Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Metabolomics Work Flow and Analytics in Systems Biology

Author(s): Sanoj Chacko*, Yumna B. Haseeb and Sohaib Haseeb

Volume 22, Issue 10, 2022

Published on: 31 January, 2022

Page: [870 - 881] Pages: 12

DOI: 10.2174/1566524022666211217102105

Price: $65

Abstract

Metabolomics is an omics approach of systems biology that involves the development and assessment of large-scale, comprehensive biochemical analysis tools for metabolites in biological systems. This review describes the metabolomics workflow and provides an overview of current analytic tools used for the quantification of metabolic profiles. We explain analytic tools such as mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, ionization techniques, and approaches for data extraction and analysis.

Keywords: Biomarker, liquid chromatography, metabolomics, mass spectrometry, NMR spectroscopy, proteome.

[1]
Koal T, Deigner H-P. Challenges in mass spectrometry based targeted metabolomics. Curr Mol Med 2010; 10(2): 216-26.
[http://dx.doi.org/10.2174/156652410790963312] [PMID: 20196726]
[2]
Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 2009; 15(2): 431-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1059] [PMID: 19147747]
[3]
Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer 2004; 4(7): 551-61.
[http://dx.doi.org/10.1038/nrc1390] [PMID: 15229480]
[4]
Ryan D, Robards K. Metabolomics: The greatest omics of them all? Anal Chem 2006; 78(23): 7954-8.
[http://dx.doi.org/10.1021/ac0614341] [PMID: 17134127]
[5]
Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG. Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 2005; 3(7): 557-65.
[http://dx.doi.org/10.1038/nrmicro1177] [PMID: 15953932]
[6]
Böcker S, Letzel MC, Lipták Z, Pervukhin A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 2009; 25(2): 218-24.
[http://dx.doi.org/10.1093/bioinformatics/btn603] [PMID: 19015140]
[7]
Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol 1998; 16(9): 373-8.
[http://dx.doi.org/10.1016/S0167-7799(98)01214-1] [PMID: 9744112]
[8]
Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA 1971; 68(10): 2374-6.
[http://dx.doi.org/10.1073/pnas.68.10.2374] [PMID: 5289873]
[9]
Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291(5507): 1304-51.
[http://dx.doi.org/10.1126/science.1058040] [PMID: 11181995]
[10]
van der Greef J, Stroobant P, van der Heijden R. The role of analytical sciences in medical systems biology. Curr Opin Chem Biol 2004; 8(5): 559-65.
[http://dx.doi.org/10.1016/j.cbpa.2004.08.013] [PMID: 15450501]
[11]
Katajamaa M. Orešič M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A 2007; 1158(1-2): 318-28.
[http://dx.doi.org/10.1016/j.chroma.2007.04.021] [PMID: 17466315]
[12]
Bingol K, Zhang F, Bruschweiler-Li L, Brüschweiler R. Carbon backbone topology of the metabolome of a cell. J Am Chem Soc 2012; 134(21): 9006-11.
[http://dx.doi.org/10.1021/ja3033058] [PMID: 22540339]
[13]
Clendinen CS, Pasquel C, Ajredini R, Edison AS. (13)C NMR metabolomics: INADEQUATE network analysis. Anal Chem 2015; 87(11): 5698-706.
[http://dx.doi.org/10.1021/acs.analchem.5b00867] [PMID: 25932900]
[14]
Komatsu T, Ohishi R, Shino A, Kikuchi J. Structure and metabolic-flow analysis of molecular complexity in a 13C-labeled tree by 2D and 3D NMR. Angew Chem 2016; 128(20): 6104-7.
[http://dx.doi.org/10.1002/ange.201600334]
[15]
Lindon JC, Holmes E, Nicholson JK. Metabonomics in pharmaceutical R&D. FEBS J 2007; 274(5): 1140-51.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05673.x] [PMID: 17298438]
[16]
Wishart DS, Lewis MJ, Morrissey JA, et al. The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871(2): 164-73.
[http://dx.doi.org/10.1016/j.jchromb.2008.05.001] [PMID: 18502700]
[17]
Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 1990; 499: 177-96.
[http://dx.doi.org/10.1016/S0021-9673(00)96972-3] [PMID: 2324207]
[18]
T’kindt R, Storme M, Deforce D, Van Bocxlaer J. Evaluation of hydrophilic interaction chromatography versus reversed-phase chromatography in a plant metabolomics perspective. J Sep Sci 2008; 31(9): 1609-14.
[http://dx.doi.org/10.1002/jssc.200700539] [PMID: 18428188]
[19]
Tolstikov VV, Fiehn O, Tanaka N. Application of liquid chromatography-mass spectrometry analysis in metabolomics: Reversed-phase monolithic capillary chromatography and hydrophilic chromatography coupled to electrospray ionization-mass spectrometry. Methods Mol Biol 2007; 358: 141-55.
[http://dx.doi.org/10.1007/978-1-59745-244-1_9] [PMID: 17035685]
[20]
Vorkas PA, Isaac G, Anwar MA, et al. Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: application to cardiovascular disease. Anal Chem 2015; 87(8): 4184-93.
[http://dx.doi.org/10.1021/ac503775m] [PMID: 25664760]
[21]
Wang X, Lv H, Sun H, et al. Metabolic urinary profiling of alcohol hepatotoxicity and intervention effects of Yin Chen Hao Tang in rats using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. J Pharm Biomed Anal 2008; 48(4): 1161-8.
[http://dx.doi.org/10.1016/j.jpba.2008.07.028] [PMID: 18835123]
[22]
Ramautar R, Somsen GW, de Jong GJ. CE-MS in metabolomics. Electrophoresis 2009; 30(1): 276-91.
[http://dx.doi.org/10.1002/elps.200800512] [PMID: 19107702]
[23]
Xu Y, Du L, Rose MJ, Fu I, Woolf EJ, Musson DG. Concerns in the development of an assay for determination of a highly conjugated adsorption-prone compound in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 818(2): 241-8.
[http://dx.doi.org/10.1016/j.jchromb.2005.01.004] [PMID: 15734165]
[24]
Want EJ, O’Maille G, Smith CA, et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 2006; 78(3): 743-52.
[http://dx.doi.org/10.1021/ac051312t] [PMID: 16448047]
[25]
Yanes O, Woo H-K, Northen TR, et al. Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal Chem 2009; 81(8): 2969-75.
[http://dx.doi.org/10.1021/ac802576q] [PMID: 19301920]
[26]
Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud 2015; 1(1): a000588.
[http://dx.doi.org/10.1101/mcs.a000588] [PMID: 27148576]
[27]
Sansone S-A, Fan T, Goodacre R, et al. The metabolomics standards initiative. Nat Biotechnol 2007; 25(8): 846-8.
[http://dx.doi.org/10.1038/nbt0807-846b] [PMID: 17687353]
[28]
Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 2007; 3(3): 211-21.
[http://dx.doi.org/10.1007/s11306-007-0082-2] [PMID: 24039616]
[29]
Nordström A, Lewensohn R. Metabolomics: moving to the clinic. J Neuroimmune Pharmacol 2010; 5(1): 4-17.
[http://dx.doi.org/10.1007/s11481-009-9156-4] [PMID: 19399626]
[30]
Rauh M. Steroid measurement with LC-MS/MS in pediatric endocrinology. Mol Cell Endocrinol 2009; 301(1-2): 272-81.
[http://dx.doi.org/10.1016/j.mce.2008.10.007] [PMID: 19007847]
[31]
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016; 17(7): 451-9.
[http://dx.doi.org/10.1038/nrm.2016.25] [PMID: 26979502]
[32]
Ivanisevic J, Elias D, Deguchi H, et al. Arteriovenous blood metabolomics: A readout of intra-tissue metabostasis. Sci Rep 2015; 5: 12757.
[http://dx.doi.org/10.1038/srep12757] [PMID: 26244428]
[33]
Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev 2007; 26(1): 51-78.
[http://dx.doi.org/10.1002/mas.20108] [PMID: 16921475]
[34]
Higashi RM, Fan TW-M, Lorkiewicz PK, Moseley HNB, Lane AN. Stable isotope-labeled tracers for metabolic pathway elucidation by GC-MS and FT-MS. Methods Mol Biol 2014; 1198: 147-67.
[http://dx.doi.org/10.1007/978-1-4939-1258-2_11] [PMID: 25270929]
[35]
Fan TW-M, Lorkiewicz PK, Sellers K, Moseley HNB, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 2012; 133(3): 366-91.
[http://dx.doi.org/10.1016/j.pharmthera.2011.12.007] [PMID: 22212615]
[36]
Fan TWM, Lane AN, Higashi RM, et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer 2009; 8: 41.
[http://dx.doi.org/10.1186/1476-4598-8-41] [PMID: 19558692]
[37]
Fan TW-M, Lane AN, Higashi RM, Yan J. Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics 2011; 7(2): 257-69.
[http://dx.doi.org/10.1007/s11306-010-0249-0] [PMID: 21666826]
[38]
Fan TW-M, Lane AN. NMR-based stable isotope resolved metabolomics in systems biochemistry. J Biomol NMR 2011; 49(3-4): 267-80.
[http://dx.doi.org/10.1007/s10858-011-9484-6] [PMID: 21350847]
[39]
Ceglarek U, Leichtle A, Brügel M, et al. Challenges and developments in tandem mass spectrometry based clinical metabolomics. Mol Cell Endocrinol 2009; 301(1-2): 266-71.
[http://dx.doi.org/10.1016/j.mce.2008.10.013] [PMID: 19007853]
[40]
Martin DB, Holzman T, May D, et al. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments. Mol Cell Proteomics 2008; 7(11): 2270-8.
[http://dx.doi.org/10.1074/mcp.M700504-MCP200] [PMID: 18641041]
[41]
Dunn WB, Bailey NJC, Johnson HE. Measuring the metabolome: Current analytical technologies. Analyst (Lond) 2005; 130(5): 606-25.
[http://dx.doi.org/10.1039/b418288j] [PMID: 15852128]
[42]
De Vos RCH, Moco S, Lommen A, Keurentjes JJB, Bino RJ, Hall RD. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc 2007; 2(4): 778-91.
[http://dx.doi.org/10.1038/nprot.2007.95] [PMID: 17446877]
[43]
Allwood JW, Goodacre R. An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal 2010; 21(1): 33-47.
[http://dx.doi.org/10.1002/pca.1187] [PMID: 19927296]
[44]
Günther H. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry. 3rd Eds; John Wiley & Sons : Hoboken, 2013.
[45]
Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 2004; 9(1): 1-31.
[http://dx.doi.org/10.1080/13547500410001668379] [PMID: 15204308]
[46]
Ott K-H, Aranibar N. Nuclear Magnetic Resonance Metabonomics. In: Weckwerth W. (eds) Metabolomics; Methods in Molecular BiologyTM. Vol 358, Humana Press: Totowa, 2007; pp. 247-71..
[47]
Purcell EM. Nuclear magnetism in relation to problems of the liquid and solid states. Science 1948; 107(2783): 433-40.
[http://dx.doi.org/10.1126/science.107.2783.433] [PMID: 17844446]
[48]
Bottomley PA, Herfkens RJ, Smith LS, Bashore TM. Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy. Radiology 1987; 165(3): 703-7.
[http://dx.doi.org/10.1148/radiology.165.3.2961004] [PMID: 2961004]
[49]
Schaefer S. Cardiovascular applications of nuclear magnetic resonance spectroscopy. Am J Cardiol 1989; 64(9): 38E-45E.
[http://dx.doi.org/10.1016/0002-9149(89)90733-9] [PMID: 2672766]
[50]
Emwas A-HM, Salek RM, Griffin JL, Merzaban J. NMR-Based Metabolomics in human disease diagnosis: Applications, limitations, and recommendations. Metabolomics 2013; 9(5): 1048-72.
[http://dx.doi.org/10.1007/s11306-013-0524-y]
[51]
Lin Y, Schiavo S, Orjala J, Vouros P, Kautz R. Microscale LC-MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem 2008; 80(21): 8045-54.
[http://dx.doi.org/10.1021/ac801049k] [PMID: 18834150]
[52]
Farag MA, Porzel A, Wessjohann LA. Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite fingerprinting by NMR. J Pharm Biomed Anal 2015; 115: 383-7.
[http://dx.doi.org/10.1016/j.jpba.2015.08.003] [PMID: 26275727]
[53]
Ramos AS, Mar JM, da Silva LS, et al. Pedra-ume caá fruit: An Amazon cherry rich in phenolic compounds with antiglycant and antioxidant properties. Food Res Int 2019; 123: 674-83.
[http://dx.doi.org/10.1016/j.foodres.2019.05.042] [PMID: 31285017]
[54]
Haseeb S, Alexander B, Santi RL, Liprandi AS, Baranchuk A. What’s in wine? A clinician’s perspective. Trends Cardiovasc Med 2019; 29(2): 97-106.
[http://dx.doi.org/10.1016/j.tcm.2018.06.010] [PMID: 30104174]
[55]
Haseeb S, Alexander B, Baranchuk A. Wine and cardiovascular health: A comprehensive review. Circulation 2017; 136(15): 1434-48.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030387] [PMID: 28993373]
[56]
Harrison AG. Chemical Ionization Mass Spectrometry CRC Press: Boca Raton, 1992.
[57]
Fenselau C. Chemical aspects of fast atom bombardment. Chem Rev 1987; 87(3): 501-12.
[http://dx.doi.org/10.1021/cr00079a002]
[58]
Keough T, Youngquist RS, Lacey MP. A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc Natl Acad Sci USA 1999; 96(13): 7131-6.
[http://dx.doi.org/10.1073/pnas.96.13.7131] [PMID: 10377380]
[59]
Kaufmann R, Kirsch D, Spengler B. Sequenching of peptides in a time-of-flight mass spectrometer: Evaluation of postsource decay following matrix-assisted laser desorption ionisation (MALDI). Int J Mass Spectrom Ion Process 1994; 131: 355-85.
[http://dx.doi.org/10.1016/0168-1176(93)03876-N]
[60]
Mirsaleh-Kohan N, Robertson WD, Compton RN. Electron ionization time-of-flight mass spectrometry: Historical review and current applications. Mass Spectrom Rev 2008; 27(3): 237-85.
[http://dx.doi.org/10.1002/mas.20162] [PMID: 18320595]
[61]
El-Aneed A, Cohen A, Banoub J. Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev 2009; 44(3): 210-30.
[http://dx.doi.org/10.1080/05704920902717872]
[62]
Ledingham KWD, Singhal RP. High intensity laser mass spectrometry — a review. Int J Mass Spectrom Ion Process 1997; 163(3): 149-68.
[http://dx.doi.org/10.1016/S0168-1176(97)00015-3]
[63]
Brown RS, Lennon JJ. Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal Chem 1995; 67(13): 1998-2003.
[http://dx.doi.org/10.1021/ac00109a015] [PMID: 8694246]
[64]
Dawson PH. Quadrupole Mass Spectrometry and Its Applications Elsevier: Amsterdams 1976.
[http://dx.doi.org/10.1016/C2013-0-04436-2]
[65]
Gray GA. Ion Cyclotron Resonance. Adv Chem Phys 2009; 19: 141.
[66]
Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom Rev 1998; 17(1): 1-35.
[http://dx.doi.org/10.1002/(SICI)1098-2787(1998)17:1<1::AIDMAS1>3.0.CO;2-K] [PMID: 9768511]
[67]
Comisarow MB, Marshall AG. Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 1974; 25(2): 282-3.
[http://dx.doi.org/10.1016/0009-2614(74)89137-2]
[68]
Long NP, Yoon SJ, Anh NH, et al. A systematic review on metabolomics-based diagnostic biomarker discovery and validation in pancreatic cancer. Metabolomics 2018; 14(8): 109.
[http://dx.doi.org/10.1007/s11306-018-1404-2] [PMID: 30830397]
[69]
Patti GJ, Tautenhahn R, Siuzdak G. Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nat Protoc 2012; 7(3): 508-16.
[http://dx.doi.org/10.1038/nprot.2011.454] [PMID: 22343432]
[70]
Broadhurst DI, Kell DB. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006; 2(4): 171-96.
[http://dx.doi.org/10.1007/s11306-006-0037-z]
[71]
Wehrens R, Hageman JA, van Eeuwijk F, et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics 2016; 12: 88.
[http://dx.doi.org/10.1007/s11306-016-1015-8] [PMID: 27073351]
[72]
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006; 78(3): 779-87.
[http://dx.doi.org/10.1021/ac051437y] [PMID: 16448051]
[73]
Lippi G, Betsou F, Cadamuro J, et al. Preanalytical challenges - time for solutions. Clin Chem Lab Med 2019; 57(7): 974-81.
[http://dx.doi.org/10.1515/cclm-2018-1334] [PMID: 30710481]
[74]
Robin T, Barnes A, Dulaurent S, et al. Fully automated sample preparation procedure to measure drugs of abuse in plasma by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2018; 410(20): 5071-83.
[http://dx.doi.org/10.1007/s00216-018-1159-7] [PMID: 29947899]
[75]
Ziegel ER. Statistics and chemometrics for analytical chemistry. Technometrics 2004; 46(4): 498-9.
[http://dx.doi.org/10.1198/tech.2004.s248]
[76]
Trainor PJ, DeFilippis AP, Rai SN. Evaluation of classifier performance for multiclass phenotype discrimination in untargeted metabolomics. Metabolites 2017; 7(2): E30.
[http://dx.doi.org/10.3390/metabo7020030] [PMID: 28635678]
[77]
Wishart DS, Tzur D, Knox C, et al. HMDB: The human metabolome database. Nucleic Acids Res 2007; 35(Database issue): D521-6.
[http://dx.doi.org/10.1093/nar/gkl923] [PMID: 17202168]
[78]
Human Metabolome Database. Available from: http://www.hmdb.ca/.
[79]
Sud M, Fahy E, Cotter D, et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res 2007; 35(Database issue): D527-32.
[http://dx.doi.org/10.1093/nar/gkl838] [PMID: 17098933]
[80]
Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008; 36(Database issue): D480-4.
[http://dx.doi.org/10.1093/nar/gkm882] [PMID: 18077471]
[81]
Caspi R, Foerster H, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2008; 36(Database issue): D623-31.
[http://dx.doi.org/10.1093/nar/gkm900] [PMID: 17965431]
[82]
Brown M, Dunn WB, Dobson P, et al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst (Lond) 2009; 134(7): 1322-32.
[http://dx.doi.org/10.1039/b901179j] [PMID: 19562197]
[83]
Long NP, Nghi TD, Kang YP, et al. Toward a standardized strategy of clinical metabolomics for the advancement of precision medicine. Metabolites 2020; 10(2): E51.
[http://dx.doi.org/10.3390/metabo10020051] [PMID: 32013105]
[84]
Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17(4): 448-53.
[http://dx.doi.org/10.1038/nm.2307] [PMID: 21423183]
[85]
Urpi-Sarda M, Almanza-Aguilera E, Llorach R, et al. Non-targeted metabolomic biomarkers and metabotypes of type 2 diabetes: A cross-sectional study of PREDIMED trial participants. Diabetes Metab 2019; 45(2): 167-74.
[http://dx.doi.org/10.1016/j.diabet.2018.02.006] [PMID: 29555466]
[86]
Shi L, Brunius C, Lehtonen M, et al. Plasma metabolites associated with type 2 diabetes in a Swedish population: A case-control study nested in a prospective cohort. Diabetologia 2018; 61(4): 849-61.
[http://dx.doi.org/10.1007/s00125-017-4521-y] [PMID: 29349498]
[87]
Zhou W, Sailani MR, Contrepois K, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 2019; 569(7758): 663-71.
[http://dx.doi.org/10.1038/s41586-019-1236-x] [PMID: 31142858]
[88]
Sancesario GM, Bernardini S. Alzheimer’s disease in the omics era. Clin Biochem 2018; 59: 9-16.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.06.011] [PMID: 29920246]
[89]
Koal T, Klavins K, Seppi D, Kemmler G, Humpel C, Sphingomyelin SM. D18:1/18:0) Is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-B42, tau, and phospho-tau-181 levels. J Alzheimers Dis JAD 2015; 44(4): 1193-201.
[http://dx.doi.org/10.3233/JAD-142319] [PMID: 25408209]
[90]
Guiraud SP, Montoliu I, Da Silva L, et al. High-throughput and simultaneous quantitative analysis of homocysteine-methionine cycle metabolites and co-factors in blood plasma and cerebrospinal fluid by isotope dilution LC-MS/MS. Anal Bioanal Chem 2017; 409(1): 295-305.
[http://dx.doi.org/10.1007/s00216-016-0003-1] [PMID: 27757515]
[91]
Toledo JB, Arnold M, Kastenmüller G, et al. Metabolic network failures in Alzheimer’s disease: A biochemical road map. Alzheimers Dement 2017; 13(9): 965-84.
[http://dx.doi.org/10.1016/j.jalz.2017.01.020] [PMID: 28341160]
[92]
Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analysis of genomics, longitudinal metabolomics, and Alzheimer’s risk factors among 1,111 cohort participants. Genet Epidemiol 2019; 43(6): 657-74.
[http://dx.doi.org/10.1002/gepi.22211] [PMID: 31104335]
[93]
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016; 15(7): 473-84.
[http://dx.doi.org/10.1038/nrd.2016.32] [PMID: 26965202]
[94]
Yousri NA, Fakhro KA, Robay A, et al. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nat Commun 2018; 9(1): 333.
[http://dx.doi.org/10.1038/s41467-017-01972-9] [PMID: 29362361]
[95]
Mastrangelo A, Armitage EG, García A, Barbas C. Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr Top Med Chem 2014; 14(23): 2627-36.
[http://dx.doi.org/10.2174/1568026614666141215124956] [PMID: 25515755]
[96]
Mapstone M, Cheema AK, Fiandaca MS. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 2014; 20(4): 415-8.
[http://dx.doi.org/10.1038/nm.3466] [PMID: 24608097]
[97]
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19(5): 576-85.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[98]
Brown JM, Hazen SL. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 2015; 66: 343-59.
[http://dx.doi.org/10.1146/annurev-med-060513-093205] [PMID: 25587655]
[99]
Chace DH, Spitzer AR. Altered metabolism and newborn screening using tandem mass spectrometry: Lessons learned from the bench to bedside. Curr Pharm Biotechnol 2011; 12(7): 965-75.
[http://dx.doi.org/10.2174/138920111795909104] [PMID: 21466463]
[100]
Lehotay DC, Hall P, Lepage J, Eichhorst JC, Etter ML, Greenberg CR. LC-MS/MS progress in newborn screening. Clin Biochem 2011; 44(1): 21-31.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.08.007] [PMID: 20709048]
[101]
Drucker E, Krapfenbauer K. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J 2013; 4(1): 7.
[http://dx.doi.org/10.1186/1878-5085-4-7] [PMID: 23442211]
[102]
Taegtmeyer H, Young ME, Lopaschuk GD, et al. Assessing cardiac metabolism: A scientific statement from the American heart association. Circ Res 2016; 118(10): 1659-701.
[http://dx.doi.org/10.1161/RES.0000000000000097] [PMID: 27012580]
[103]
Griffin JL, Atherton H, Shockcor J, Atzori L. Metabolomics as a tool for cardiac research. Nat Rev Cardiol 2011; 8(11): 630-43.
[http://dx.doi.org/10.1038/nrcardio.2011.138] [PMID: 21931361]
[104]
McGarrah RW, Crown SB, Zhang G-F, Shah SH, Newgard CB. Cardiovascular metabolomics. Circ Res 2018; 122(9): 1238-58.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311002] [PMID: 29700070]
[105]
Chalkias A, Fanos V, Noto A, et al. 1H NMR-metabolomics: can they be a useful tool in our understanding of cardiac arrest? Resuscitation 2014; 85(5): 595-601.
[http://dx.doi.org/10.1016/j.resuscitation.2014.01.025] [PMID: 24513156]
[106]
Chacko S, Haseeb S, Glover BM, Wallbridge D, Harper A. The role of biomarkers in the diagnosis and risk stratification of acute coronary syndrome. Future Sci OA 2017; 4(1): FSO251.
[http://dx.doi.org/10.4155/fsoa-2017-0036] [PMID: 29255623]
[107]
Sabatine MS, Liu E, Morrow DA, et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 2005; 112(25): 3868-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.569137] [PMID: 16344383]
[108]
Barba I, de León G, Martín E, et al. Nuclear magnetic resonance-based metabolomics predicts exercise-induced ischemia in patients with suspected coronary artery disease. Magn Reson Med 2008; 60(1): 27-32.
[http://dx.doi.org/10.1002/mrm.21632] [PMID: 18581408]
[109]
Vignoli A, Tenori L, Giusti B, et al. NMR-based metabolomics identifies patients at high risk of death within two years after acute myocardial infarction in the AMI-Florence II cohort. BMC Med 2019; 17(1): 3.
[http://dx.doi.org/10.1186/s12916-018-1240-2] [PMID: 30616610]
[110]
Sun M, Gao X, Zhang D, et al. Identification of biomarkers for unstable angina by plasma metabolomic profiling. Mol Biosyst 2013; 9(12): 3059-67.
[http://dx.doi.org/10.1039/c3mb70216b] [PMID: 24061630]
[111]
Cui S, Li K, Ang L, et al. Plasma Phospholipids and sphingolipids identify stent restenosis after percutaneous coronary intervention. JACC Cardiovasc Interv 2017; 10(13): 1307-16.
[http://dx.doi.org/10.1016/j.jcin.2017.04.007] [PMID: 28624380]
[112]
Chacko S, Mamas MA, El-Omar M, et al. Perturbations in cardiac metabolism in a human model of acute myocardial ischaemia. Metabolomics 2021; 17(9): 76.
[http://dx.doi.org/10.1007/s11306-021-01827-x] [PMID: 34424431]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy