Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Development of Nanomaterials-fabricated Paper-based Sensors for the Analysis of Environmental and Biological Samples: A Review

Author(s): Monisha, Kamlesh Shrivas*, Tarun Kumar Patle, Reena Jamunkar, Vikas Kumar Jain, Subhash Banerjee and Antresh Kumar

Volume 18, Issue 4, 2022

Published on: 14 February, 2022

Page: [487 - 498] Pages: 12

DOI: 10.2174/1573413717666211215124905

Price: $65

conference banner
Abstract

Background: Currently, the environmental and biological samples, such as water, soil, vegetables, etc., are highly contaminated with metal ions, anions and pesticides. For analysis of these toxic substances from the environmental and biological samples, sophisticated and expensive instruments are being used. The present work deals with the development of a simple, faster, sensitive and economical method for the analysis of toxic substances present in different samples.

Methods: The general methods for synthesis and characterization of metallic (Ag, Au, Cu and graphene) nanoparticles and conductive polymer for the development of conductive nano-ink and fabrication of paper substrate by direct deposition and laser, wax, or inkjet printing techniques, have been reported.

Results: Paper-based sensors fabricated with different nanomaterials used as colorimetric, electrochemical and fluorescence-based chemical sensors for the quantitative determination of pesticides and toxic metal ions in various biological and clinical samples have been comprehensively discussed in this review.

Conclusion: The low-cost, rapid, eco-friendly, flexible, portable, and paper-based sensors using nanoparticles (NPs) are in demand for on-site detection of different chemical constituents present in various environmental, biological and clinical samples.

Keywords: Paper-based sensor, nanoparticles, electrochemical, colorimetric, fluorescence, environmental samples, biological samples.

Graphical Abstract

[1]
Nery, E.W.; Kubota, L.T. Sensing approaches on paper-based devices: A review. Anal. Bioanal. Chem., 2013, 405(24), 7573-7595.
[http://dx.doi.org/10.1007/s00216-013-6911-4] [PMID: 23604524]
[2]
Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent advances in paper-based sensors. Sensors (Basel), 2012, 12(9), 11505-11526.
[http://dx.doi.org/10.3390/s120911505] [PMID: 23112667]
[3]
Shrivas, K. Monisha; Kant, T.; Karbhal, I.; Kurrey, R.; Sahu, B.; Sinha, D.; Patra, G.K.; Deb, M.K.; Pervez, S. Smartphone coupled with paper-based chemical sensor for on-site determination of iron(III) in environmental and biological samples. Anal. Bioanal. Chem., 2020, 412(7), 1573-1583.
[http://dx.doi.org/10.1007/s00216-019-02385-x] [PMID: 31932862]
[4]
Shrivas, K.; Patel, S.; Sinha, D.; Thakur, S.S.; Patle, T.K.; Kant, T.; Dewangan, K.; Satnami, M.L.; Nirmalkar, J.; Kumar, S. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe. Mikrochim. Acta, 2020, 187(3), 173.
[http://dx.doi.org/10.1007/s00604-020-4129-7] [PMID: 32072273]
[5]
Santhiago, M.; da Costa, P.G.; Pereira, M.P.; Corrêa, C.C.; de Morais, V.B.; Bufon, C.C.B. Versatile and robust integrated sensors to locally assess humidity changes in fully enclosed paper-based devices. ACS Appl. Mater. Interfaces, 2018, 10(41), 35631-35638.
[http://dx.doi.org/10.1021/acsami.8b12780] [PMID: 30247018]
[6]
Shrivas, K.; Sahu, B.; Kanti, M.; Singh, S. Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchem. J., 2019, 150, 104156.
[http://dx.doi.org/10.1016/j.microc.2019.104156]
[7]
Khalkho, B.R.; Kurrey, R.; Deb, M.K.; Shrivas, K.; Thakur, S.S.; Pervez, S.; Jain, V.K. L-cysteine modified silver nanoparticles for selective and sensitive colorimetric detection of vitamin B1 in food and water samples. Heliyon, 2020, 6(2), e03423.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03423] [PMID: 32090184]
[8]
Annadhasan, M.; Muthukumarasamyvel, T. SankarBabu, V. R., &Rajendiran, N. Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain. Chem.& Eng., 2014, 2, 887-896.
[http://dx.doi.org/10.1021/sc400500z]
[9]
Hanbin, L.; Jiang, H.; Du, F.; Zhang, D.; Li, Z.; Zhou, H. Flexible and degradable paper-based strain sensor with low cost. ACS Sustain. Chem.& Eng., 2017, 5, 10538-10543.
[http://dx.doi.org/10.1021/acssuschemeng.7b02540]
[10]
Inkjet-printed paper-based colorimetric sensor coupled with smartphone for determination of mercury (Hg2+). J. Hazard. Mater., 2021, 25, 125440.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125440]
[11]
Kant, T.; Shrivas, K.; Ganesan, V.; Kishor, Y.; Devi, R.; Kanti, M.; Shankar, R. Flexible printed paper electrode with silver nano-ink for electrochemical applications. Microchem. J., 2020, 155, 104687.
[http://dx.doi.org/10.1016/j.microc.2020.104687]
[12]
Xu, M.; Bunes, B.R.; Zang, L. Paper-based vapor detection of hydrogen peroxide. Colorimetric. Appl. Mater. Interfaces, 2011, 3, 642-647.
[13]
Abe, K.; Kotera, K.; Suzuki, K.; Citterio, D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal. Bioanal. Chem., 2010, 398(2), 885-893.
[http://dx.doi.org/10.1007/s00216-010-4011-2] [PMID: 20652543]
[14]
Lorwongtragool, P.; Sowade, E.; Watthanawisuth, N.; Baumann, R.R.; Kerdcharoen, T. A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors (Basel), 2014, 14(10), 19700-19712.
[http://dx.doi.org/10.3390/s141019700] [PMID: 25340447]
[15]
Shrivas, K.; Ghosale, A.; Bajpai, P.K.; Kant, T.; Dewangan, K.; Shankar, R. Advances in flexible electronics and electrochemical sensors using conducting nanomaterials: A review. Microchem. J., 2020, 156, 104944.
[http://dx.doi.org/10.1016/j.microc.2020.104944]
[16]
Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C.S. Multiplex paper-based colorimetric dna sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem., 2017, 89(10), 5428-5435.
[http://dx.doi.org/10.1021/acs.analchem.7b00255] [PMID: 28394582]
[17]
Wang, P.; Ge, L.; Yan, M.; Song, X.; Ge, S.; Yu, J. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens. Bioelectron., 2012, 32(1), 238-243.
[http://dx.doi.org/10.1016/j.bios.2011.12.021] [PMID: 22226410]
[18]
Apilux, A.; Siangproh, W.; Praphairaksit, N.; Chailapakul, O. Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates. Talanta, 2012, 97, 388-394.
[http://dx.doi.org/10.1016/j.talanta.2012.04.050] [PMID: 22841097]
[19]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Ficuscarica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: A comparison of thermal and ultrasonication approach. BioNanoScienc, 2016, 6(1), 15-21.
[http://dx.doi.org/10.1007/s12668-016-0193-1]
[20]
Kumar, V.; Mohan, S.; Singh, D.K.; Verma, D.K.; Singh, V.K.; Hasan, S.H. Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron(III), antibacterial and antioxidant activity. Mater. Sci. Eng. C, 2017, 71, 1004-1019.
[http://dx.doi.org/10.1016/j.msec.2016.11.013] [PMID: 27987654]
[21]
Bothra, S.; Kumar, R.; Pati, R.K.; Kuwar, A.; Choi, H.J.; Sahoo, S.K. Virgin silver nanoparticles as colorimetric nanoprobe for simultaneous detection of iodide and bromide ion in aqueous medium. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 149, 122-126.
[http://dx.doi.org/10.1016/j.saa.2015.04.059] [PMID: 25950637]
[22]
Ratnarathorn, N.; Chailapakul, O.; Henry, C.S.; Dungchai, W. Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta, 2012, 99, 552-557.
[http://dx.doi.org/10.1016/j.talanta.2012.06.033] [PMID: 22967593]
[23]
Langley, D.; Giusti, G.; Mayousse, C.; Celle, C.; Bellet, D.; Simonato, J.P. Flexible transparent conductive materials based on silver nanowire networks: A review. Nanotechnology, 2013, 24(45), 452001.
[http://dx.doi.org/10.1088/0957-4484/24/45/452001] [PMID: 24121527]
[24]
Jha, A.K.; Zamani, S.; Kumar, A. Green synthesis and characterization of silver nanoparticles using Pteris vittata extract and their therapeutic activities. Biotechnol. Appl. Biochem., 2021.
[http://dx.doi.org/10.1002/bab.2235] [PMID: 34347920]
[25]
Curto, V.F.; Lopez-Ruiz, N.; Capitan-Vallvey, L.F.; Palma, A.J.; Benito-Lopez, F.; Diamond, D. Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink. RSC Advances, 2013, 3, 18811-18816.
[http://dx.doi.org/10.1039/c3ra43825b]
[26]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. One pot synthesis and characterization of gold nanocatalyst using Sacha inchi (Plukenetia volubilis) oil: Green approach. J. Photochem. Photobiol. B, 2016, 158, 55-60.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.02.023] [PMID: 26945647]
[27]
Chen, L.; Li, J.; Chen, L. Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6(18), 15897-15904.
[http://dx.doi.org/10.1021/am503531c] [PMID: 25153162]
[28]
Mott, D.; Galkowski, J.; Wang, L.; Luo, J.; Zhong, C.J. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 2007, 23(10), 5740-5745.
[http://dx.doi.org/10.1021/la0635092] [PMID: 17407333]
[29]
Zhang, J.; Yuan, Y.; Xu, X.; Wang, X.; Yang, X. Core/shell Cu@Ag nanoparticle: A versatile platform for colorimetric visualization of inorganic anions. ACS Appl. Mater. Interfaces, 2011, 3(10), 4092-4100.
[http://dx.doi.org/10.1021/am200972g] [PMID: 21950488]
[30]
Dhas, N.A.; Raj, C.P.; Gedanken, A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater., 1998, 10, 1446-1452.
[http://dx.doi.org/10.1021/cm9708269]
[31]
Bobacka, J. Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis, 2006, 1, 7-18.
[http://dx.doi.org/10.1002/elan.200503384]
[32]
Lou, B.; Chen, C.; Zhou, Z.; Zhang, L.; Wang, E.; Dong, S. A novel electrochemical sensing platform for anions based on conducting polymer film modified electrodes integrated on paper-based chips. Talanta, 2013, 105, 40-45.
[http://dx.doi.org/10.1016/j.talanta.2012.11.062] [PMID: 23597985]
[33]
Jackowska, K.; Bieguński, A.T.; Tagowska, M. Hard template synthesis of conducting polymers: A route to achieve nanostructures. J. Solid State Electrochem., 2008, 12, 437-443.
[http://dx.doi.org/10.1007/s10008-007-0453-7]
[34]
Gharahcheshmeh, M.H.; Gleason, K.K. Device fabrication based on Oxidative Chemical Vapor Deposition (OCVD) synthesis of conducting polymers and related conjugated organic materials. Adv. Mater. Interfaces, 2019, 6, 1-27.
[http://dx.doi.org/10.1002/admi.201801564]
[35]
Brooke, R.; Cottis, P.; Talemi, P.; Fabretto, M.; Murphy, P.; Evans, D. Recent advances in the synthesis of conducting polymers from the vapour phase. Prog. Mater. Sci., 2017, 86, 127-146.
[http://dx.doi.org/10.1016/j.pmatsci.2017.01.004]
[36]
Naveen, M.H.; Gurudatt, N.G.; Shim, Y. Applications of conducting polymer composites to electrochemical sensors : A review. Appl. Mater. Today, 2017, 9, 419-433.
[http://dx.doi.org/10.1016/j.apmt.2017.09.001]
[37]
Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.B. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev., 2015, 115(7), 2483-2531.
[http://dx.doi.org/10.1021/cr500537t] [PMID: 25692385]
[38]
Li, F.; Song, J.; Yang, H.; Gan, S.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology, 2009, 20(45), 455602.
[http://dx.doi.org/10.1088/0957-4484/20/45/455602] [PMID: 19834246]
[39]
Perera, S.D.; Mariano, R.G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K.J. Hydrothermal synthesis of Graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal., 2012, 2, 949-956.
[http://dx.doi.org/10.1021/cs200621c]
[40]
Cho, E.J.; Bright, F.V. Pin-printed chemical sensor arrays for simultaneous multianalyte quantification. Anal. Chem., 2002, 74(6), 1462-1466.
[http://dx.doi.org/10.1021/ac010907v] [PMID: 11922319]
[41]
Ortiz-Gómez, I.; Salinas-Castillo, A.; García, A.G.; Álvarez-Bermejo, J.A.; de Orbe-Payá, I.; Rodríguez-Diéguez, A.; Capitán-Vallvey, L.F. Microfluidic paper-based device for colorimetric determination of glucose based on a metal-organic framework acting as peroxidase mimetic. Mikrochim. Acta, 2017, 185(1), 47.
[http://dx.doi.org/10.1007/s00604-017-2575-7] [PMID: 29594561]
[42]
Chen, G.H.; Chen, W.Y.; Yen, Y.C.; Wang, C.W.; Chang, H.T.; Chen, C.F. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem., 2014, 86(14), 6843-6849.
[http://dx.doi.org/10.1021/ac5008688] [PMID: 24932699]
[43]
Creran, B.; Li, X.; Duncan, B.; Kim, C.S.; Moyano, D.F.; Rotello, V.M. Detection of bacteria using inkjet-printed enzymatic test strips. ACS Appl. Mater. Interfaces, 2014, 6(22), 19525-19530.
[http://dx.doi.org/10.1021/am505689g] [PMID: 25318086]
[44]
Lu, Y.; Shi, W.; Qin, J.; Lin, B. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal. Chem., 2010, 82(1), 329-335.
[http://dx.doi.org/10.1021/ac9020193] [PMID: 20000582]
[45]
Alahmad, W.; Uraisin, K.; Nacapricha, D.; Kaneta, T.A. A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium (III). Anal. Methods, 2016, 8, 5414-5420.
[http://dx.doi.org/10.1039/C6AY00954A]
[46]
Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem., 2010, 82(1), 3-10.
[http://dx.doi.org/10.1021/ac9013989] [PMID: 20000334]
[47]
Almeida, M.I.G.S.; Jayawardane, B.M.; Kolev, S.D.; McKelvie, I.D. Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta, 2018, 177, 176-190.
[http://dx.doi.org/10.1016/j.talanta.2017.08.072] [PMID: 29108573]
[48]
Davaji, B.; Hoon, C. Biosensors and Bioelectronics A paper-based calorimetric micro fluidics platform for bio-chemical sensing. Biosens. Bioelectron., 2014, 59, 120-126.
[http://dx.doi.org/10.1016/j.bios.2014.03.022] [PMID: 24713542]
[49]
Swerin, A.; Mira, I. Sensors and Actuators B : Chemical Ink-jettable paper-based sensor for charged macromolecules and surfactants. Sens. Actuators B Chem., 2014, 195, 389-395.
[http://dx.doi.org/10.1016/j.snb.2014.01.064]
[50]
Zhou, M.; Yang, M.; Zhou, F. Paper based colorimetric biosensing platform utilizing cross-linked siloxane as probe. Biosens. Bioelectron., 2014, 55, 39-43.
[http://dx.doi.org/10.1016/j.bios.2013.11.065] [PMID: 24361420]
[51]
Dungchai, W.; Chailapakul, O.; Henry, C.S. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst (Lond.), 2011, 136(1), 77-82.
[http://dx.doi.org/10.1039/C0AN00406E] [PMID: 20871884]
[52]
Sameenoi, Y.; Nongkai, P.N.; Nouanthavong, S.; Henry, C.S.; Nacapricha, D. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication. Analyst (Lond.), 2014, 139(24), 6580-6588.
[http://dx.doi.org/10.1039/C4AN01624F] [PMID: 25360590]
[53]
Mohammadi, S.; Maeki, M.; Mohamadi, R.M.; Ishida, A.; Tani, H.; Tokeshi, M. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst (Lond.), 2015, 140(19), 6493-6499.
[http://dx.doi.org/10.1039/C5AN00909J] [PMID: 26207925]
[54]
Martins, G.V.; Marques, A.C.; Fortunato, E.; Sales, M.G.F. Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochim. Acta, 2018, 284, 60-68.
[http://dx.doi.org/10.1016/j.electacta.2018.07.150]
[55]
Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A.L.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P.M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol., 2011, 6(8), 496-500.
[http://dx.doi.org/10.1038/nnano.2011.110] [PMID: 21804554]
[56]
Shrivas, K. Monisha.; Patel S.;Thakur S. S.; Ravi, S. Food safety monitoring of phenthoate pesticide using smartphone-assisted paper-based sensor with bimetallic Cu@Ag core-shell nanoparticles. Lab Chip, 2020, 20, 3996-4006.
[http://dx.doi.org/10.1039/D0LC00515K] [PMID: 32966488]
[57]
Carrilho, E.; Martinez, A.W.; Whitesides, G.M. Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem., 2009, 81(16), 7091-7095.
[http://dx.doi.org/10.1021/ac901071p] [PMID: 20337388]
[58]
Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta, 2018, 1001, 1-17.
[http://dx.doi.org/10.1016/j.aca.2017.11.010] [PMID: 29291790]
[59]
Patel, S.; Jamunkar, R.; Sinha, D. Monisha.; Patel. T. K.; Kant. T.; Dewangan. K.; Shrivas. K. Recent development in nanomaterial fabricated paper based colorimetric and fluorescent sensors: A review. Trend Environ. Anal. Chem., 2021, 31, 1-13.
[http://dx.doi.org/10.1016/j.teac.2021.e00136]
[60]
Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem., 2009, 81(14), 5821-5826.
[http://dx.doi.org/10.1021/ac9007573] [PMID: 19485415]
[61]
Silveira, C.M.; Monteiro, T.; Almeida, M.G. Biosensing with paper-based miniaturized printed electrodes-a modern trend. Biosensors (Basel), 2016, 6(4), 51.
[http://dx.doi.org/10.3390/bios6040051] [PMID: 27690119]
[62]
Yan, S.M.; Li, N. As featured in : Paper-based analytical device with an on-column. Chem. Commun. (Camb.), 2014, 50, 5699-5702.
[http://dx.doi.org/10.1039/c3cc49770d]
[63]
Dornelas, K.L.; Dossi, N.; Piccin, E. A simple method for patterning poly (dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Anal. Chim. Acta, 2015, 858, 82-90.
[http://dx.doi.org/10.1016/j.aca.2014.11.025]
[64]
Dossi, N.; Toniolo, R.; Pizzariello, A.; Impellizzieri, F.; Piccin, E.; Bontempelli, G. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis, 2013, 34(14), 2085-2091.
[http://dx.doi.org/10.1002/elps.201200425] [PMID: 23161669]
[65]
Song, X.C.; Wang, X.; Zheng, Y.F.; Ma, R.; Yin, H.Y. A hydrogen peroxide electrochemical sensor based on Ag nanoparticles grown on ITO substrate. J. Nanopart. Res., 2011, 13, 5449-5455.
[http://dx.doi.org/10.1007/s11051-011-0532-7]
[66]
Shih, W.C.; Yang, M.C.; Lin, M.S. Development of disposable lipid biosensor for the determination of total cholesterol. Biosens. Bioelectron., 2009, 24(6), 1679-1684.
[http://dx.doi.org/10.1016/j.bios.2008.08.055] [PMID: 18945608]
[67]
Ali, M.M.; Aguirre, S.D.; Xu, Y.; Filipe, C.D.M.; Pelton, R.; Li, Y. Detection of DNA using bioactive paper strips. Chem. Commun. (Camb.), 2009, 43(43), 6640-6642.
[http://dx.doi.org/10.1039/b911559e] [PMID: 19865676]
[68]
Allen, P.B.; Arshad, S.A.; Li, B.; Chen, X.; Ellington, A.D. DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab Chip, 2012, 12(16), 2951-2958.
[http://dx.doi.org/10.1039/c2lc40373k] [PMID: 22729075]
[69]
Rosa, A.M.; Louro, A.F.; Martins, S.A.; Inácio, J.; Azevedo, A.M.; Prazeres, D.M. Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains. Anal. Chem., 2014, 86(9), 4340-4347.
[http://dx.doi.org/10.1021/ac5001288] [PMID: 24716740]
[70]
Caglayan, M.G.; Sheykhi, S.; Mosca, L.; Anzenbacher, P. Fluorescent zinc and copper complexes for detection of adrafinil in paper-based microfluidic devices. Chem. Commun. (Camb.), 2016, 52(53), 8279-8282.
[http://dx.doi.org/10.1039/C6CC03640F] [PMID: 27293080]
[71]
Thom, N.K.; Yeung, K.; Pillion, M.B.; Phillips, S.T. “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip, 2012, 12(10), 1768-1770.
[http://dx.doi.org/10.1039/c2lc40126f] [PMID: 22450846]
[72]
Yamada, K.; Henares, T.G.; Suzuki, K.; Citterio, D. Distance-based tear lactoferrin assay on microfluidic paper device using interfacial interactions on surface-modified cellulose. ACS Appl. Mater. Interfaces, 2015, 7(44), 24864-24875.
[http://dx.doi.org/10.1021/acsami.5b08124] [PMID: 26488371]
[73]
Liang, L.; Su, M.; Li, L.; Lan, F.; Yang, G.; Ge, S.; Yu, J. Song, X. Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens. Actuators B Chem., 2016, 229, 347-354.
[http://dx.doi.org/10.1016/j.snb.2016.01.137]
[74]
Liang, J.; Wang, Y.; Liu, B. Paper-based fluoroimmunoassay for rapid and sensitive detection of antigen. RSC Advances, 2012, 2, 3878-3884.
[http://dx.doi.org/10.1039/c2ra20156a]
[75]
Yu, J.; Ge, L.; Huang, J.; Wang, S.; Ge, S. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip, 2011, 11(7), 1286-1291.
[http://dx.doi.org/10.1039/c0lc00524j] [PMID: 21243159]
[76]
Yu, J.; Wang, S.; Ge, L.; Ge, S. A novel chemiluminescence paper microfluidic biosensor based on enzymatic reaction for uric acid determination. Biosens. Bioelectron., 2011, 26(7), 3284-3289.
[http://dx.doi.org/10.1016/j.bios.2010.12.044] [PMID: 21257303]
[77]
Wang, Y.; Liu, H.; Wang, P.; Yu, J.; Ge, S.; Yan, M. Sensors and actuators b: chemical chemiluminescence excited photoelectrochemical competitive immunosensing lab-on-paper device using an integrated paper supercapacitor for signal amplication. Sens. Actuators B Chem., 2015, 208, 546-553.
[http://dx.doi.org/10.1016/j.snb.2014.11.088]
[78]
Alahmad, W.; Uraisin, K.; Nacapricha, D.; Kaneta, T. Miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium (III). Anal. Methods, 2016, 8, 5414-5420.
[http://dx.doi.org/10.1039/C6AY00954A]
[79]
Liu, W.; Kou, J.; Xing, H.; Li, B. Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables. Biosens. Bioelectron., 2014, 52, 76-81.
[http://dx.doi.org/10.1016/j.bios.2013.08.024] [PMID: 24021659]
[80]
Ge, L.; Wang, S.; Song, X.; Ge, S.; Yu, J. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip, 2012, 12(17), 3150-3158.
[http://dx.doi.org/10.1039/c2lc40325k] [PMID: 22763468]
[81]
Liu, F.; Zhang, C. Sensors and Actuators B : Chemical A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of Listeria monocytogenes. Sens. Actuators B Chem., 2015, 209, 399-406.
[http://dx.doi.org/10.1016/j.snb.2014.11.099]
[82]
Sánchez-Calvo, A.; Fernández-Abedul, M.T.; Blanco-López, M.C.; Costa-García, A. Paper-based electrochemical transducer modified with nanomaterials for mercury determination in environmental waters. Sens. Actuators B Chem., 2019, 290, 87-92.
[http://dx.doi.org/10.1016/j.snb.2019.03.089]
[83]
Phoonsawat, K.; Ratnarathorn, N.; Henry, C.S.; Dungchai, W. A distance-based paper sensor for the determination of chloride ions using silver nanoparticles. Analyst (Lond.), 2018, 143(16), 3867-3873.
[http://dx.doi.org/10.1039/C8AN00670A] [PMID: 30010167]
[84]
Hossain, S.M.Z.; Luckham, R.E.; McFadden, M.J.; Brennan, J.D. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal. Chem., 2009, 81(21), 9055-9064.
[http://dx.doi.org/10.1021/ac901714h] [PMID: 19788278]
[85]
Jaffrezic-renault, N.; Ecole, I.C.; De Lyon, C.; Cedex, B.P.E. New trends in biosensors for organophosphorus pesticides. Sensor, 2001, 1, 60-74.
[http://dx.doi.org/10.3390/s10100060]
[86]
Badawy, M.E.I.; El-Aswad, A.F. Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. Int. J. Anal. Chem., 2014, 2014, 536823.
[http://dx.doi.org/10.1155/2014/536823] [PMID: 25484901]
[87]
Govindasamy, M.; Mani, V.; Chen, S-M.; Chen, T-W.; Sundramoorthy, A.K. Methyl parathion detection in vegetables and fruits using silver@graphene nanoribbons nanocomposite modified screen printed electrode. Sci. Rep., 2017, 7, 46471.
[http://dx.doi.org/10.1038/srep46471] [PMID: 28425441]
[88]
Kavruk, M.; Özalp, V.C.; Öktem, H.A. Portable bioactive paper-based sensor for quantification of pesticides. J. Anal. Methods Chem., 2013, 2013, 932946.
[http://dx.doi.org/10.1155/2013/932946] [PMID: 23971002]
[89]
Rattanarat, P.; Dungchai, W.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal. Chim. Acta, 2012, 744, 1-7.
[http://dx.doi.org/10.1016/j.aca.2012.07.003] [PMID: 22935367]
[90]
Fakhri, N.; Abarghoei, S.; Dadmehr, M.; Hosseini, M.; Sabahi, H.; Reza, M. SpectrochimicaActa Part a: molecular and biomolecular spectroscopy paper based colorimetric detection of miRNA-21 using Ag/Ptnanoclusters. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 227, 117529.
[http://dx.doi.org/10.1016/j.saa.2019.117529] [PMID: 31703998]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy