M. Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J. Cell. Physiol., 2018, 233(7), 5222-5230.
[http://dx.doi.org/10.1002/jcp.26301] [PMID: 29194612]
[19]
Barcia, E.; Boeva, L.; García-García, L.; Slowing, K.; Fernández-Carballido, A.; Casanova, Y.; Negro, S. Nanotechnology-based drug de-livery of ropinirole for Parkinson’s disease. Drug Deliv., 2017, 24(1), 1112-1123.
[http://dx.doi.org/10.1080/10717544.2017.1359862] [PMID: 28782388]
[20]
Gao, Y.; Vijayaraghavalu, S.; Stees, M.; Kwon, B.K.; Labhasetwar, V. Evaluating accessibility of intravenously administered nanoparticles at the lesion site in rat and pig contusion models of spinal cord injury. J. Control. Release, 2019, 302(January), 160-168.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.026] [PMID: 30930216]
[21]
Liu, W.; Quan, P.; Li, Q.; Tang, P.; Chen, J.; Jiang, T.; Cai, W. Dextran-based biodegradable nanoparticles: an alternative and convenient strategy for treatment of traumatic spinal cord injury. Int. J. Nanomedicine, 2018, 13, 4121-4132.
[http://dx.doi.org/10.2147/IJN.S171925] [PMID: 30038493]
[22]
Wang, X.; Li, G.; Zhang, P.; Li, W.; He, X. Surface engineering of resveratrol to improve neuro-protection and functional recovery after spinal cord injury in rat. J. Drug Deliv. Sci. Technol., 2019, 49, 89-96.
[http://dx.doi.org/10.1016/j.jddst.2018.10.016]
[23]
Azizi, M.; Farahmandghavi, F.; Joghataei, M.T.; Zandi, M.; Imani, M.; Bakhtiari, M.; Omidian, H. ChABC-loaded PLGA nanoparticles: a comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury. Int. J. Pharm., 2020, 577, 119037.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119037] [PMID: 31953081]
[24]
Fan, C.; Li, X.; Zhao, Y.; Xiao, Z.; Xue, W.; Sun, J.; Li, X.; Zhuang, Y.; Chen, Y.; Dai, J. Cetuximab and Taxol co-modified collagen scaf-folds show combination effects for the repair of acute spinal cord injury. Biomater. Sci., 2018, 6(7), 1723-1734.
[http://dx.doi.org/10.1039/C8BM00363G] [PMID: 29845137]
[25]
Chen, X.; Zhao, Y.; Li, X.; Xiao, Z.; Yao, Y.; Chu, Y.; Farkas, B.; Romano, I.; Brandi, F.; Dai, J. Functional multichannel poly(propylene fumarate)-collagen scaffold with collagen-binding neurotrophic factor 3 promotes neural regeneration after transected spinal cord injury. Adv. Healthc. Mater., 2018, 7(14), e1800315.
[http://dx.doi.org/10.1002/adhm.201800315] [PMID: 29920990]
[26]
Yan, H.; Wang, Y.; Li, L.; Zhou, X.; Shi, X.; Wei, Y.; Zhang, P. A micropatterned conductive electrospun nanofiber mesh combined with electrical stimulation for synergistically enhancing differentiation of rat neural stem cells. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(13), 2673-2688.
[http://dx.doi.org/10.1039/C9TB02864A] [PMID: 32147674]
[27]
Zhang, S.; Wang, X-J.; Li, W-S.; Xu, X-L.; Hu, J-B.; Kang, X-Q.; Qi, J.; Ying, X-Y.; You, J.; Du, Y-Z. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury. Acta Biomater., 2018, 77, 15-27.
[http://dx.doi.org/10.1016/j.actbio.2018.06.038] [PMID: 30126591]
[28]
Pabari, A.; Yang, S.Y.; Mosahebi, A.; Seifalian, A.M. Recent advances in artificial nerve conduit design: strategies for the delivery of lu-minal fillers. J. Control. Release, 2011, 156(1), 2-10.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.001] [PMID: 21763371]
[29]
Wang, J.; Chen, N.; Ramakrishna, S.; Tian, L.; Mo, X. The effect of plasma treated PLGA/MWCNTs-COOH composite nanofibers on nerve cell behavior. Polymers (Basel), 2017, 9(12), 713.
[http://dx.doi.org/10.3390/polym9120713] [PMID: 30966009]
[30]
Wang, J.; Tian, L.; Luo, B.; Ramakrishna, S.; Kai, D.; Loh, X.J.; Yang, I.H.; Deen, G.R.; Mo, X. Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell. Colloids Surf. B Biointerfaces, 2018, 169, 356-365.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.021] [PMID: 29803151]
[31]
Wang, J.; Tian, L.; He, L.; Chen, N.; Ramakrishna, S.; So, K-F.; Mo, X. Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering. Sci. Rep., 2018, 8(1), 8669.
[http://dx.doi.org/10.1038/s41598-018-26837-z] [PMID: 29875468]
[32]
Sánchez-López, E.; Egea, M.A.; Davis, B.M.; Guo, L.; Espina, M.; Silva, A.M.; Calpena, A.C.; Souto, E.M.B.; Ravindran, N.; Ettcheto, M.; Camins, A.; García, M.L.; Cordeiro, M.F. Memantine-loaded pegylated biodegradable nanoparticles for the treatment of glaucoma. Small, 2018, 14(2), 1701808.
[http://dx.doi.org/10.1002/smll.201701808] [PMID: 29154484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy