Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Application of a HPLC-Q/TOF Method with Post-column Compensation for Separation and Identification of Polar Impurities in Cytidine Disodium Triphosphate for Injection

Author(s): Jinqi Zheng, Mingjuan Zhao, Lishi Yang, Yue Chen, Xiao Gu* and Qiaoqiao Huang*

Volume 18, Issue 5, 2022

Published on: 13 January, 2022

Page: [535 - 541] Pages: 7

DOI: 10.2174/1573412918666211214095347

Price: $65

Abstract

Background: Cytidine Disodium Triphosphate (CTP-2Na) for injection is mainly used for treating nervous system diseases. Currently, there are few studies focused on the separation and identification of polar impurities in CTP-2Na for injection, which is important for ensuring drug safety and efficacy.

Objective: The study aimed to establish an HPLC-Q/TOF method for the separation and identification of polar impurities in CTP-2Na for injection.

Methods: Chromatographic separation was achieved on a Waters Atlantis T3 column using 5 mM aqueous ammonium acetate solution as the mobile phase in an isocratic elution mode. A postcolumn compensation technology was used to improve the ionization efficiency of impurities in the spray chamber.

Results: Three polar impurities (disodium cytidine tetraphosphate, disodium cytidine diphosphate, disodium cytidine monophosphate) were detected in CTP-2Na for injection. The former one is probably the overreaction product during the production of CTP-2Na, the latter two were reported as degradation products. The fragmentation patterns of cytidine phosphate compounds in negative ion mode are summarized.

Conclusion: This study provides a good reference for the separation and identification of polar impurities in nucleotide drugs.

Keywords: Cytidine disodium triphosphate for injection, HPLC-Q/TOF, Post-column compensation, impurity identification, polar impurity, T3 column.

Graphical Abstract

[1]
Jing, Z.; Yafang, R.; Huanxin, Z. Clinical study on troxerutin and cerebroprotein hydrolysate combined with cytidine disodium triphosphate in treatment of neonatal hypoxic-ischemic encephalopathy. Durgs Clin., 2018, 33(11), 3-7.
[http://dx.doi.org/10.7501/j.issn.1674-5515.2018.11.030]
[2]
Kennedy, E.P.; Weiss, S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem., 1956, 222(1), 193-214.
[http://dx.doi.org/10.1016/S0021-9258(19)50785-2] [PMID: 13366993]
[3]
Opitz, P.; Herbarth, O.; Seidel, A.; Boehm, A.; Fischer, M.; Mozet, C.; Dietz, A.; Wichmann, G. Modified nucleosides - molecular markers suitable for small-volume cancer? Anticancer Res., 2018, 38(11), 6113-6119.
[http://dx.doi.org/10.21873/anticanres.12962] [PMID: 30396926]
[4]
Wang, L.; Shen, S.; Yun, J.; Yao, K.; Yao, S.J. Chromatographic separation of cytidine triphosphate from fermentation broth of yeast using anion-exchange cryogel. J. Sep. Sci., 2008, 31(4), 689-695.
[http://dx.doi.org/10.1002/jssc.200700544] [PMID: 18307164]
[5]
Mingbo, X.; Yanzhuo, W.; Yongbo, W.; Anjing, L.; Zhongfan, Y.; Yajun, L.; Yanming, Q.; Ziling, Z.; Bing, S.; Junling, W. Method of preparing cytidine disodium triphosphate and application. CN101058823B 2007.
[6]
Tong, Z.; Changming, Z.; Nanyin, H. HPLC determination and assay of related substances in cytidine disodium triphosphate injection. Yaowu Fenxi Zazhi, 2013, 33(01), 154-158.
[http://dx.doi.org/10.16155/j.0254-1793.2017.01.01]
[7]
Hongqun, Q.; Xuejun, H.; Aiqin, Z.; Mingsheng, L.; Xuegeng, W. Reversed phase ion -pair hplc determination of cytidine disodium triphosphate in cytidine disodium triphosphate injection. Yaowu Fenxi Zazhi, 2006, 26(08), 1132-1134.
[8]
Costas, M.J.; Cameselle, J.C.; Günther Sillero, M.A.; Sillero, A. Presence of cytidine 5¢-tetraphosphate in commerical samples of cytidine 5¢-triphosphate. Anal. Biochem., 1983, 134(2), 455-458.
[http://dx.doi.org/10.1016/0003-2697(83)90322-6] [PMID: 6650831]
[9]
Narayan, V. HPLC analysis of nucleotides; Queensland University of Technology, 2017.
[10]
Takayanagi, F.; Fukuuchi, T.; Yamaoka, N.; Kaneko, K. Measurement of the total purine contents and free nucleosides, nucleotides, and purine bases composition in Japanese anchovies (Engraulis japonicus) using high-performance liquid chromatography with UV detection. Nucleosides Nucleotides Nucleic Acids, 2020, 39(10-12), 1458-1464.
[http://dx.doi.org/10.1080/15257770.2020.1809674] [PMID: 33231138]
[11]
Mateos-Vivas, M.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J.; García-Gómez, D.; Carabias-Martínez, R. Determination of nucleosides and nucleotides in baby foods by hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents. Food Chem., 2016, 211, 827-835.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.091] [PMID: 27283702]
[12]
Zhou, G.; Wang, M.; Xu, R.; Li, X.B. Chemometrics for comprehensive analysis of nucleobases, nucleosides, and nucleotides in Siraitiae Fructus by hydrophilic interaction ultra high performance liquid chromatography coupled with triple-quadrupole linear ion-trap tandem mass spectrometry. J. Sep. Sci., 2015, 38(20), 3508-3515.
[http://dx.doi.org/10.1002/jssc.201500680] [PMID: 26249158]
[13]
Domínguez-Álvarez, J.; Mateos-Vivas, M.; Rodríguez-Gonzalo, E.; García-Gómez, D.; Bustamante-Rangel, M.; Delgado Zamarreño, M.M.; Carabias-Martínez, R. Determination of nucleosides and nucleotides in food samples by using liquid chromatography and capillary electrophoresis. TrAC -. Trends Analyt. Chem., 2017, 92, 12-31.
[http://dx.doi.org/10.1016/j.trac.2017.04.005]
[14]
Lu, Z.; Wang, Q.; Wang, M.; Fu, S.; Zhang, Q.; Zhang, Z.; Zhao, H.; Liu, Y.; Huang, Z.; Xie, Z.; Yu, H.; Gao, X. Using UHPLC Q-Trap/MS as a complementary technique to in-depth mine UPLC Q-TOF/MS data for identifying modified nucleosides in urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1051, 108-117.
[http://dx.doi.org/10.1016/j.jchromb.2017.03.002] [PMID: 28340480]
[15]
He, L.; Wei, X.; Ma, X.; Yin, X.; Song, M.; Donninger, H.; Yaddanapudi, K.; McClain, C.J.; Zhang, X. Simultaneous quantification of nucleosides and nucleotides from biological samples. J. Am. Soc. Mass Spectrom., 2019, 30(6), 987-1000.
[http://dx.doi.org/10.1007/s13361-019-02140-7] [PMID: 30847833]
[16]
Contreras-Sanz, A.; Scott-Ward, T.S.; Gill, H.S.; Jacoby, J.C.; Birch, R.E.; Malone-Lee, J.; Taylor, K.M.G.; Peppiatt-Wildman, C.M.; Wildman, S.S.P. Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC. Purinergic Signal., 2012, 8(4), 741-751.
[http://dx.doi.org/10.1007/s11302-012-9321-8] [PMID: 22707011]
[17]
Yamaoka, N.; Kudo, Y.; Inazawa, K.; Inagawa, S.; Yasuda, M.; Mawatari, K.; Nakagomi, K.; Kaneko, K. Simultaneous determination of nucleosides and nucleotides in dietary foods and beverages using ion-pairing liquid chromatography-electrospray ionization-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(23), 2054-2060.
[http://dx.doi.org/10.1016/j.jchromb.2010.05.044] [PMID: 20594924]
[18]
Sakaguchi, Y.; Miyauchi, K.; Kang, B.I.; Suzuki, T. Nucleoside analysis by hydrophilic interaction liquid chromatography coupled with mass spectrometry. Methods Enzymol., 2015, 560, 19-28.
[http://dx.doi.org/10.1016/bs.mie.2015.03.015] [PMID: 26253964]
[19]
Fabino Carr, A.; Patel, D.C.; Lopez, D.; Armstrong, D.W.; Ryzhov, V. Comparison of reversed-phase, anion-exchange, and hydrophilic interaction hplc for the analysis of nucleotides involved in biological enzymatic pathways. J. Liq. Chromatogr. Relat. Technol., 2019, 42(7–8), 184-193.
[http://dx.doi.org/10.1080/10826076.2019.1587622]
[20]
Wu, L.; Chen, L.; Selvaraj, J.N.; Wei, Y.; Wang, Y.; Li, Y.; Zhao, J.; Xue, X. Identification of the distribution of adenosine phosphates, nucleosides and nucleobases in royal jelly. Food Chem., 2015, 173, 1111-1118.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.137] [PMID: 25466132]
[21]
Hewavitharana, A.K.; Narayan, V.; Duley, J.A. Separation of highly charged compounds using competing ions with hydrophilic interaction liquid chromatography - Application to assay of cellular nucleotides. J. Chromatogr. A, 2018, 1567, 233-238.
[http://dx.doi.org/10.1016/j.chroma.2018.07.006] [PMID: 29983167]
[22]
Wang, H.; Xu, T.; Yuan, J. The use of online heart-cutting high-performance liquid chromatography coupled with linear ion trap mass spectrometry in the identification of impurities in vidarabine monophosphate. J. Sep. Sci., 2017, 40(8), 1674-1685.
[http://dx.doi.org/10.1002/jssc.201601320] [PMID: 28211639]
[23]
Ouyang, L.F.; Wang, Z.L.; Dai, J.G.; Chen, L.; Zhao, Y.N. Determination of total ginsenosides in ginseng extracts using charged aerosol detection with post-column compensation of the gradient. Chin. J. Nat. Med., 2014, 12(11), 857-868.
[http://dx.doi.org/10.1016/S1875-5364(14)60129-1] [PMID: 25480518]
[24]
Stahnke, H.; Reemtsma, T.; Alder, L. Compensation of matrix effects by postcolumn infusion of a monitor substance in multiresidue analysis with LC-MS/MS. Anal. Chem., 2009, 81(6), 2185-2192.
[http://dx.doi.org/10.1021/ac802362s] [PMID: 19220028]
[25]
Yang, R.; Li, Y.; Liu, C.; Xu, Y.; Zhao, L.; Zhang, T. An improvement of separation and response applying post-column compensation and one-step acetone protein precipitation for the determination of coenzyme Q10 in rat plasma by SFC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1031, 221-226.
[http://dx.doi.org/10.1016/j.jchromb.2016.07.050] [PMID: 27507667]

© 2024 Bentham Science Publishers | Privacy Policy