Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

One-Pot Access to 2-oxazolines via a Castro-Stephens Coupling and Intramolecular Cyclization

Author(s): Dnyaneshwar Nighot*, Arvind K. Jain, Imran Ali and Varun Rawat *

Volume 9, Issue 2, 2022

Published on: 21 January, 2022

Page: [172 - 178] Pages: 7

DOI: 10.2174/2213337208666211213141836

Price: $65

Abstract

Aim: Here, we have reported easy one-pot access to a series of oxazolines using a modified Castro-Stephens coupling protocol.

Background: 2-oxazolines have been shown to have significant biological activity and wide-ranging applications in organic chemistry. These properties make oxazolines as heterocyclic compounds of immense importance.

Objective: The objective of this study is to synthesize oxazoline derivatives via an economical and one-pot protocol.

Methods: 2-oxazoline has been synthesized through Cu-powder mediated Castro-Stephens coupling and intramolecular cyclization route. The mechanism involves a rearrangement in which one of the oxygen from the N-acylamino alcohol group is liberated as water and then transferred to alkyne functionality to form 2-oxazoline derivatives. The oxazolines were characterized by NMR, mass, and XRD studies.

Results: The protocol is economically viable and uses readily available Cu-powder along with DMF for cross-coupling and cyclization steps.

Conclusion: We have reported a one-pot protocol to prepare 2-oxazolines using a Castro-Stephens coupling and intramolecular cyclization.

Keywords: Castro-stephens coupling, cu-powder, cyclization, 5-exo-dig cyclization, heterocyclic compounds, 2-oxazoline.

Graphical Abstract

[1]
Gant, T.G.; Meyers, A.I. The chemistry of 2-oxazolines (1985-present). Tetrahedron, 1994, 50, 2297-2360.
[http://dx.doi.org/10.1016/S0040-4020(01)86953-2]
[2]
Saravanan, P.; Corey, E.J. A short, stereocontrolled, and practical synthesis of α-methylomuralide, a potent inhibitor of proteasome function. J. Org. Chem., 2003, 68(7), 2760-2764.
[http://dx.doi.org/10.1021/jo0268916] [PMID: 12662049]
[3]
Wiedemann, S.H.; Bergman, R.G.; Ellman, J.A. Rhodium-catalyzed direct C-H addition of 4,4-dimethyl-2-oxazoline to alkenes. Org. Lett., 2004, 6(10), 1685-1687.
[http://dx.doi.org/10.1021/ol049417q] [PMID: 15128267]
[4]
Meyers, A.I. Chiral oxazolines-their legacy as key players in the renaissance of asymmetric synthesis. J. Heterocycl. Chem., 1998, 35, 991-1002.
[http://dx.doi.org/10.1002/jhet.5570350501]
[5]
Scott, A. Oxazolines as directing agents in the nucleophilic addition to naphthalenes. Aust. J. Chem., 2003, 56, 953-953.
[http://dx.doi.org/10.1071/CH03061]
[6]
Reuman, M.; Meyers, A.I. The synthetic utility of oxazolines in aromatic substitution. Tetrahedron, 1985, 41, 837-860.
[http://dx.doi.org/10.1016/S0040-4020(01)96401-4]
[7]
Luisi, R.; Capriati, V.; Florio, S.; Piccolo, E. Synthesis of enantiomerically enriched oxazolinyl[1,2]oxazetidines. J. Org. Chem., 2003, 68(26), 10187-10190.
[http://dx.doi.org/10.1021/jo035360u] [PMID: 14682724]
[8]
Ghosh, A.K.; Mathivanan, P.; Cappiello, J. C2-Symmetric chiral bis(oxazoline)-metal complexes in catalytic asymmetric synthesis. Tetrahedron Asymmetry, 1998, 9(1), 1-45.
[http://dx.doi.org/10.1016/S0957-4166(97)00593-4] [PMID: 30457575]
[9]
Gómez, M.; Muller, G.; Rocamora, M. Coordination chemistry of oxazoline ligands. Coord. Chem. Rev., 1999, 193, 769-835.
[http://dx.doi.org/10.1016/S0010-8545(99)00086-7]
[10]
Ager, D.J.; Prakash, I.; Schaad, D.R. 1, 2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev., 1996, 96(2), 835-876.
[http://dx.doi.org/10.1021/cr9500038] [PMID: 11848773]
[11]
Inoue, M.; Suzuki, T.; Nakada, M. Asymmetric catalysis of Nozaki-Hiyama allylation and methallylation with a new tridentate bis(oxazolinyl)carbazole ligand. J. Am. Chem. Soc., 2003, 125(5), 1140-1141.
[http://dx.doi.org/10.1021/ja021243p] [PMID: 12553795]
[12]
Duffey, M.O.; LeTiran, A.; Morken, J.P. Enantioselective total synthesis of borrelidin. J. Am. Chem. Soc., 2003, 125(6), 1458-1459.
[http://dx.doi.org/10.1021/ja028941u] [PMID: 12568588]
[13]
Pirrung, M.C.; Tumey, L.N.; McClerren, A.L.; Raetz, C.R. High-throughput catch-and-release synthesis of oxazoline hydroxamates. Structure-activity relationships in novel inhibitors of Escherichia coli LpxC: in vitro enzyme inhibition and antibacterial properties. J. Am. Chem. Soc., 2003, 125(6), 1575-1586.
[http://dx.doi.org/10.1021/ja0209114] [PMID: 12568618]
[14]
Li, Q.; Woods, K.W.; Claiborne, A.; Gwaltney, S.L., II; Barr, K.J.; Liu, G.; Gehrke, L.; Credo, R.B.; Hui, Y.H.; Lee, J.; Warner, R.B.; Kovar, P.; Nukkala, M.A.; Zielinski, N.A.; Tahir, S.K.; Fitzgerald, M.; Kim, K.H.; Marsh, K.; Frost, D.; Ng, S.C.; Rosenberg, S.; Sham, H.L. Synthesis and biological evaluation of 2-indolyloxazolines as a new class of tubulin polymerization inhibitors. Discovery of A-289099 as an orally active antitumor agent. Bioorg. Med. Chem. Lett., 2002, 12(3), 465-469.
[http://dx.doi.org/10.1016/S0960-894X(01)00759-4] [PMID: 11814821]
[15]
Campiani, G.; De Angelis, M.; Armaroli, S.; Fattorusso, C.; Catalanotti, B.; Ramunno, A.; Nacci, V.; Novellino, E.; Grewer, C.; Ionescu, D.; Rauen, T.; Griffiths, R.; Sinclair, C.; Fumagalli, E.; Mennini, T. A rational approach to the design of selective substrates and potent nontransportable inhibitors of the excitatory amino acid transporter EAAC1 (EAAT3). new glutamate and aspartate analogues as potential neuroprotective agents. J. Med. Chem., 2001, 44(16), 2507-2510.
[http://dx.doi.org/10.1021/jm015509z] [PMID: 11472204]
[16]
Bandgar, B.P.; Pandit, S.S. Direct synthesis of 2-oxazolines from carboxylic acids using 2-chloro-4, 6-dimethoxy-1, 3, 5-triazine under mild conditions. Tetrahedron Lett., 2003, 44, 2331-2333.
[http://dx.doi.org/10.1016/S0040-4039(03)00251-X]
[17]
Vorbrüggen, H.; Krolikiewicz, K. A simple synthesis of Δ2-oxazolines, Δ2-oxazines, Δ2-thiazolines and Δ2-imidazolines. Tetrahedron Lett., 1981, 22, 4471-4474.
[http://dx.doi.org/10.1016/S0040-4039(01)93017-5]
[18]
Vorbrüggen, H.; Krolikiewicz, K. A simple synthesis of Δ2-oxazines, Δ2-oxazines, Δ2-thiazolines and 2-substituted benzoxazoles. Tetrahedron, 1993, 49, 9353-9372.
[http://dx.doi.org/10.1016/0040-4020(93)80021-K]
[19]
Cwik, A.; Hell, Z.; Hegedüs, A.; Finta, Z.; Horváth, Z. A simple synthesis of 2-substituted oxazolines and oxazines. Tetrahedron Lett., 2002, 43, 3985-3987.
[http://dx.doi.org/10.1016/S0040-4039(02)00723-2]
[20]
Marrero-Terrero, A.L.; Loupy, A. Synthesis of 2-oxazolines from carboxylic acids and α,α,α-tris(hydroxymethyl)methylamine under microwaves in solvent-free conditions. Synlett, 1996, 1996(3), 245-246.
[http://dx.doi.org/10.1055/s-1996-5386]
[21]
Wenker, H. The synthesis of Δ2-oxazolines and Δ2-thiazolines from N-acyl-2-aminoethanols. J. Am. Chem. Soc., 1935, 57, 1079-1080.
[http://dx.doi.org/10.1021/ja01309a034]
[22]
Meyers, A.I.; Slade, J. Asymmetric addition of organometallics to chiral ketooxazolines. Preparation of enantiomerically enriched. alpha.-hydroxy acids. J. Org. Chem., 1980, 45, 2785-2791.
[http://dx.doi.org/10.1021/jo01302a008]
[23]
Kamata, K.; Agata, I.; Meyers, A.I. An efficient and versatile method for the synthesis of optically active 2-oxazolines: An acid-catalyzed condensation of ortho esters with amino alcohols. J. Org. Chem., 1998, 63, 3113-3116.
[http://dx.doi.org/10.1021/jo971161x]
[24]
Oussaid, B.; Berlan, J.; Soufiaoui, M.; Garrigues, B. Improved synthesis of oxazoline under microwave irradiation. Synth. Commun., 1995, 25, 659-665.
[http://dx.doi.org/10.1080/00397919508011403]
[25]
Badiang, J.G.; Aubé, J. One-step conversion of aldehydes to oxazolines and 5, 6-dihydro-4 H-1, 3-oxazines using 1, 2-and 1, 3-azido alcohols. J. Org. Chem., 1996, 61, 2484-2487.
[http://dx.doi.org/10.1021/jo9521256]
[26]
Bolm, C.; Weickhardt, K.; Zehnder, M.; Ranff, T. Synthesis of optically active Bis (2-oxazolines): Crystal structure of a 1,2-Bis (2-oxazolinyl) benzene ZnCl2 complex. Chem. Ber., 1991, 124, 1173-1180.
[http://dx.doi.org/10.1002/cber.19911240532]
[27]
Clarke, D.S.; Wood, R. A facile one stage synthesis of oxazolines under microwave irradiation. Synth. Commun., 1996, 26, 1335-1340.
[http://dx.doi.org/10.1080/00397919608003493]
[28]
Jnaneshwara, G.K.; Deshpande, V.H.; Lalithambika, M.; Ravindranathan, T.; Bedekar, A.V. Natural kaolinitic clay catalyzed conversion of nitriles to 2-oxazolines. Tetrahedron Lett., 1998, 39, 459-462.
[http://dx.doi.org/10.1016/S0040-4039(97)10575-5]
[29]
Busacca, C.A.; Dong, Y.; Spinelli, E.M. A one step synthesis of thiazolines from esters. Tetrahedron Lett., 1996, 37, 2935-2938.
[http://dx.doi.org/10.1016/0040-4039(96)00451-0]
[30]
Boden, C.D.J.; Pattenden, G.; Ye, T. The synthesis of optically active thiazoline and thiazole derived peptides from n-protected α-amino acids. Synlett, 1995, 1995(5), 417-419.
[http://dx.doi.org/10.1055/s-1995-4993]
[31]
Charette, A.B.; Chua, P. Mild method for the synthesis of thiazolines from secondary and tertiary amides. J. Org. Chem., 1998, 63, 908-909.
[http://dx.doi.org/10.1021/jo971883o]
[32]
Nishio, T. Sulfur-containing heterocycles derived by the reaction of hydroxy-amides and Lawesson’s reagent. Tetrahedron Lett., 1995, 36, 6113-6116.
[http://dx.doi.org/10.1016/0040-4039(95)01232-7]
[33]
Wipf, P.; Fritch, P.C. Synthesis of peptide thiazolines from β-hydroxythioamides. An investigation of racemization in cyclodehydration protocols. Tetrahedron Lett., 1994, 35, 5397-5400.
[http://dx.doi.org/10.1016/S0040-4039(00)73509-X]
[34]
Lafargue, P.; Guenot, P.; Lellouche, J-P. Preparation of 2-Thiazolines from (1,2)-Thioamido-Alcohols; DAST as a Useful Reagent. Synlett, 1995, 1995, 171-172.
[http://dx.doi.org/10.1055/s-1995-4886]
[35]
Mahler, S.G.; Serra, G.L.; Antonow, D.; Manta, E. Deoxo-Fluor-mediated cyclodehydration of β-hydroxy thioamides to the corresponding thiazolines. Tetrahedron Lett., 2001, 42, 8143-8146.
[http://dx.doi.org/10.1016/S0040-4039(01)01759-2]
[36]
Wipf, P.; Miller, C.P.; Venkatraman, S.; Fritch, P.C. Thiolysis of oxazolines: a new, selective method for the direct conversion of peptide oxazolines into thiazolines. Tetrahedron Lett., 1995, 36, 6395-6398.
[http://dx.doi.org/10.1016/0040-4039(95)01322-9]
[37]
Boyce, R.J.; Mulqueen, G.C.; Pattenden, G. Total synthesis of thiangazole, a novel inhibitor of HIV-1 from polyangium sp. Tetrahedron Lett., 1994, 35, 5705-5708.
[http://dx.doi.org/10.1016/S0040-4039(00)77284-4]
[38]
White, J.D.; Kim, T.S.; Nambu, M. Synthesis of curacin A: a powerful antimitotic from the cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc., 1995, 117, 5612-5613.
[http://dx.doi.org/10.1021/ja00125a034]
[39]
Toya, Y.; Takagi, M.; Kondo, T.; Nakata, H.; Isobe, M.; Goto, T. Improved synthetic methods of firefly luciferin derivatives for use in bioluminescent analysis of hydrolytic enzymes; carboxylic esterase and alkaline phosphatase. Bull. Chem. Soc. Jpn., 1992, 65, 2604-2610.
[http://dx.doi.org/10.1246/bcsj.65.2604]
[40]
Einsiedel, J.; Hübner, H.; Gmeiner, P. Benzamide bioisosteres incorporating dihydroheteroazole substructures: EPC synthesis and SAR leading to a selective dopamine D4 receptor partial agonist (FAUC 179). Bioorg. Med. Chem. Lett., 2001, 11(18), 2533-2536.
[http://dx.doi.org/10.1016/S0960-894X(01)00484-X] [PMID: 11549463]
[41]
Zarantonello, P.; Leslie, C.P.; Ferritto, R.; Kazmierski, W.M. Total synthesis and semi-synthetic approaches to analogues of antibacterial natural product althiomycin. Bioorg. Med. Chem. Lett., 2002, 12(4), 561-565.
[http://dx.doi.org/10.1016/S0960-894X(01)00802-2] [PMID: 11844672]
[42]
Wipf, P.; Reeves, J.T.; Balachandran, R.; Day, B.W. Synthesis and biological evaluation of structurally highly modified analogues of the antimitotic natural product curacin A. J. Med. Chem., 2002, 45(9), 1901-1917.
[http://dx.doi.org/10.1021/jm0105171] [PMID: 11960501]
[43]
Frump, J.A. Oxazolines. Their preparation, reactions, and applications. Chem. Rev., 1971, 71, 483-505.
[http://dx.doi.org/10.1021/cr60273a003]
[44]
Nighot, D.; Jain, A.K.; Singh, M.; Rawat, V. A convenient 5-exo-dig cyclization route to diastereomerically pure methyl (2 s)-2-(1-benzyl-3-oxo-1, 3-dihydro-2 h-isoindol-2-yl)-3-methylbutanoate. Chem. Heterocycl. Compd., 2020, 56, 1370-1374.
[http://dx.doi.org/10.1007/s10593-020-02825-y]
[45]
Ali, I.; Nighot, D.; Lone, M.N.; Jain, A. Efficient copper-catalyzed Sonogashira coupling reactions and simulation studies. Synth. Commun., 2017, 47, 1175-1184.
[http://dx.doi.org/10.1080/00397911.2017.1319488]
[46]
Kumar, A.; Imran, A. A new process for the preparation of keto oxazoline. Patent 201711032188A, 1971.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy