Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Comparing Antibiotic Pastes with Electrospun Nanofibers as Modern Drug Delivery Systems for Regenerative Endodontics

Author(s): Nura Brimo, Dilek Çökeliler Serdaroğlu* and Busra Uysal

Volume 19, Issue 9, 2022

Published on: 01 April, 2022

Page: [904 - 917] Pages: 14

DOI: 10.2174/1567201819666211216140947

Price: $65

conference banner
Abstract

Nanomaterials can be applied in different biomedical applications like diagnosis, treatment, and drug delivery due to their unique features. Using such materials in the endodontic treatment processes may prove challenging as these materials must exhibit antibacterial effects without posing any harm to the host cells. The approach involving nanofibers loaded with various antibacterial drugs offers a potential treatment method to enhance the elimination procedure of intracanal biofilms. Clinically, many models of bacterial biofilms were prepared under in vitro conditions for different aims. The process of drug delivery from polymeric nanofibers is based on the principle that the releasing ratio of drug molecules increases due to the increase in the surface area of the hosted structure. Our review discusses diverse approaches to loading/releasing drugs on/from nanofibers; we summarized many studies on electrospun nanofibers loaded with various drugs applied in the endodontic field. Moreover, we discussed both the advantages and the limitations of these modern endodontic treatment materials, comparing them with the traditional ones.

Keywords: Drug delivery, electrospinning, nanofiber, regenerative endodontic, biofilms, antimicrobial.

Graphical Abstract

[1]
de Sousa, F.F.; Ferraz, C.; Rodrigues, L.K. Nojosa, Jde.S.; Yamauti, M. Nanotechnology in dentistry: Drug delivery systems for the con-trol of biofilm-dependent oral diseases. Curr. Drug Deliv., 2014, 11(6), 719-728.
[http://dx.doi.org/10.2174/156720181106141202115157] [PMID: 25469778]
[2]
Albuquerque, M.T.P.; Valera, M.C.; Nakashima, M.; Nör, J.E.; Bottino, M.C. Tissue-engineering-based strategies for regenerative endo-dontics. J. Dent. Res., 2014, 93(12), 1222-1231.
[http://dx.doi.org/10.1177/0022034514549809] [PMID: 25201917]
[3]
Galler, K.M. Clinical procedures for revitalization: Current knowledge and considerations. Int. Endod. J., 2016, 49(10), 926-936.
[http://dx.doi.org/10.1111/iej.12606] [PMID: 26715631]
[4]
Hargreaves, K. Cohen’s Pathways of the Pulp Expert Consult Edition, 1st ed; Elsevier: Amsterdam, 2016.
[5]
Kakehashi, S.; Stanley, H.R.; Fitzgerald, R.J. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg. Oral Med. Oral Pathol., 1965, 20, 340-349.
[http://dx.doi.org/10.1016/0030-4220(65)90166-0] [PMID: 14342926]
[6]
Kawashima, N.; Wadachi, R.; Suda, H.; Yeng, T.; Parashos, P. Root canal medicaments. Int. Dent. J., 2009, 59(1), 5-11.
[PMID: 19323305]
[7]
Banchs, F.; Trope, M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J. Endod., 2004, 30(4), 196-200.
[http://dx.doi.org/10.1097/00004770-200404000-00003] [PMID: 15085044]
[8]
Bose, R.; Nummikoski, P.; Hargreaves, K. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J. Endod., 2009, 35(10), 1343-1349.
[http://dx.doi.org/10.1016/j.joen.2009.06.021] [PMID: 19801227]
[9]
Raddall, G.; Mello, I.; Leung, B.M. Biomaterials and Scaffold design strategies for regenerative endodontic therapy. Front. Bioeng. Biotechnol., 2019, 7, 317.
[http://dx.doi.org/10.3389/fbioe.2019.00317] [PMID: 31803727]
[10]
Diogenes, A.; Ruparel, N.B.; Shiloah, Y.; Hargreaves, K.M. Regenerative endodontics: A way forward. J. Am. Dent. Assoc., 2016, 147(5), 372-380.
[http://dx.doi.org/10.1016/j.adaj.2016.01.009] [PMID: 27017182]
[11]
Lee, B-N.; Moon, J-W.; Chang, H-S.; Hwang, I-N.; Oh, W-M.; Hwang, Y-C. A review of the regenerative endodontic treatment procedure. Restor. Dent. Endod, 2015, 40(3), 179-187.
[http://dx.doi.org/10.5395/rde.2015.40.3.179] [PMID: 26295020]
[12]
Diogenes, A.R.; Ruparel, N.B.; Teixeira, F.B.; Hargreaves, K.M. Translational science in disinfection for regenerative endodontics. J. Endod., 2014, 40(4)(Suppl.), S52-S57.
[http://dx.doi.org/10.1016/j.joen.2014.01.015] [PMID: 24698694]
[13]
Distel, J.W.; Hatton, J.F.; Gillespie, M.J. Biofilm formation in medicated root canals. J. Endod., 2002, 28(10), 689-693.
[http://dx.doi.org/10.1097/00004770-200210000-00003] [PMID: 12398165]
[14]
Malaekeh-Nikouei, B.; Fazly Bazzaz, B.S.; Mirhadi, E.; Tajani, A.S.; Khameneh, B. The role of nanotechnology in combating biofilm-based antibiotic resistance. J. Drug Deliv. Sci. Technol., 2020, 60, 101880.
[http://dx.doi.org/10.1016/j.jddst.2020.101880]
[15]
Pinheiro, E.T.; Gomes, B.P.F.A.; Ferraz, C.C.R.; Sousa, E.L.R.; Teixeira, F.B.; Souza-Filho, F.J. Microorganisms from canals of root-filled teeth with periapical lesions. Int. Endod. J., 2003, 36(1), 1-11.
[http://dx.doi.org/10.1046/j.1365-2591.2003.00603.x] [PMID: 12656508]
[16]
Portenier, I.; Waltimo, T.M.T.; Haapasalo, M. Enterococcus faecalis- the root canal survivor and “star” in post-treatment disease. Endod. Topics, 2003, 6(1), 135-159.
[http://dx.doi.org/10.1111/j.1601-1546.2003.00040.x]
[17]
Maran, B.M.; de Geus, J.L.; Gutiérrez, M.F.; Heintze, S.; Tardem, C.; Barceleiro, M.O.; Reis, A.; Loguercio, A.D. Nanofilled/nanohybrid and hybrid resin-based composite in patients with direct restorations in posterior teeth: A systematic review and meta-analysis. J. Dent., 2020, 99, 103407.
[http://dx.doi.org/10.1016/j.jdent.2020.103407] [PMID: 32526348]
[18]
Johal, S.; Baumgartner, J.C.; Marshall, J.G. Comparison of the antimicrobial efficacy of 1.3% NaOCl/BioPure MTAD to 5.25% NaOCl/15% EDTA for root canal irrigation. J. Endod., 2007, 33(1), 48-51.
[http://dx.doi.org/10.1016/j.joen.2006.08.007] [PMID: 17185130]
[19]
Mickel, A.K.; Nguyen, T.H.; Chogle, S. Antimicrobial activity of endodontic sealers on Enterococcus faecalis. J. Endod., 2003, 29(4), 257-258.
[http://dx.doi.org/10.1097/00004770-200304000-00006] [PMID: 12701774]
[20]
Shabahang, S.; Pouresmail, M.; Torabinejad, M. In vitro antimicrobial efficacy of MTAD and sodium hypochlorite. J. Endod., 2003, 29(7), 450-452.
[http://dx.doi.org/10.1097/00004770-200307000-00006] [PMID: 12877261]
[21]
Siqueira, J.F., Jr; Rôças, I.N.; Favieri, A.; Lima, K.C. Chemomechanical reduction of the bacterial population in the root canal after instru-mentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J. Endod., 2000, 26(6), 331-334.
[http://dx.doi.org/10.1097/00004770-200006000-00006] [PMID: 11199749]
[22]
Spratt, D.A.; Pratten, J.; Wilson, M.; Gulabivala, K. An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates. Int. Endod. J., 2001, 34(4), 300-307.
[http://dx.doi.org/10.1046/j.1365-2591.2001.00392.x] [PMID: 11482142]
[23]
Hülsmann, M.; Hahn, W. Complications during root canal irrigation-literature review and case reports. Int. Endod. J., 2000, 33(3), 186-193.
[http://dx.doi.org/10.1046/j.1365-2591.2000.00303.x] [PMID: 11307434]
[24]
Li, Z.; Mei, S.; Dong, Y.; She, F.; Li, Y.; Li, P.; Kong, L. Functional nanofibrous biomaterials of tailored structures for drug delivery- A critical review. Pharmaceutics, 2020, 12(6), 522.
[http://dx.doi.org/10.3390/pharmaceutics12060522] [PMID: 32521627]
[25]
Gandolfi, M.G.; Taddei, P.; Tinti, A.; Prati, C. Apatite-forming ability (bioactivity) of ProRoot MTA. Int. Endod. J., 2010, 43(10), 917-929.
[http://dx.doi.org/10.1111/j.1365-2591.2010.01768.x] [PMID: 20646080]
[26]
Kamocki, K.; Nör, J.E.; Bottino, M.C. Effects of ciprofloxacin-containing antimicrobial Scaffolds on dental pulp stem cell viability in vitro studies. Arch. Oral Biol., 2015, 60(8), 1131-1137.
[http://dx.doi.org/10.1016/j.archoralbio.2015.05.002] [PMID: 26042622]
[27]
Haapasalo, M.; Ørstavik, D. In vitro infection and disinfection of dentinal tubules. J. Dent. Res., 1987, 66(8), 1375-1379.
[http://dx.doi.org/10.1177/00220345870660081801] [PMID: 3114347]
[28]
Topuz, F.; Uyar, T. Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics, 2018, 11(1), 6.
[http://dx.doi.org/10.3390/pharmaceutics11010006] [PMID: 30586876]
[29]
Berkhoff, J.A.; Chen, P.B.; Teixeira, F.B.; Diogenes, A. Evaluation of triple antibiotic paste removal by different irrigation procedures. J. Endod., 2014, 40(8), 1172-1177.
[http://dx.doi.org/10.1016/j.joen.2013.12.027] [PMID: 25069927]
[30]
Murray, P.E.; Garcia-Godoy, F.; Hargreaves, K.M. Regenerative endodontics: A review of current status and a call for action. J. Endod., 2007, 33(4), 377-390.
[http://dx.doi.org/10.1016/j.joen.2006.09.013] [PMID: 17368324]
[31]
Kontakiotis, E.G.; Filippatos, C.G.; Agrafioti, A. Levels of evidence for the outcome of regenerative endodontic therapy. J. Endod., 2014, 40(8), 1045-1053.
[http://dx.doi.org/10.1016/j.joen.2014.03.013] [PMID: 25069906]
[32]
Reynolds, K.; Johnson, J.D.; Cohenca, N. Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to elimi-nate potential coronal discolouration: A case report. Int. Endod. J., 2009, 42(1), 84-92.
[http://dx.doi.org/10.1111/j.1365-2591.2008.01467.x] [PMID: 19125982]
[33]
Yadlapati, M.; Souza, L.C.; Dorn, S.; Garlet, G.P.; Letra, A.; Silva, R.M. Deleterious effect of triple antibiotic paste on human periodontal ligament fibroblasts. Int. Endod. J., 2014, 47(8), 769-775.
[http://dx.doi.org/10.1111/iej.12216] [PMID: 24246167]
[34]
Ruparel, N.B.; Teixeira, F.B.; Ferraz, C.C.R.; Diogenes, A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J. Endod., 2012, 38(10), 1372-1375.
[http://dx.doi.org/10.1016/j.joen.2012.06.018] [PMID: 22980180]
[35]
Althumairy, R.I.; Teixeira, F.B.; Diogenes, A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. J. Endod., 2014, 40(4), 521-525.
[http://dx.doi.org/10.1016/j.joen.2013.11.008] [PMID: 24666903]
[36]
Bottino, M.C.; Kamocki, K.; Yassen, G.H.; Platt, J.A.; Vail, M.M.; Ehrlich, Y.; Spolnik, K.J.; Gregory, R.L. Bioactive nanofibrous scaffolds for regenerative endodontics. J. Dent. Res., 2013, 92(11), 963-969.
[http://dx.doi.org/10.1177/0022034513505770] [PMID: 24056225]
[37]
Ahmadi, M.H.; Alhuyi Nazari, M.; Ghasempour, R.; Madah, H.; Shafii, M.B.; Ahmadi, M.A. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surf. A Physicochem. Eng. Asp., 2018, 541, 154-164.
[http://dx.doi.org/10.1016/j.colsurfa.2018.01.030]
[38]
Taslimifar, M.; Mohammadi, M.; Afshin, H.; Saidi, M.H.; Shafii, M.B. Overall thermal performance of ferrofluidic open loop pulsating heat pipes: An experimental approach. Int. J. Therm. Sci., 2013, 65(65), 234-241.
[http://dx.doi.org/10.1016/j.ijthermalsci.2012.10.016]
[39]
Jiang, S.; Zhou, D.; Zhang, L.; Ouyang, J.; Yu, X.; Cui, X. Comparison of compressive strength and electrical resistivity of cementitious composites with different nano- and micro-fillers. Arch. Civ. Mech. Eng., 2018, 18(1), 60-68.
[http://dx.doi.org/10.1016/j.acme.2017.05.010]
[40]
Mantri, S.S.; Mantri, S.P. The nano era in dentistry. J. Nat. Sci. Biol. Med., 2013, 4(1), 39-44.
[http://dx.doi.org/10.4103/0976-9668.107258] [PMID: 23633833]
[41]
Zhang, Q.; Li, Y.; Lin, Z.Y.W.; Wong, K.K.Y.; Lin, M.; Yildirimer, L.; Zhao, X. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov. Today, 2017, 22(9), 1351-1366.
[http://dx.doi.org/10.1016/j.drudis.2017.05.007] [PMID: 28552498]
[42]
Maryam, K. Application of nanobiomaterials in endodontics. Biomed. J. Sci. Tech. Res., 2017, 1(7), 1857-1859.
[http://dx.doi.org/10.26717/BJSTR.2017.01.000566]
[43]
Danelon, M.; Pessan, J.P.; Neto, F.N.S.; de Camargo, E.R.; Delbem, A.C.B. Effect of toothpaste with nano-sized trimetaphosphate on dental caries: In situ study. J. Dent., 2015, 43(7), 806-813.
[http://dx.doi.org/10.1016/j.jdent.2015.04.010] [PMID: 25936338]
[44]
Palasuk, J.; Kamocki, K.; Hippenmeyer, L.; Platt, J.A.; Spolnik, K.J.; Gregory, R.L.; Bottino, M.C. Bimix antimicrobial scaffolds for regen-erative endodontics. J. Endod., 2014, 40(11), 1879-1884.
[http://dx.doi.org/10.1016/j.joen.2014.07.017] [PMID: 25201643]
[45]
Pankajakshan, D.; Albuquerque, M.T.P.; Evans, J.D.; Kamocka, M.M.; Gregory, R.L.; Bottino, M.C. Triple antibiotic polymer nanofibers for intracanal drug delivery: Effects on dual species biofilm and cell function. J. Endod., 2016, 42(10), 1490-1495.
[http://dx.doi.org/10.1016/j.joen.2016.07.019] [PMID: 27663615]
[46]
Chavez de Paz, L.E. Redefining the persistent infection in root canals: Possible role of biofilm communities. J. Endod., 2007, 33(6), 652-662.
[http://dx.doi.org/10.1016/j.joen.2006.11.004] [PMID: 17509401]
[47]
Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence, 2011, 2(5), 435-444.
[http://dx.doi.org/10.4161/viru.2.5.16140] [PMID: 21778817]
[48]
Jhajharia, K. Microbiology of endodontic diseases: A review article. Int. J. Appl. Dent Sci., 2019, 5(1), 227-230.
[49]
Siqueira, J.F., Jr; Sen, B.H. Fungi in endodontic infections. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2004, 97(5), 632-641.
[http://dx.doi.org/10.1016/j.tripleo.2003.12.022] [PMID: 15153878]
[50]
Hotokezaka, H.; Sakai, E.; Ohara, N.; Hotokezaka, Y.; Gonzales, C.; Matsuo, K.; Fujimura, Y.; Yoshida, N.; Nakayama, K. Molecular anal-ysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-α lipopolysaccharide, or peptidoglycan. J. Cell. Biochem., 2007, 101(1), 122-134.
[http://dx.doi.org/10.1002/jcb.21167] [PMID: 17171644]
[51]
Reed, M.J. Chemical and antigenic properties of the cell wall of actinomyces viscosus (Strain T6). J. Dent. Res., 1972, 51(5), 1193-1202.
[http://dx.doi.org/10.1177/00220345720510050501] [PMID: 4506556]
[52]
Bolstad, A.I.; Jensen, H.B.; Bakken, V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin. Microbiol. Rev., 1996, 9(1), 55-71.
[http://dx.doi.org/10.1128/CMR.9.1.55] [PMID: 8665477]
[53]
Siqueira, J.F. Jr. Endodontic infections: Concepts, paradigms, and perspectives. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2002, 94(3), 281-293.
[http://dx.doi.org/10.1067/moe.2002.126163] [PMID: 12324780]
[54]
Treatment of endodontic infections 2016.
[55]
Siqueira, J.F. Jr.; Rôças, I.N.; Silva, M.G. Prevalence and clonal analysis of Porphyromonas gingivalis in primary endodontic infections. J. Endod., 2008, 34(11), 1332-1336.
[http://dx.doi.org/10.1016/j.joen.2008.08.021] [PMID: 18928841]
[56]
Sundqvist, G.; Figdor, D.; Persson, S.; Sjögren, U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1998, 85(1), 86-93.
[http://dx.doi.org/10.1016/S1079-2104(98)90404-8] [PMID: 9474621]
[57]
Siqueira, J.F., Jr; Rôças, I.N.; Lopes, H.P.; Elias, C.N.; de Uzeda, M. Fungal infection of the radicular dentin. J. Endod., 2002, 28(11), 770-773.
[http://dx.doi.org/10.1097/00004770-200211000-00006] [PMID: 12470022]
[58]
Portenier, I.; Waltimo, T.; Ørstavik, D.; Haapasalo, M. The susceptibility of starved, stationary phase, and growing cells of Enterococcus faecalis to endodontic medicaments. J. Endod., 2005, 31(5), 380-386.
[http://dx.doi.org/10.1097/01.don.0000145421.84121.c8] [PMID: 15851934]
[59]
Siqueira, J.F., Jr; Rôças, I.N. Diversity of endodontic microbiota revisited. J. Dent. Res., 2009, 88(11), 969-981.
[http://dx.doi.org/10.1177/0022034509346549] [PMID: 19828883]
[60]
Miron, J.; Ben-Ghedalia, D.; Morrison, M. Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci., 2001, 84(6), 1294-1309.
[http://dx.doi.org/10.3168/jds.S0022-0302(01)70159-2] [PMID: 11417686]
[61]
O’Toole, G.A.; Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol., 1998, 28(3), 449-461.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00797.x] [PMID: 9632250]
[62]
Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol., 2008, 6(3), 199-210.
[http://dx.doi.org/10.1038/nrmicro1838] [PMID: 18264116]
[63]
Kirisits, M.J.; Parsek, M.R. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell. Microbiol., 2006, 8(12), 1841-1849.
[http://dx.doi.org/10.1111/j.1462-5822.2006.00817.x] [PMID: 17026480]
[64]
Borriello, G.; Werner, E.; Roe, F.; Kim, A.M.; Ehrlich, G.D.; Stewart, P.S. Oxygen limitation contributes to antibiotic tolerance of Pseudo-monas aeruginosa in biofilms. Antimicrob. Agents Chemother., 2004, 48(7), 2659-2664.
[http://dx.doi.org/10.1128/AAC.48.7.2659-2664.2004] [PMID: 15215123]
[65]
Peterson, S.B.; Irie, Y.; Borlee, B.R.; Murakami, K.; Harrison, J.J.; Colvin, K.M. Different methods for culturing biofilms in vitro. Biofilm Infections; Bjarnsholt, T.; Jensen, P.O.; Moser, C; Hoiby, N., Ed.; Springer: New York, 2011, pp. 251-266.
[http://dx.doi.org/10.1007/978-1-4419-6084-9_15]
[66]
Chrepa, V. Regenerative endodontic therapy: A treatment with substantial benefits; American Association of Endodontists, 2016.
[67]
Koç, S.; Del Fabbro, M. Does the etiology of pulp necrosis affect regenerative endodontic treatment outcomes? A systematic review and meta-analyses. J. Evid. Based Dent. Pract., 2020, 20(1), 101400.
[http://dx.doi.org/10.1016/j.jebdp.2020.101400] [PMID: 32381409]
[68]
Zehnder, M.; Kosicki, D.; Luder, H.; Sener, B.; Waltimo, T. Tissue-dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2002, 94(6), 756-762.
[http://dx.doi.org/10.1067/moe.2002.128961] [PMID: 12464903]
[69]
Marending, M.; Paqué, F.; Fischer, J.; Zehnder, M. Impact of irrigant sequence on mechanical properties of human root dentin. J. Endod., 2007, 33(11), 1325-1328.
[http://dx.doi.org/10.1016/j.joen.2007.08.005] [PMID: 17963956]
[70]
Chang, Y.C.; Huang, F.M.; Tai, K.W.; Chou, M.Y. The effect of sodium hypochlorite and chlorhexidine on cultured human periodontal ligament cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2001, 92(4), 446-450.
[http://dx.doi.org/10.1067/moe.2001.116812] [PMID: 11598582]
[71]
Baumgartner, J.C.; Mader, C.L. A scanning electron microscopic evaluation of four root canal irrigation regimens. J. Endod., 1987, 13(4), 147-157.
[http://dx.doi.org/10.1016/S0099-2399(87)80132-2] [PMID: 3106553]
[72]
Ørstavik, D.; Haapasalo, M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod. Dent. Traumatol., 1990, 6(4), 142-149.
[http://dx.doi.org/10.1111/j.1600-9657.1990.tb00409.x] [PMID: 2133305]
[73]
Reddy, M.; Hegde, S. Novel intracanal medicaments and its future scope. Int. J. Pharm. Biol. Sci., 2014, 4(3), 65-69.
[74]
Raju, S.M.K.; Yadav, S.S.; Kumar, M.S.R. Revascularization of immature mandibular premolar with pulpal necrosis - A case report. J. Clin. Diagn. Res., 2014, 8(9), ZD29-ZD31.
[http://dx.doi.org/10.7860/JCDR/2014/8963.4858] [PMID: 25386542]
[75]
Mohammadi, Z.; Abbott, P.V. On the local applications of antibiotics and antibiotic-based agents in endodontics and dental traumatology. Int. Endod. J., 2009, 42(7), 555-567.
[http://dx.doi.org/10.1111/j.1365-2591.2009.01564.x] [PMID: 19467048]
[76]
Hoshino, E.; Kurihara-Ando, N.; Sato, I.; Uematsu, H.; Sato, M.; Kota, K.; Iwaku, M. In vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int. Endod. J., 1996, 29(2), 125-130.
[http://dx.doi.org/10.1111/j.1365-2591.1996.tb01173.x] [PMID: 9206436]
[77]
Garg, K.; Bowlin, G.L. Electrospinning jets and nanofibrous structures. Biomicrofluidics, 2011, 5(1), 13403.
[http://dx.doi.org/10.1063/1.3567097] [PMID: 21522493]
[78]
Jain, R.; Shetty, S.; Yadav, K.S. Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. J. Drug Deliv. Sci. Technol., 2020, 57, 101604.
[http://dx.doi.org/10.1016/j.jddst.2020.101604]
[79]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[80]
Kaialy, W.; Emami, P.; Asare-Addo, K.; Shojaee, S.; Nokhodchi, A. Psyllium: A promising polymer for sustained release formulations in combination with HPMC polymers. Pharm. Dev. Technol., 2014, 19(3), 269-277.
[http://dx.doi.org/10.3109/10837450.2013.775156] [PMID: 23506265]
[81]
Hu, J.; Prabhakaran, M.P.; Tian, L.; Ding, X.; Ramakrishna, S. Drug-loaded emulsion electrospun nanofibers: Characterization, drug re-lease and in vitro biocompatibility. RSC Advances, 2015, 5(121), 100256-100267.
[http://dx.doi.org/10.1039/C5RA18535A]
[82]
Zomer Volpato, F.; Almodóvar, J.; Erickson, K.; Popat, K.C.; Migliaresi, C.; Kipper, M.J. Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomater., 2012, 8(4), 1551-1559.
[http://dx.doi.org/10.1016/j.actbio.2011.12.023] [PMID: 22210184]
[83]
Qiu, X.; Lee, B.L.P.; Ning, X.; Murthy, N.; Dong, N.; Li, S. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft. Acta Biomater., 2017, 51, 138-147.
[http://dx.doi.org/10.1016/j.actbio.2017.01.012] [PMID: 28069505]
[84]
Zamani, M.; Prabhakaran, M.P.; Ramakrishna, S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomedicine, 2013, 8, 2997-3017.
[http://dx.doi.org/10.2147/IJN.S43575] [PMID: 23976851]
[85]
Almodóvar, J.; Kipper, M.J. Coating electrospun chitosan nanofibers with polyelectrolyte multilayers using the polysaccharides heparin and N,N,N-trimethyl chitosan. Macromol. Biosci., 2011, 11(1), 72-76.
[http://dx.doi.org/10.1002/mabi.201000261] [PMID: 20976723]
[86]
Wei, Q.; Wei, A. Functional Nanofibers For Drug Delivery Applications. In: Functional Nanofibers and their Applications; Horwood Publishing Limited, Elsevier: Sawton, 2012; pp. 150-170.
[http://dx.doi.org/10.1533/9780857095640.2.153]
[87]
Verreck, G.; Chun, I.; Rosenblatt, J.; Peeters, J.; Dijck, A.V.; Mensch, J.; Noppe, M.; Brewster, M.E. Incorporation of drugs in an amor-phous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J. Control. Release, 2003, 92(3), 349-360.
[http://dx.doi.org/10.1016/S0168-3659(03)00342-0] [PMID: 14568415]
[88]
Vlachou, M.; Siamidi, A.; Kyriakou, S. Electrospinning and drug delivery. In: Electrospinning and electrospraying - techniques and appli-cations; IntechOpen: London, 2019; p. 86181.
[http://dx.doi.org/10.5772/intechopen.86181]
[89]
Leung, V.; Ko, F. Biomedical applications of nanofibers. Polym. Adv. Technol., 2011, 22(3), 350-365.
[http://dx.doi.org/10.1002/pat.1813]
[90]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applica-tions. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[91]
Mishra, R.K.; Tiwari, S.K.; Mohapatra, S.; Thomas, S. Efficient nanocarriers for drug-delivery systems. Nanocarriers for Drug Delivery; Elsevier, 2019, pp. 1-41.
[92]
Bottino, M.C.; Thomas, V.; Schmidt, G.; Vohra, Y.K.; Chu, T.M.G.; Kowolik, M.J.; Janowski, G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration-a materials perspective. Dent. Mater., 2012, 28(7), 703-721.
[http://dx.doi.org/10.1016/j.dental.2012.04.022] [PMID: 22592164]
[93]
Eatemadi, A.; Daraee, H.; Zarghami, N.; Melat Yar, H.; Akbarzadeh, A. Nanofiber: Synthesis and biomedical applications. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 111-121.
[http://dx.doi.org/10.3109/21691401.2014.922568] [PMID: 24905339]
[94]
Ko, F.K.; Wan, Y. Introduction to nanofiber materials; Cambridge University Press, 2014.
[http://dx.doi.org/10.1017/CBO9781139021333]
[95]
Albuquerque, M.T.P.; Evans, J.D.; Gregory, R.L.; Valera, M.C.; Bottino, M.C. Antibacterial TAP-mimic electrospun polymer scaffold: Effects on P. gingivalis infected dentin biofilm. Clin. Oral Investig., 2016, 20(2), 387-393.
[http://dx.doi.org/10.1007/s00784-015-1577-2] [PMID: 26319981]
[96]
Albuquerque, M.T.P.; Ryan, S.J.; Münchow, E.A.; Kamocka, M.M.; Gregory, R.L.; Valera, M.C.; Bottino, M.C. Antimicrobial effects of novel triple antibiotic paste-mimic scaffolds on Actinomyces naeslundii biofilm. J. Endod., 2015, 41(8), 1337-1343.
[http://dx.doi.org/10.1016/j.joen.2015.03.005] [PMID: 25917945]
[97]
Briasoulis, A.; Agarwal, V.; Pierce, W.J. QT prolongation and torsade de pointes induced by fluoroquinolones: Infrequent side effects from commonly used medications. Cardiology, 2011, 120(2), 103-110.
[http://dx.doi.org/10.1159/000334441] [PMID: 22156660]
[98]
Kamocki, K.; Nör, J.E.; Bottino, M.C. Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodon-tics. Int. Endod. J., 2015, 48(12), 1147-1156.
[http://dx.doi.org/10.1111/iej.12414] [PMID: 25425048]
[99]
Graves, T.D.; Condon, M.; Loucaidou, M.; Perry, R.J. Reversible metronidazole-induced cerebellar toxicity in a multiple transplant recipi-ent. J. Neurol. Sci., 2009, 285(1-2), 238-240.
[http://dx.doi.org/10.1016/j.jns.2009.06.011] [PMID: 19560788]
[100]
Kapoor, K.; Chandra, M.; Nag, D.; Paliwal, J.K.; Gupta, R.C.; Saxena, R.C. Evaluation of metronidazole toxicity: A prospective study. Int. J. Clin. Pharmacol. Res., 1999, 19(3), 83-88.
[PMID: 10761537]
[101]
Rizzo, A.; Paolillo, R.; Guida, L.; Annunziata, M.; Bevilacqua, N.; Tufano, M.A. Effect of metronidazole and modulation of cytokine pro-duction on human periodontal ligament cells. Int. Immunopharmacol., 2010, 10(7), 744-750.
[http://dx.doi.org/10.1016/j.intimp.2010.04.004] [PMID: 20399284]
[102]
Chuensombat, S.; Khemaleelakul, S.; Chattipakorn, S.; Srisuwan, T. Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combina-tion: An in vitro study. J. Endod., 2013, 39(6), 813-819.
[http://dx.doi.org/10.1016/j.joen.2012.11.041] [PMID: 23683284]
[103]
Berman, L.H.; Hagreaves, K.M. Cohen’s pathways of the pulp expert consult, 10th Edition.; , 2016.
[104]
Kim, J.H.; Kim, Y.; Shin, S.J.; Park, J.W.; Jung, I.Y. Tooth discoloration of immature permanent incisor associated with triple antibiotic therapy: A case report. J. Endod., 2010, 36(6), 1086-1091.
[http://dx.doi.org/10.1016/j.joen.2010.03.031] [PMID: 20478471]
[105]
Albuquerque, M.T.; Nagata, J.Y.; Diogenes, A.R. Clinical perspective of electrospun nanofibers as a drug delivery strategy for regenerative endodontics. Curr. Oral Health Rep., 2016, (3), 209-220.
[http://dx.doi.org/10.1007/s40496-016-0103-1]
[106]
Mistry, K.S.; Sanghvi, Z.; Parmar, G.; Shah, S.; Pushpalatha, K. Antibacterial efficacy of Azadirachta indica, Mimusops elengi and 2% CHX on multispecies dentinal biofilm. J. Conserv. Dent., 2015, 18(6), 461-466.
[http://dx.doi.org/10.4103/0972-0707.168810] [PMID: 26752840]
[107]
Xie, Q.; Johnson, B.R.; Wenckus, C.S.; Fayad, M.I.; Wu, C.D. Efficacy of berberine, an antimicrobial plant alkaloid, as an endodontic irri-gant against a mixed-culture biofilm in an in vitro tooth model. J. Endod., 2012, 38(8), 1114-1117.
[http://dx.doi.org/10.1016/j.joen.2012.04.023] [PMID: 22794217]
[108]
Lew, H.P.; Quah, S.Y.; Lui, J.N.; Bergenholtz, G.; Hoon Yu, V.S.; Tan, K.S. Isolation of alkaline-tolerant bacteria from primary infected root canals. J. Endod., 2015, 41(4), 451-456.
[http://dx.doi.org/10.1016/j.joen.2014.12.003] [PMID: 25638530]
[109]
Pinheiro, E.T.; Candeiro, G.T.; Teixeira, S.R.; Shin, R.C.; Prado, L.C.; Gavini, G.; Mayer, M.P. RNA-based assay demonstrated Enterococ-cus faecalis metabolic activity after chemomechanical procedures. J. Endod., 2015, 41(9), 1441-1444.
[http://dx.doi.org/10.1016/j.joen.2015.04.020] [PMID: 26071099]
[110]
Tang, G.; Samaranayake, L.P.; Yip, H-K. Molecular evaluation of residual endodontic microorganisms after instrumentation, irrigation and medication with either calcium hydroxide or septomixine. Oral Dis., 2004, 10(6), 389-397.
[http://dx.doi.org/10.1111/j.1601-0825.2004.01015.x] [PMID: 15533217]
[111]
Albuquerque, M.T.P.; Nagata, J.; Bottino, M.C. Antimicrobial efficacy of triple antibiotic-eluting polymer nanofibers against multispecies biofilm. J. Endod., 2017, 43(9S), S51-S56.
[http://dx.doi.org/10.1016/j.joen.2017.06.009] [PMID: 28778504]
[112]
Brook, I.; Lewis, M.A.O.; Sándor, G.K.B.; Jeffcoat, M.; Samaranayake, L.P.; Vera Rojas, J. Clindamycin in dentistry: More than just effec-tive prophylaxis for endocarditis? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2005, 100(5), 550-558.
[http://dx.doi.org/10.1016/j.tripleo.2005.02.086] [PMID: 16243239]
[113]
Karczewski, A.; Feitosa, S.A.; Hamer, E.I.; Pankajakshan, D.; Gregory, R.L.; Spolnik, K.J.; Bottino, M.C. Clindamycin-modified triple antibiotic nanofibers: A stain-free antimicrobial intracanal drug delivery system. J. Endod., 2018, 44(1), 155-162.
[http://dx.doi.org/10.1016/j.joen.2017.08.024] [PMID: 29061356]
[114]
Porter, M.L.A.; Münchow, E.A.; Albuquerque, M.T.P.; Spolnik, K.J.; Hara, A.T.; Bottino, M.C. Effects of novel 3-dimensional antibiotic-containing electrospun scaffolds on dentin discoloration. J. Endod., 2016, 42(1), 106-112.
[http://dx.doi.org/10.1016/j.joen.2015.09.013] [PMID: 26602451]
[115]
Zargar, N.; Rayat Hosein Abadi, M.; Sabeti, M.; Yadegari, Z.; Akbarzadeh Baghban, A.; Dianat, O. Antimicrobial efficacy of clindamycin and triple antibiotic paste as root canal medicaments on tubular infection: An in vitro study. Aust. Endod. J., 2019, 45(1), 86-91.
[http://dx.doi.org/10.1111/aej.12288] [PMID: 30113736]
[116]
Ghabraei, S.; Bolhari, B.; Sabbagh, M.M.; Afshar, M.S. Comparison of antimicrobial effects of triple antibiotic paste and calcium hydrox-ide mixed with 2% chlorhexidine as intracanal medicaments against Enterococcus faecalis biofilm. J. Dent. (Tehran), 2018, 15(3), 151-160.
[PMID: 30090115]
[117]
Schäfer, E.; Bössmann, K. Antimicrobial efficacy of chlorhexidine and two calcium hydroxide formulations against Enterococcus faecalis. J. Endod., 2005, 31(1), 53-56.
[http://dx.doi.org/10.1097/01.DON.0000134209.28874.1C] [PMID: 15614008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy