Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

2D Materials-Based Aptamer Biosensors: Present Status and Way Forward

Author(s): Raj Kumar Sen, Priyanka Prabhakar, Neha Bisht, Monika Patel, Shruti Mishra, Amit K. Yadav, Divya V. Venu, Gaurav Kumar Gupta, Pratima R. Solanki, Seeram Ramakrishnan, D.P. Mondal, Avanish Kumar Srivastava, Neeraj Dwivedi* and Chetna Dhand*

Volume 29, Issue 37, 2022

Published on: 24 January, 2022

Page: [5815 - 5849] Pages: 35

DOI: 10.2174/0929867328666211213115723

Price: $65

Abstract

Current advances in constructing functional nanomaterials and elegantly designed nanostructures have opened up new possibilities for the fabrication of viable field biosensors. Two-dimensional materials (2DMs) have fascinated much attention due to their chemical, optical, physicochemical, and electronic properties. They are ultrathin nanomaterials with unique properties such as high surface-to-volume ratio, surface charge, shape, high anisotropy, and adjustable chemical functionality. 2DMs such as graphene-based 2D materials, Silicate clays, layered double hydroxides (LDHs), MXenes, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) offer intensified physicochemical and biological functionality and have proven to be very promising candidates for biological applications and technologies. 2DMs have a multivalent structure that can easily bind to single-stranded DNA/RNA (aptamers) through covalent, non-covalent, hydrogen bond, and π-stacking interactions, whereas aptamers have a small size, excellent chemical stability, and low immunogenicity with high affinity and specificity. This review discussed the potential of various 2D material-based aptasensor for diagnostic applications, e.g., protein detection, environmental monitoring, pathogens detection, etc.

Keywords: Aptamer, biosensor, 2D material, mxene, graphene, diagnosis.

[1]
Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng. Rep., 2020, 140, 100523.
[http://dx.doi.org/10.1016/j.mser.2019.100523]
[2]
Wang, L.; Chen, D.; Jiang, K.; Shen, G. New insights and perspectives into biological materials for flexible electronics. Chem. Soc. Rev., 2017, 46(22), 6764-6815.
[http://dx.doi.org/10.1039/C7CS00278E] [PMID: 28875205]
[3]
Wang, L.; Lou, Z.; Shen, G. Adapting 2D nanomaterials for advanced applications; American Chemical Society: Washington, USA, 2020, 1353, pp. 93-116.
[http://dx.doi.org/10.1021/bk-2020-1353.ch005]
[4]
Keshavarz, M.; Chowdhury, A.K.M.R.H.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Self-assembled N-doped Q- dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality. Sens. Actuators B Chem., 2020, 323, 128703.
[http://dx.doi.org/10.1016/j.snb.2020.128703]
[5]
Othman, A.; Karimi, A.; Andreescu, S. Functional nanostructures for enzyme based biosensors: Properties, fabrication and applications. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(45), 7178-7203.
[http://dx.doi.org/10.1039/C6TB02009G] [PMID: 32263721]
[6]
Khan, R.; Sherazi, T.A.; Catanante, G.; Rasheed, S.; Marty, J.L.; Hayat, A. Switchable fluorescence sensor toward PAT via CA-MWCNTs quenched aptamer-tagged carboxyfluorescein. Food Chem., 2020, 312, 126048.
[http://dx.doi.org/10.1016/j.foodchem.2019.126048] [PMID: 31918363]
[7]
Zhang, H.; Chhowalla, M.; Liu, Z. 2D nanomaterials: graphene and transition metal dichalcogenides. Chem. Soc. Rev., 2018, 47(9), 3015-3017.
[http://dx.doi.org/10.1039/C8CS90048E] [PMID: 29700540]
[8]
Zhu, Y.; Peng, L.; Fang, Z.; Yan, C.; Zhang, X.; Yu, G. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater., 2018, 30(15), e1706347.
[http://dx.doi.org/10.1002/adma.201706347] [PMID: 29430788]
[9]
Mei, X.; Hu, T.; Wang, Y.; Weng, X.; Liang, R.; Wei, M. Recent advancements in two-dimensional nanomaterials for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(2), e1596.
[http://dx.doi.org/10.1002/wnan.1596] [PMID: 31650709]
[10]
Zhang, J.; Chen, H.; Zhao, M.; Liu, G.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res., 2020, 13(8), 2019-2034.
[http://dx.doi.org/10.1007/s12274-020-2835-4]
[11]
Wen, W.; Song, Y.; Yan, X.; Zhu, C.; Du, D.; Wang, S.; Asiri, A.M.; Lin, Y. Recent advances in emerging 2D nanomaterials for biosensing and bioimaging applications. Mater. Today, 2018, 21(2), 164-177.
[http://dx.doi.org/10.1016/j.mattod.2017.09.001]
[12]
Verma, D.; Yadav, A.K.; Mukherjee, M.D.; Solanki, P.R. Fabrication of a sensitive electrochemical sensor platform using reduced graphene oxide-molybdenum trioxide nanocomposite for BPA detection: an endocrine disruptor. J. Environ. Chem. Eng., 2021, 9(4), 105504.
[http://dx.doi.org/10.1016/j.jece.2021.105504]
[13]
Yadav, A.K.; Verma, D.; Lakshmi, G.B.V.S.; Eremin, S.; Solanki, P.R. Fabrication of label-free and ultrasensitive electrochemical immunosensor based on molybdenum disulfide nanoparticles modified disposable ITO: an analytical platform for antibiotic detection in food samples. Food Chem., 2021, 363, 130245.
[http://dx.doi.org/10.1016/j.foodchem.2021.130245] [PMID: 34147899]
[14]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[15]
Wang, S.; Yang, X.; Zhou, L.; Li, J.; Chen, H. 2D nanostructures beyond graphene: preparation, biocompatibility and biodegradation behaviors. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2974-2989.
[http://dx.doi.org/10.1039/C9TB02845E] [PMID: 32207478]
[16]
Li, S.; Ma, L.; Zhou, M.; Li, Y.; Xia, Y.; Fan, X.; Cheng, C.; Luo, H. New opportunities for emerging 2D materials in bioelectronics and biosensors. Curr. Opin. Biomed. Eng., 2020, 13, 32-41.
[http://dx.doi.org/10.1016/j.cobme.2019.08.016]
[17]
Yoon, J.; Shin, J-W.; Lim, J.; Mohammadniaei, M.; Bharate Bapurao, G.; Lee, T.; Choi, J-W. Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloids Surf. B Biointerfaces, 2017, 159, 729-736.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.033] [PMID: 28886511]
[18]
Labroo, P.; Cui, Y. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites. Anal. Chim. Acta, 2014, 813, 90-96.
[http://dx.doi.org/10.1016/j.aca.2014.01.024] [PMID: 24528665]
[19]
Gholizadeh, A.; Voiry, D.; Weisel, C.; Gow, A.; Laumbach, R.; Kipen, H.; Chhowalla, M.; Javanmard, M. Toward point-of-care management of chronic respiratory conditions: electrochemical sensing of nitrite content in exhaled breath condensate using reduced graphene oxide. Microsyst. Nanoeng., 2017, 3, 17022.
[http://dx.doi.org/10.1038/micronano.2017.22] [PMID: 31057865]
[20]
Khatayevich, D.; Page, T.; Gresswell, C.; Hayamizu, Y.; Grady, W.; Sarikaya, M. Selective detection of target proteins by peptide-enabled graphene biosensor. Small, 2014, 10(8), 1505-1513, 1504.
[http://dx.doi.org/10.1002/smll.201302188] [PMID: 24677773]
[21]
Becheru, D.F.; Vlăsceanu, G.M.; Banciu, A.; Vasile, E.; Ioniţă, M.; Burns, J.S. Optical graphene-based biosensor for nucleic acid detection; Influence of graphene functionalization and ionic strength. Int. J. Mol. Sci., 2018, 19(10), E3230.
[http://dx.doi.org/10.3390/ijms19103230] [PMID: 30347651]
[22]
Hernández, R.; Vallés, C.; Benito, A.M.; Maser, W.K.; Rius, F.X.; Riu, J. Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens. Bioelectron., 2014, 54, 553-557.
[http://dx.doi.org/10.1016/j.bios.2013.11.053] [PMID: 24325983]
[23]
Chang, J.; Zhou, G.; Christensen, E.R.; Heideman, R.; Chen, J. Graphene-based sensors for detection of heavy metals in water: a review. Anal. Bioanal. Chem., 2014, 406(16), 3957-3975.
[http://dx.doi.org/10.1007/s00216-014-7804-x] [PMID: 24740529]
[24]
Gelinas, A.D.; Davies, D.R.; Janjic, N. Embracing proteins: structural themes in aptamer-protein complexes. Curr. Opin. Struct. Biol., 2016, 36, 122-132.
[http://dx.doi.org/10.1016/j.sbi.2016.01.009] [PMID: 26919170]
[25]
Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov., 2010, 9(7), 537-550.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
[26]
Chen, L.; Rashid, F.; Shah, A.; Awan, H.; Wu, M.; Liu, A.; Wang, J.; Zhu, T.; Luo, Z.; Shan, G. The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation. PNAS, 2015, 112(32), 10002-10007.
[27]
Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron., 2005, 20(12), 2424-2434.
[http://dx.doi.org/10.1016/j.bios.2004.11.006] [PMID: 15854817]
[28]
Jenison, R.D.; Gill, S.C.; Pardi, A.; Polisky, B. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152), 1425-1429.
[http://dx.doi.org/10.1126/science.7510417] [PMID: 7510417]
[29]
Sassanfar, M.; Szostak, J.W. An RNA motif that binds ATP. Nature, 1993, 364(6437), 550-553.
[http://dx.doi.org/10.1038/364550a0] [PMID: 7687750]
[30]
Moreno, M. Encyclopedia of Astrobiology; Springer: Berlin, Heidelberg, 2015, pp. 114-115.
[http://dx.doi.org/10.1007/978-3-662-44185-5_5167]
[31]
Pinyou, P.; Noguer, T.; Blay, V. Muresan, L.M. Enzyme- Modified electrodes for biosensor and biofeul cells. Meter. Horiz., 2019. 6, 1336-1358.
[32]
Justino, C.I.L.; Rocha-Santos, T.A.; Duarte, A.C.; Rocha-Santos, T.A. Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends Analyt. Chem., 2010, 29(10), 1172-1183.
[http://dx.doi.org/10.1016/j.trac.2010.07.008]
[33]
Leonard, P.; Hearty, S.; Brennan, J.; Dunne, L.; Quinn, J.; Chakraborty, T.; O’Kennedy, R. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol., 2003, 32(1), 3-13.
[http://dx.doi.org/10.1016/S0141-0229(02)00232-6]
[34]
Rogers, K.R. Recent advances in biosensor techniques for environmental monitoring. Anal. Chim. Acta, 2006, 568(1-2), 222-231.
[http://dx.doi.org/10.1016/j.aca.2005.12.067] [PMID: 17761264]
[35]
Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai, L. Biocompatible graphene oxide-based glucose biosensors. Langmuir, 2010, 26(9), 6158-6160.
[http://dx.doi.org/10.1021/la100886x] [PMID: 20349968]
[36]
Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature, 2006, 442(7100), 282-286.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[37]
Xia, Y.; Sun, Y.; Li, H.; Chen, S.; Zhu, T.; Wang, G.; Man, B.; Pan, J.; Yang, C. Plasma treated graphene FET sensor for the DNA hybridization detection. Talanta, 2021, 223(Pt 2), 121766.
[http://dx.doi.org/10.1016/j.talanta.2020.121766] [PMID: 33298276]
[38]
Xia, T.; Liu, G.; Wang, J.; Hou, S.; Hou, S. MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol. Biosens. Bioelectron., 2021, 183, 113243.
[http://dx.doi.org/10.1016/j.bios.2021.113243] [PMID: 33866135]
[39]
Zhang, Y.; Feng, D.; Xu, Y.; Yin, Z.; Dou, W.; Habiba, U.E.; Pan, C.; Zhang, Z.; Mou, H.; Deng, H.; Mi, X.; Dai, N. DNA-based functionalization of two-dimensional MoS2 FET biosensor for ultrasensitive detection of PSA. Appl. Surf. Sci., 2021, 548, 149169.
[http://dx.doi.org/10.1016/j.apsusc.2021.149169]
[40]
Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol., 2018, 16(1), 75.
[http://dx.doi.org/10.1186/s12951-018-0400-z] [PMID: 30243292]
[41]
Brent, J.R.; Savjani, N.; Lewis, E.A.; Haigh, S.J.; Lewis, D.J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. (Camb.), 2014, 50(87), 13338-13341.
[http://dx.doi.org/10.1039/C4CC05752J] [PMID: 25231502]
[42]
Druffel, D.; Lanetti, M.; Sundberg, J.; Pawlik, J.; Stark, M.; Donley, C.; McRae, L.; Scott, K.; Warren, S. Synthesis and electronic structure of a crystalline stack of MXene sheets. Chem. Mater., 2019, 31, 9788-9796.
[http://dx.doi.org/10.1021/acs.chemmater.9b03722]
[43]
Bukhtiyarova, M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem., 2019, 269, 494-506.
[http://dx.doi.org/10.1016/j.jssc.2018.10.018]
[44]
Sun, H.; Zhu, X.; Lu, P.Y.; Rosato, R.R.; Tan, W.; Zu, Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol. Ther. Nucleic Acids, 2014, 3(8), e182-e182.
[http://dx.doi.org/10.1038/mtna.2014.32] [PMID: 25093706]
[45]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[46]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[47]
Hermann, T.; Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science, 2000, 287(5454), 820-825.
[http://dx.doi.org/10.1126/science.287.5454.820] [PMID: 10657289]
[48]
Mayer, G. The chemical biology of aptamers. Angew. Chem. Int. Ed. Engl., 2009, 48(15), 2672-2689.
[http://dx.doi.org/10.1002/anie.200804643] [PMID: 19319884]
[49]
Gold, L. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem., 1995, 270(23), 13581-13584.
[http://dx.doi.org/10.1074/jbc.270.23.13581] [PMID: 7775406]
[50]
Geiger, A.; Burgstaller, P.; von der Eltz, H.; Roeder, A.; Famulok, M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res., 1996, 24(6), 1029-1036.
[http://dx.doi.org/10.1093/nar/24.6.1029] [PMID: 8604334]
[51]
Chen, L.; Rashid, F.; Shah, A.; Awan, H.M.; Wu, M.; Liu, A.; Wang, J.; Zhu, T.; Luo, Z.; Shan, G. The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation. Proc. Natl. Acad. Sci. USA, 2015, 112(32), 10002-10007.
[http://dx.doi.org/10.1073/pnas.1502159112] [PMID: 26216949]
[52]
Lee, J.F.; Stovall, G.M.; Ellington, A.D. Aptamer therapeutics advance. Curr. Opin. Chem. Biol., 2006, 10(3), 282-289.
[http://dx.doi.org/10.1016/j.cbpa.2006.03.015] [PMID: 16621675]
[53]
Eyetech Study Group Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology, 2003, 110(5), 979-986.
[http://dx.doi.org/10.1016/S0161-6420(03)00085-X] [PMID: 12750101]
[54]
Tombelli, S.; Minunni, M.; Mascini, M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng., 2007, 24(2), 191-200.
[http://dx.doi.org/10.1016/j.bioeng.2007.03.003] [PMID: 17434340]
[55]
Park, J-W.; Jin Lee, S.; Choi, E.J.; Kim, J.; Song, J.Y.; Bock Gu, M. An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. Biosens. Bioelectron., 2014, 51, 324-329.
[http://dx.doi.org/10.1016/j.bios.2013.07.052] [PMID: 23994614]
[56]
Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. Trends Analyt. Chem., 2008, 27(2), 108-117.
[http://dx.doi.org/10.1016/j.trac.2007.12.004]
[57]
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng., 2007, 24(4), 381-403.
[http://dx.doi.org/10.1016/j.bioeng.2007.06.001] [PMID: 17627883]
[58]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[59]
Jayasena, S.D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem., 1999, 45(9), 1628-1650.
[http://dx.doi.org/10.1093/clinchem/45.9.1628] [PMID: 10471678]
[60]
Zheng, D.; Zou, R.; Lou, X. Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR Gold, and exonuclease I. Anal. Chem., 2012, 84(8), 3554-3560.
[http://dx.doi.org/10.1021/ac300690r] [PMID: 22424113]
[61]
Nutiu, R.; Li, Y. Aptamers with fluorescence-signaling properties. Methods, 2005, 37(1), 16-25.
[http://dx.doi.org/10.1016/j.ymeth.2005.07.001] [PMID: 16199173]
[62]
Chen, C-H.; Wang, F-Y.; Mao, C-F.; Liao, W-T.; Hsieh, C-D. Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend films. Int. J. Biol. Macromol., 2008, 43(1), 37-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.09.005] [PMID: 17950454]
[63]
Jhaveri, S.D.; Kirby, R.; Conrad, R.; Maglott, E.J.; Bowser, M.; Kennedy, R.T.; Glick, G.; Ellington, A.D. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J. Am. Chem. Soc., 2000, 122(11), 2469-2473.
[http://dx.doi.org/10.1021/ja992393b]
[64]
Liu, Y.; Matharu, Z.; Howland, M.C.; Revzin, A.; Simonian, A.L. Affinity and enzyme-based biosensors: Recent advances and emerging applications in cell analysis and point-of-care testing. Anal. Bioanal. Chem., 2012, 404(4), 1181-1196.
[http://dx.doi.org/10.1007/s00216-012-6149-6] [PMID: 22722742]
[65]
Tan, L.; Neoh, K.G.; Kang, E-T.; Choe, W-S.; Su, X. Affinity analysis of DNA aptamer-peptide interactions using gold nanoparticles. Anal. Biochem., 2012, 421(2), 725-731.
[http://dx.doi.org/10.1016/j.ab.2011.12.007] [PMID: 22214880]
[66]
Liu, Z.F.; Ge, J.; Zhao, X.S. Quantitative detection of adenosine in urine using silver enhancement of aptamer- gold nanoparticle aggregation and progressive dilution. Chem. Commun. (Camb.), 2011, 47(17), 4956-4958.
[http://dx.doi.org/10.1039/c1cc10460h] [PMID: 21445394]
[67]
Du, Y.; Li, B.; Wang, E. Analytical potential of gold nanoparticles in functional aptamer-based biosensors. Bioanal. Rev., 2010, 1, 187-208.
[http://dx.doi.org/10.1007/s12566-010-0011-0]
[68]
Chen, Z.; Li, G.; Zhang, L.; Jiang, J.; Li, Z.; Peng, Z.; Deng, L. A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal. Bioanal. Chem., 2008, 392(6), 1185-1188.
[http://dx.doi.org/10.1007/s00216-008-2342-z] [PMID: 18854992]
[69]
Liu, Y.; Tuleouva, N.; Ramanculov, E.; Revzin, A. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal. Chem., 2010, 82(19), 8131-8136.
[http://dx.doi.org/10.1021/ac101409t] [PMID: 20815336]
[70]
Bonel, L.; Vidal, J.C.; Duato, P.; Castillo, J.R. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Biosens. Bioelectron., 2011, 26(7), 3254-3259.
[http://dx.doi.org/10.1016/j.bios.2010.12.036] [PMID: 21256729]
[71]
Bang, G.S.; Cho, S.; Kim, B-G. A novel electrochemical detection method for aptamer biosensors. Biosens. Bioelectron., 2005, 21(6), 863-870.
[http://dx.doi.org/10.1016/j.bios.2005.02.002] [PMID: 16257654]
[72]
Xu, D.; Xu, D.; Yu, X.; Liu, Z.; He, W.; Ma, Z. Label-free electrochemical detection for aptamer-based array electrodes. Anal. Chem., 2005, 77(16), 5107-5113.
[http://dx.doi.org/10.1021/ac050192m] [PMID: 16097746]
[73]
Wang, X.; Dong, P.; He, P.; Fang, Y. A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer. Anal. Chim. Acta, 2010, 658(2), 128-132.
[http://dx.doi.org/10.1016/j.aca.2009.11.007] [PMID: 20103085]
[74]
Baptista, P.; Pereira, E.; Eaton, P.; Doria, G.; Miranda, A.; Gomes, I.; Quaresma, P.; Franco, R. Gold nanoparticles for the development of clinical diagnosis methods. Anal. Bioanal. Chem., 2008, 391(3), 943-950.
[http://dx.doi.org/10.1007/s00216-007-1768-z] [PMID: 18157524]
[75]
Guo, S.; Dong, S. Biomolecule-nanoparticle hybrids for electrochemical biosensors. Trends Analyt. Chem., 2009, 28(1), 96-109.
[http://dx.doi.org/10.1016/j.trac.2008.10.014]
[76]
Chen, Z.; Li, L.; Zhao, H.; Guo, L.; Mu, X. Electrochemical impedance spectroscopy detection of lysozyme based on electrodeposited gold nanoparticles. Talanta, 2011, 83(5), 1501-1506.
[http://dx.doi.org/10.1016/j.talanta.2010.11.042] [PMID: 21238744]
[77]
Li, Y.; Qi, H.; Gao, Q.; Yang, J.; Zhang, C. Nanomaterial-amplified “signal off/on” electrogenerated chemiluminescence aptasensors for the detection of thrombin. Biosens. Bioelectron., 2010, 26(2), 754-759.
[http://dx.doi.org/10.1016/j.bios.2010.06.044] [PMID: 20650626]
[78]
Polsky, R.; Gill, R.; Kaganovsky, L.; Willner, I. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Anal. Chem., 2006, 78(7), 2268-2271.
[http://dx.doi.org/10.1021/ac0519864] [PMID: 16579607]
[79]
Zhou, L.; Ou, L-J.; Chu, X.; Shen, G-L.; Yu, R-Q. Aptamer-based rolling circle amplification: A platform for electrochemical detection of protein. Anal. Chem., 2007, 79(19), 7492-7500.
[http://dx.doi.org/10.1021/ac071059s] [PMID: 17722881]
[80]
MacKay, S.; Wishart, D.; Xing, J.; Chen, J. Developing trends in aptamer-based biosensor devices and their applications. Biomed. Circuits Sys., 2014, 8, 4-14.
[81]
Lee, J.; Jo, M.; Kim, T.H.; Ahn, J-Y.; Lee, D.K.; Kim, S.; Hong, S. Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species. Lab Chip, 2011, 11(1), 52-56.
[http://dx.doi.org/10.1039/C0LC00259C] [PMID: 20967396]
[82]
Luzi, E.; Minunni, M.; Tombelli, S.; Mascini, M. New trends in affinity sensing: Aptamers for ligand binding. Trends Analyt. Chem., 2003, 22(11), 810-818.
[http://dx.doi.org/10.1016/S0165-9936(03)01208-1]
[83]
Tombelli, S.; Minunni, M.; Luzi, E.; Mascini, M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry, 2005, 67(2), 135-141.
[http://dx.doi.org/10.1016/j.bioelechem.2004.04.011] [PMID: 16027048]
[84]
Yao, C.; Zhu, T.; Qi, Y.; Zhao, Y.; Xia, H.; Fu, W. Development of a quartz crystal microbalance biosensor with aptamers as bio-recognition element. Sensors (Basel), 2010, 10(6), 5859-5871.
[http://dx.doi.org/10.3390/s100605859] [PMID: 22219691]
[85]
Schlensog, M.D.; Gronewold, T.M.A.; Tewes, M.; Famulok, M.; Quandt, E. A love-wave biosensor using nucleic acids as ligands. Sens. Actuators B Chem., 2004, 101(3), 308-315.
[http://dx.doi.org/10.1016/j.snb.2004.03.015]
[86]
Navani, N.K.; Li, Y. Nucleic acid aptamers and enzymes as sensors. Curr. Opin. Chem. Biol., 2006, 10(3), 272-281.
[http://dx.doi.org/10.1016/j.cbpa.2006.04.003] [PMID: 16678470]
[87]
Savran, C.A.; Knudsen, S.M.; Ellington, A.D.; Manalis, S.R. Micromechanical detection of proteins using aptamer-based receptor molecules. Anal. Chem., 2004, 76(11), 3194-3198.
[http://dx.doi.org/10.1021/ac049859f] [PMID: 15167801]
[88]
Maehashi, K.; Katsura, T.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem., 2007, 79(2), 782-787.
[http://dx.doi.org/10.1021/ac060830g] [PMID: 17222052]
[89]
Wang, Z.; Wilkop, T.; Xu, D.; Dong, Y.; Ma, G.; Cheng, Q. Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips. Anal. Bioanal. Chem., 2007, 389(3), 819-825.
[http://dx.doi.org/10.1007/s00216-007-1510-x] [PMID: 17673982]
[90]
Schlecht, U.; Malavé, A.; Gronewold, T.; Tewes, M.; Löhndorf, M. Comparison of antibody and aptamer receptors for the specific detection of thrombin with a nanometer gap-sized impedance biosensor. Anal. Chim. Acta, 2006, 573-574, 65-68.
[http://dx.doi.org/10.1016/j.aca.2006.01.016] [PMID: 17723506]
[91]
Zhu, H.; Suter, J.D.; White, I.M.; Fan, X. Aptamer based microsphere biosensor for thrombin detection. Sensors (Basel), 2006, 6(8), 785-795.
[http://dx.doi.org/10.3390/s6080785]
[92]
Cheng, A.K.H.; Ge, B.; Yu, H-Z. Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal. Chem., 2007, 79(14), 5158-5164.
[http://dx.doi.org/10.1021/ac062214q] [PMID: 17566977]
[93]
Jarczewska, M.; Rębiś, J.; Górski, Ł.; Malinowska, E. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta, 2018, 189, 45-54.
[http://dx.doi.org/10.1016/j.talanta.2018.06.035] [PMID: 30086945]
[94]
Zelada-Guillén, G.A.; Riu, J.; Düzgün, A.; Rius, F.X. Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew. Chem. Int. Ed. Engl., 2009, 48(40), 7334-7337.
[http://dx.doi.org/10.1002/anie.200902090] [PMID: 19569156]
[95]
Zelada-Guillén, G.A.; Bhosale, S.V.; Riu, J.; Rius, F.X. Real-time potentiometric detection of bacteria in complex samples. Anal. Chem., 2010, 82(22), 9254-9260.
[http://dx.doi.org/10.1021/ac101739b] [PMID: 20961052]
[96]
So, H-M.; Park, D-W.; Jeon, E-K.; Kim, Y-H.; Kim, B.S.; Lee, C-K.; Choi, S.Y.; Kim, S.C.; Chang, H.; Lee, J-O. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small, 2008, 4(2), 197-201.
[http://dx.doi.org/10.1002/smll.200700664] [PMID: 18214875]
[97]
Lautner, G.; Balogh, Z.; Bardóczy, V.; Mészáros, T.; Gyurcsányi, R.E. Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst (Lond.), 2010, 135(5), 918-926.
[http://dx.doi.org/10.1039/b922829b] [PMID: 20419239]
[98]
Minunni, M.; Tombelli, S.; Gullotto, A.; Luzi, E.; Mascini, M. Development of biosensors with aptamers as bio-recognition element: The case of HIV-1 Tat protein. Biosens. Bioelectron., 2004, 20(6), 1149-1156.
[http://dx.doi.org/10.1016/j.bios.2004.03.037] [PMID: 15556361]
[99]
Kurt, H.; Yüce, M.; Hussain, B.; Budak, H. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens. Bioelectron., 2016, 81, 280-286.
[http://dx.doi.org/10.1016/j.bios.2016.03.005] [PMID: 26971274]
[100]
Ikanovic, M.; Rudzinski, W.E.; Bruno, J.G.; Allman, A.; Carrillo, M.P.; Dwarakanath, S.; Bhahdigadi, S.; Rao, P.; Kiel, J.L.; Andrews, C.J. Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J. Fluoresc., 2007, 17(2), 193-199.
[http://dx.doi.org/10.1007/s10895-007-0158-4] [PMID: 17265180]
[101]
Liu, Z.; Su, X. A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori. Biosens. Bioelectron., 2017, 87, 66-72.
[http://dx.doi.org/10.1016/j.bios.2016.07.061] [PMID: 27522014]
[102]
Pang, Y.; Rong, Z.; Wang, J.; Xiao, R.; Wang, S. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). Biosens. Bioelectron., 2015, 66, 527-532.
[http://dx.doi.org/10.1016/j.bios.2014.10.052] [PMID: 25506900]
[103]
Schax, E.; Lönne, M.; Scheper, T.; Belkin, S.; Walter, J. Aptamer-based depletion of small molecular contaminants: A case study using ochratoxin A. Biotechnol. Bioprocess Eng., 2015, 20, 1016-1025.
[http://dx.doi.org/10.1007/s12257-015-0486-1]
[104]
Li, Q.; Lu, Z.; Tan, X.; Xiao, X.; Wang, P.; Wu, L.; Shao, K.; Yin, W.; Han, H. Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosens. Bioelectron., 2017, 97, 59-64.
[http://dx.doi.org/10.1016/j.bios.2017.05.031] [PMID: 28554047]
[105]
Chen, Q.; Yang, M.; Yang, X.; Li, H.; Guo, Z.; Rahma, M.H. A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS-Fe3O4 for signal enrichment. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 189, 147-153.
[http://dx.doi.org/10.1016/j.saa.2017.08.029] [PMID: 28806700]
[106]
Yadav, R.; Kushwah, V.; Gaur, M.S.; Bhadauria, S.; Berlina, A.N.; Zherdev, A.V.; Dzantiev, B.B. Electrochemical aptamer biosensor for As3+ based on apta deep trapped Ag-Au alloy nanoparticles-impregnated glassy carbon electrode. Int. J. Environ. Anal. Chem., 2020, 100(6), 623-634.
[http://dx.doi.org/10.1080/03067319.2019.1638371]
[107]
Zhang, B.; Wei, C. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor. Talanta, 2018, 182, 125-130.
[http://dx.doi.org/10.1016/j.talanta.2018.01.061] [PMID: 29501131]
[108]
Lu, Y.; Zhong, J.; Yao, G.; Huang, Q. A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles. Sens. Actuators B Chem., 2018, 258, 365-372.
[http://dx.doi.org/10.1016/j.snb.2017.11.110]
[109]
Abu-Ali, H.; Nabok, A.; Smith, T.J. Development of novel and highly specific ssDNA-aptamer-based electrochemical biosensor for rapid detection of mercury (II) and lead (II) ions in water. Chemosensors (Basel), 2019, 7(2), 27.
[http://dx.doi.org/10.3390/chemosensors7020027]
[110]
Bala, R.; Mittal, S.; Sharma, R.K.; Wangoo, N. A supersensitive silver nanoprobe based aptasensor for low cost detection of malathion residues in water and food samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, 268-273.
[http://dx.doi.org/10.1016/j.saa.2018.02.007] [PMID: 29455078]
[111]
Arvand, M.; Mirroshandel, A.A. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Food Chem., 2019, 280, 115-122.
[http://dx.doi.org/10.1016/j.foodchem.2018.12.069] [PMID: 30642476]
[112]
Lee, E-H.; Lee, S.K.; Kim, M.J.; Lee, S-W. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor. Food Chem., 2019, 287, 205-213.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.079] [PMID: 30857691]
[113]
Wang, C-Y.; Zeng, Y.; Shen, A-G.; Hu, J-M. A highly sensitive SERS probe for bisphenol A detection based on functionalized Au@Ag nanoparticles. Anal. Methods, 2018, 10(47), 5622-5628.
[http://dx.doi.org/10.1039/C8AY01966E]
[114]
Xu, Z.; Wang, R.; Mei, B.; Ding, L.; Wang, L.; Chen, M.; Cheng, Y. A surface-enhanced Raman scattering active core/shell structure based on enzyme-guided crystal growth for bisphenol A detection. Anal. Methods, 2018, 10(31), 3878-3883.
[http://dx.doi.org/10.1039/C7AY02776A]
[115]
Yang, X.; Zhao, Y.; Sun, L.; Qi, H.; Gao, Q.; Zhang, C. Electrogenerated chemiluminescence biosensor array for the detection of multiple AMI biomarkers. Sens. Actuators B Chem., 2018, 257, 60-67.
[http://dx.doi.org/10.1016/j.snb.2017.10.108]
[116]
Chinnappan, R.; Zaghloul, N.S.; AlZabn, R.; Malkawi, A.; Abdel Rahman, A.; Abu-Salah, K.M.; Zourob, M. Aptamer selection and aptasensor construction for bone density biomarkers. Talanta, 2021, 224, 121818.
[http://dx.doi.org/10.1016/j.talanta.2020.121818] [PMID: 33379043]
[117]
Minopoli, A.; Della Ventura, B.; Lenyk, B.; Gentile, F.; Tanner, J.A.; Offenhäusser, A.; Mayer, D.; Velotta, R. Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat. Commun., 2020, 11(1), 6134.
[http://dx.doi.org/10.1038/s41467-020-19755-0] [PMID: 33262332]
[118]
Luo, C.; Wen, W.; Lin, F.; Zhang, X.; Gu, H.; Wang, S. Simplified aptamer-based colorimetric method using unmodified gold nanoparticles for the detection of carcinoma embryonic antigen. RSC Adv., 2015, 5(15), 10994-10999.
[http://dx.doi.org/10.1039/C4RA14833A]
[119]
Ou, D.; Sun, D.; Lin, X.; Liang, Z.; Zhong, Y.; Chen, Z. A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(23), 3661-3669.
[http://dx.doi.org/10.1039/C9TB00472F]
[120]
Qureshi, A.; Gurbuz, Y.; Niazi, J.H. Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sens. Actuators B Chem., 2015, 209, 645-651.
[http://dx.doi.org/10.1016/j.snb.2014.12.040]
[121]
Huang, C-C.; Huang, Y-F.; Cao, Z.; Tan, W.; Chang, H-T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem., 2005, 77(17), 5735-5741.
[http://dx.doi.org/10.1021/ac050957q] [PMID: 16131089]
[122]
Zhang, H.; Li, F.; Chen, H.; Ma, Y.; Qi, S.; Chen, X.; Zhou, L. AuNPs colorimetric sensor for detecting platelet-derived growth factor-BB based on isothermal target-triggering strand displacement amplification. Sens. Actuators B Chem., 2015, 207, 748-755.
[http://dx.doi.org/10.1016/j.snb.2014.11.007]
[123]
Tang, L.; Liu, Y.; Ali, M.M.; Kang, D.K.; Zhao, W.; Li, J. Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal. Chem., 2012, 84(11), 4711-4717.
[http://dx.doi.org/10.1021/ac203274k] [PMID: 22533853]
[124]
Ye, S.; Zhai, X.; Wu, Y.; Kuang, S. Dual-primer self-generation SERS signal amplification assay for PDGF-BB using label-free aptamer. Biosens. Bioelectron., 2016, 79, 130-135.
[http://dx.doi.org/10.1016/j.bios.2015.11.090] [PMID: 26703991]
[125]
Jiang, Y.; Fang, X.; Bai, C. Signaling aptamer/protein binding by a molecular light switch complex. Anal. Chem., 2004, 76(17), 5230-5235.
[http://dx.doi.org/10.1021/ac049565u] [PMID: 15373466]
[126]
Wang, X.; Jiang, A.; Hou, T.; Li, H.; Li, F. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Biosens. Bioelectron., 2015, 70, 324-329.
[http://dx.doi.org/10.1016/j.bios.2015.03.053] [PMID: 25840018]
[127]
Li, H.; Wang, M.; Wang, C.; Li, W.; Qiang, W.; Xu, D. Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection. Anal. Chem., 2013, 85(9), 4492-4499.
[http://dx.doi.org/10.1021/ac400047d] [PMID: 23531211]
[128]
Shin, S.R.; Zhang, Y.S.; Kim, D-J.; Manbohi, A.; Avci, H.; Silvestri, A.; Aleman, J.; Hu, N.; Kilic, T.; Keung, W.; Righi, M.; Assawes, P.; Alhadrami, H.A.; Li, R.A.; Dokmeci, M.R.; Khademhosseini, A. Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal. Chem., 2016, 88(20), 10019-10027.
[http://dx.doi.org/10.1021/acs.analchem.6b02028] [PMID: 27617489]
[129]
Singh, R.K.; Kumar, R.; Singh, D.P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv., 2016, 6(69), 64993-65011.
[http://dx.doi.org/10.1039/C6RA07626B]
[130]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[131]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[132]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[133]
Ambrosi, A.; Chua, C.K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev., 2014, 114(14), 7150-7188.
[http://dx.doi.org/10.1021/cr500023c] [PMID: 24895834]
[134]
Sekhon, S.S.; Kaur, P.; Kim, Y.-H.; Sekhon, S.S. 2D graphene oxide–aptamer conjugate materials for cancer diagnosis. NPJ 2D Mater. Applicat., 2021, 5(1), 21.
[135]
Dos Santos, V.C.F.; Almeida, N.B.F.; de Sousa, T.A.S.L.; Araujo, E.N.D.; de Andrade, A.S.R.; Plentz, F. Real-time PCR for direct aptamer quantification on functionalized graphene surfaces. Sci. Rep., 2019, 9(1), 19311.
[http://dx.doi.org/10.1038/s41598-019-55892-3] [PMID: 31848419]
[136]
Wu, L.; Lu, X.; Fu, X.; Wu, L.; Liu, H. Gold nanoparticles dotted reduction graphene oxide nanocomposite based electrochemical aptasensor for selective, rapid, sensitive and congener-specific PCB77 detection. Sci. Rep., 2017, 7(1), 5191.
[http://dx.doi.org/10.1038/s41598-017-05352-7] [PMID: 28701748]
[137]
Peruzzi, C.; Battistoni, S.; Montesarchio, D.; Cocuzza, M.; Marasso, S.L.; Verna, A.; Pasquardini, L.; Verucchi, R.; Aversa, L.; Erokhin, V.; D’Angelo, P.; Iannotta, S. Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices. Sci. Rep., 2021, 11(1), 9380.
[http://dx.doi.org/10.1038/s41598-021-88546-4] [PMID: 33931690]
[138]
Gupta, R.; Kumar, A.; Kumar, S.; Pinnaka, A.K.; Singhal, N.K. Naked eye colorimetric detection of Escherichia coli using aptamer conjugated graphene oxide enclosed Gold nanoparticles. Sens. Actuators B Chem., 2021, 329, 129100.
[http://dx.doi.org/10.1016/j.snb.2020.129100]
[139]
Wang, Y.; Sun, S.; Luo, J.; Xiong, Y.; Ming, T.; Liu, J.; Ma, Y.; Yan, S.; Yang, Y.; Yang, Z.; Reboud, J.; Yin, H.; Cooper, J.M.; Cai, X. Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsyst. Nanoeng., 2020, 6(1), 32.
[http://dx.doi.org/10.1038/s41378-020-0146-2] [PMID: 34567646]
[140]
Heydari-Bafrooei, E.; Shamszadeh, N.S. Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens. Bioelectron., 2017, 91, 284-292.
[http://dx.doi.org/10.1016/j.bios.2016.12.048] [PMID: 28033557]
[141]
Bharti, A.; Rana, S.; Dahiya, D.; Agnihotri, N.; Prabhakar, N. An electrochemical aptasensor for analysis of MUC1 using gold platinum bimetallic nanoparticles deposited carboxylated graphene oxide. Anal. Chim. Acta, 2020, 1097, 186-195.
[http://dx.doi.org/10.1016/j.aca.2019.11.005] [PMID: 31910959]
[142]
Ueno, Y.; Furukawa, K.; Matsuo, K.; Inoue, S.; Hayashi, K.; Hibino, H. On-chip graphene oxide aptasensor for multiple protein detection. Anal. Chim. Acta, 2015, 866, 1-9.
[http://dx.doi.org/10.1016/j.aca.2014.10.047] [PMID: 25732687]
[143]
Pan, L-H.; Kuo, S-H.; Lin, T-Y.; Lin, C-W.; Fang, P-Y.; Yang, H-W. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosens. Bioelectron., 2017, 89(Pt 1), 598-605.
[http://dx.doi.org/10.1016/j.bios.2016.01.077] [PMID: 26868935]
[144]
Zhu, Y.; Cai, Y.; Xu, L.; Zheng, L.; Wang, L.; Qi, B.; Xu, C. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl. Mater. Interfaces, 2015, 7(14), 7492-7496.
[http://dx.doi.org/10.1021/acsami.5b00199] [PMID: 25799081]
[145]
Youn, H.; Lee, K.; Her, J.; Jeon, J.; Mok, J.; So, J.I.; Shin, S.; Ban, C. Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex. Sci. Rep., 2019, 9(1), 7659.
[http://dx.doi.org/10.1038/s41598-019-44051-3] [PMID: 31114011]
[146]
Zhang, S.; Ma, L.; Ma, K.; Xu, B.; Liu, L.; Tian, W. Label-free aptamer-based biosensor for specific detection of chloramphenicol using AIE probe and Graphene Oxide. ACS Omega, 2018, 3(10), 12886-12892.
[http://dx.doi.org/10.1021/acsomega.8b01812] [PMID: 30411022]
[147]
Esteban-Fernández de Ávila, B.; Lopez-Ramirez, M.A.; Báez, D.F.; Jodra, A.; Singh, V.V.; Kaufmann, K.; Wang, J. Aptamer-modified Graphene-based catalytic micromotors: Off–on fluorescent detection of ricin. ACS Sens., 2016, 1(3), 217-221.
[http://dx.doi.org/10.1021/acssensors.5b00300]
[148]
Weng, X.; Neethirajan, S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosens. Bioelectron., 2016, 85, 649-656.
[http://dx.doi.org/10.1016/j.bios.2016.05.072] [PMID: 27240012]
[149]
Wang, M.; Lin, Z.; Liu, Q.; Jiang, S.; Liu, H.; Su, X. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection. Anal. Chim. Acta, 2018, 1012, 66-73.
[http://dx.doi.org/10.1016/j.aca.2018.01.029] [PMID: 29475475]
[150]
Li, M.; Zhou, X.; Ding, W.; Guo, S.; Wu, N. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens. Bioelectron., 2013, 41, 889-893.
[http://dx.doi.org/10.1016/j.bios.2012.09.060] [PMID: 23098856]
[151]
Dolati, S.; Ramezani, M.; Nabavinia, M.S.; Soheili, V.; Abnous, K.; Taghdisi, S.M. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay. Anal. Biochem., 2018, 549, 124-129.
[http://dx.doi.org/10.1016/j.ab.2018.03.021] [PMID: 29574118]
[152]
Chawjiraphan, W.; Apiwat, C.; Segkhoonthod, K.; Treerattrakoon, K.; Pinpradup, P.; Sathirapongsasuti, N.; Pongprayoon, P.; Luksirikul, P.; Isarankura-Na-Ayudhya, P.; Japrung, D. Sensitive detection of albuminuria by graphene oxide-mediated fluorescence quenching aptasensor. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231, 118128.
[http://dx.doi.org/10.1016/j.saa.2020.118128] [PMID: 32066078]
[153]
Sun, Y.; Lin, Y.; Sun, W.; Han, R.; Luo, C.; Wang, X.; Wei, Q. A highly selective and sensitive detection of insulin with chemiluminescence biosensor based on aptamer and oligonucleotide-AuNPs functionalized nanosilica @ graphene oxide aerogel. Anal. Chim. Acta, 2019, 1089, 152-164.
[http://dx.doi.org/10.1016/j.aca.2019.09.004] [PMID: 31627812]
[154]
Sun, Y.; Ding, C.; Lin, Y.; Sun, W.; Liu, H.; Zhu, X.; Dai, Y.; Luo, C. Highly selective and sensitive chemiluminescence biosensor for adenosine detection based on carbon quantum dots catalyzing luminescence released from aptamers functionalized graphene@magnetic β-cyclodextrin polymers. Talanta, 2018, 186, 238-247.
[http://dx.doi.org/10.1016/j.talanta.2018.04.068] [PMID: 29784355]
[155]
Yang, W.; Zhang, G.; Ni, J.; Wang, Q.; Lin, Z. From signal amplification to restrained background: Magnetic graphene oxide assisted homogeneous electrochemiluminescence aptasensor for highly sensitive detection of okadaic acid. Sens. Actuators B Chem., 2021, 327, 128872.
[http://dx.doi.org/10.1016/j.snb.2020.128872]
[156]
Niu, Y.; Xie, H.; Luo, G.; Zhuang, Y.; Wu, X.; Li, G.; Sun, W. ZnO-reduced graphene oxide composite based photoelectrochemical aptasensor for sensitive Cd(II) detection with methylene blue as sensitizer. Anal. Chim. Acta, 2020, 1118, 1-8.
[http://dx.doi.org/10.1016/j.aca.2020.04.042] [PMID: 32418599]
[157]
Peng, B.; Lu, Y.; Luo, J.; Zhang, Z.; Zhu, X.; Tang, L.; Wang, L.; Deng, Y.; Ouyang, X.; Tan, J.; Wang, J. Visible light-activated self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection based on DFT-proved Z-scheme Ag2CrO4/g-C3N4/graphene oxide. J. Hazard. Mater., 2021, 401, 123395.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123395] [PMID: 32653796]
[158]
Ding, L.; Wei, J.; Qiu, Y.; Wang, Y.; Wen, Z.; Qian, J.; Hao, N.; Ding, C.; Li, Y.; Wang, K. One-step hydrothermal synthesis of telluride molybdenum/reduced graphene oxide with Schottky barrier for fabricating label-free photoelectrochemical profenofos aptasensor. Chem. Eng. J., 2021, 407, 127213.
[http://dx.doi.org/10.1016/j.cej.2020.127213]
[159]
Wang, C.; Cui, X.; Li, Y.; Li, H.; Huang, L.; Bi, J.; Luo, J.; Ma, L.Q.; Zhou, W.; Cao, Y.; Wang, B.; Miao, F. A label-free and portable graphene FET aptasensor for children blood lead detection. Sci. Rep., 2016, 6(1), 21711.
[http://dx.doi.org/10.1038/srep21711] [PMID: 26906251]
[160]
Farid, S.; Meshik, X.; Choi, M.; Mukherjee, S.; Lan, Y.; Parikh, D.; Poduri, S.; Baterdene, U.; Huang, C-E.; Wang, Y.Y.; Burke, P.; Dutta, M.; Stroscio, M.A. Detection of Interferon gamma using graphene and aptamer based FET- like electrochemical biosensor. Biosens. Bioelectron., 2015, 71, 294-299.
[http://dx.doi.org/10.1016/j.bios.2015.04.047] [PMID: 25919809]
[161]
Ji, J.; Pang, Y.; Li, D.; Huang, Z.; Zhang, Z.; Xue, N.; Xu, Y.; Mu, X. An aptamer-based shear horizontal surface acoustic wave biosensor with a CVD-grown single-layered graphene film for high-sensitivity detection of a label-free endotoxin. Microsyst. Nanoeng., 2020, 6(1), 4.
[http://dx.doi.org/10.1038/s41378-019-0118-6] [PMID: 34567619]
[162]
Chakraborty, B.; Das, A.; Mandal, N.; Samanta, N.; Das, N.; Chaudhuri, C.R. Label free, electric field mediated ultrasensitive electrochemical point-of-care device for CEA detection. Sci. Rep., 2021, 11(1), 2962.
[http://dx.doi.org/10.1038/s41598-021-82580-y] [PMID: 33536505]
[163]
Lee, K.; Yoo, Y.K.; Chae, M-S.; Hwang, K.S.; Lee, J.; Kim, H.; Hur, D.; Lee, J.H. Highly selective reduced Graphene Oxide (rGO) sensor based on a peptide aptamer receptor for detecting explosives. Sci. Rep., 2019, 9(1), 10297.
[http://dx.doi.org/10.1038/s41598-019-45936-z] [PMID: 31311944]
[164]
Gu, H.; Duan, N.; Wu, S.; Hao, L.; Xia, Y.; Ma, X.; Wang, Z. Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci. Rep., 2016, 6, 21665-21665.
[http://dx.doi.org/10.1038/srep21665] [PMID: 26898784]
[165]
Mo, R.; He, L.; Yan, X.; Su, T.; Zhou, C.; Wang, Z.; Hong, P.; Sun, S.; Li, C. A novel aflatoxin B1 biosensor based on a porous anodized alumina membrane modified with graphene oxide and an aflatoxin B1 aptamer. Electrochem. Commun., 2018, 95, 9-13.
[http://dx.doi.org/10.1016/j.elecom.2018.08.012]
[166]
Eissa, S.; Zourob, M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens. Bioelectron., 2017, 91, 169-174.
[http://dx.doi.org/10.1016/j.bios.2016.12.020] [PMID: 28006685]
[167]
Farzadfard, A.; Shayeh, J.S.; Habibi-Rezaei, M.; Omidi, M. Modification of reduced graphene/Au-aptamer to develop an electrochemical based aptasensor for measurement of glycated albumin. Talanta, 2020, 211, 120722.
[http://dx.doi.org/10.1016/j.talanta.2020.120722] [PMID: 32070572]
[168]
Xie, L.; You, L.; Cao, X. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 109, 110-115.
[http://dx.doi.org/10.1016/j.saa.2013.02.017] [PMID: 23501724]
[169]
Kwun, J.; Yun, S.; Park, L.; Lee, J.H. Development of 1,1′-oxalyldiimidazole chemiluminescent biosensor using the combination of graphene oxide and hairpin aptamer and its application. Talanta, 2014, 119, 262-267.
[http://dx.doi.org/10.1016/j.talanta.2013.10.067] [PMID: 24401413]
[170]
Zhang, W.; Chen, Z.; Guan, Y.; Liu, C.; Zheng, K.; Zou, X. Aptamer-functionalized screen-printed electrode coupled with graphene oxide and methylene blue nanocomposite as enhanced signal label for total arsenic determination in shellfish. Sens. Actuators B Chem., 2021, 335, 129383.
[http://dx.doi.org/10.1016/j.snb.2020.129383]
[171]
Fan, L.; Wang, G.; Liang, W.; Yan, W.; Guo, Y.; Shuang, S.; Dong, C.; Bi, Y. Label-free and highly selective electrochemical aptasensor for detection of PCBs based on nickel hexacyanoferrate nanoparticles/reduced graphene oxides hybrids. Biosens. Bioelectron., 2019, 145, 111728.
[http://dx.doi.org/10.1016/j.bios.2019.111728] [PMID: 31561095]
[172]
Du, L.; Lu, W.; Gao, B.; Wang, J.; Yu, L. Authenticating raw from reconstituted milk using fourier transform infrared spectroscopy and chemometrics. J. Food Qual., 2019, 2019, 5487890.
[http://dx.doi.org/10.1155/2019/5487890]
[173]
Lee, C-S.; Yu, S.H.; Kim, T.H. A “turn-on” electrochemical aptasensor for ultrasensitive detection of Cd2+ using duplexed aptamer switch on electrochemically reduced graphene oxide electrode. Microchem. J., 2020, 159, 105372.
[http://dx.doi.org/10.1016/j.microc.2020.105372]
[174]
Mousavi Nodoushan, S.; Nasirizadeh, N.; Amani, J.; Halabian, R.; Imani Fooladi, A.A. An electrochemical aptasensor for staphylococcal enterotoxin B detection based on reduced graphene oxide and gold nano-urchins. Biosens. Bioelectron., 2019, 127, 221-228.
[http://dx.doi.org/10.1016/j.bios.2018.12.021] [PMID: 30622036]
[175]
Guo, W.; Umar, A.; Alsaiari, M.A.; Wang, L.; Pei, M. Ultrasensitive and selective label-free aptasensor for the detection of penicillin based on nanoporous PtTi/graphene oxide-Fe3O4/ MWCNT-Fe3O4 nanocomposite. Microchem. J., 2020, 158, 105270.
[http://dx.doi.org/10.1016/j.microc.2020.105270]
[176]
Li, G.; Feng, H.; Shi, X.; Chen, M.; Liang, J.; Zhou, Z. Highly sensitive electrochemical aptasensor for Glypican-3 based on reduced graphene oxide-hemin nanocomposites modified on screen-printed electrode surface. Bioelectrochemistry, 2021, 138, 107696.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107696] [PMID: 33254049]
[177]
Appaturi, J.N.; Pulingam, T.; Thong, K.L.; Muniandy, S.; Ahmad, N.; Leo, B.F. Rapid and sensitive detection of Salmonella with reduced graphene oxide-carbon nanotube based electrochemical aptasensor. Anal. Biochem., 2020, 589, 113489.
[http://dx.doi.org/10.1016/j.ab.2019.113489] [PMID: 31655050]
[178]
Villalonga, A.; Vegas, B.; Paniagua, G.; Eguílaz, M.; Mayol, B.; Parrado, C.; Rivas, G.; Díez, P.; Villalonga, R. Amperometric aptasensor for carcinoembryonic antigen based on a reduced graphene oxide/gold nanoparticles modified electrode. J. Electroanal. Chem. (Lausanne), 2020, 877, 114511.
[http://dx.doi.org/10.1016/j.jelechem.2020.114511]
[179]
Lu, H.; Wang, G.; Dai, R.; Ding, X.; Liu, M.; Sun, H.; Sun, C.; Zhao, G. Visible-light-driven photoelectrochemical aptasensor based on reduced graphene oxide/Ti–Fe–O nanotube arrays for highly sensitive and selective determination of microcystin-LR. Electrochim. Acta, 2019, 324, 134820.
[http://dx.doi.org/10.1016/j.electacta.2019.134820]
[180]
Liu, J.; Jiang, X.; Zhang, R.; Zhang, Y.; Wu, L.; Lu, W.; Li, J.; Li, Y.; Zhang, H. MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater., 2019, 29(6), 1807326.
[http://dx.doi.org/10.1002/adfm.201807326]
[181]
Khan, R.; Andreescu, S. MXenes-based bioanalytical sensors: Design, characterization, and applications. Sensors (Basel), 2020, 20(18), E5434.
[http://dx.doi.org/10.3390/s20185434] [PMID: 32971879]
[182]
Tao, W.; Kong, N.; Ji, X.; Zhang, Y.; Sharma, A.; Ouyang, J.; Qi, B.; Wang, J.; Xie, N.; Kang, C.; Zhang, H.; Farokhzad, O.C.; Kim, J.S. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev., 2019, 48(11), 2891-2912.
[http://dx.doi.org/10.1039/C8CS00823J] [PMID: 31120049]
[183]
Peng, X.; Zhang, Y.; Lu, D.; Guo, Y.; Guo, S. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens. Actuators B Chem., 2019, 286, 222-229.
[http://dx.doi.org/10.1016/j.snb.2019.01.158]
[184]
Zhang, Q.; Wang, F.; Zhang, H.; Zhang, Y.; Liu, M.; Liu, Y. Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal. Chem., 2018, 90(21), 12737-12744.
[http://dx.doi.org/10.1021/acs.analchem.8b03083] [PMID: 30350604]
[185]
Zhang, H.; Wang, Z.; Zhang, Q.; Wang, F.; Liu, Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens. Bioelectron., 2019, 124-125, 184-190.
[http://dx.doi.org/10.1016/j.bios.2018.10.016] [PMID: 30388560]
[186]
Zhang, H.; Wang, Z.; Wang, F.; Zhang, Y.; Wang, H.; Liu, Y. In Situ Formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal. Chem., 2020, 92(7), 5546-5553.
[http://dx.doi.org/10.1021/acs.analchem.0c00469] [PMID: 32186362]
[187]
Zheng, J.; Wang, B.; Ding, A.; Weng, B.; Chen, J. Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J. Electroanal. Chem. (Lausanne), 2018, 816, 189-194.
[http://dx.doi.org/10.1016/j.jelechem.2018.03.056]
[188]
Zhou, S.; Gu, C.; Li, Z.; Yang, L.; He, L.; Wang, M.; Huang, X.; Zhou, N.; Zhang, Z. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl. Surf. Sci., 2019, 498, 143889.
[http://dx.doi.org/10.1016/j.apsusc.2019.143889]
[189]
Wang, H.; Sun, J.; Lu, L.; Yang, X.; Xia, J.; Zhang, F.; Wang, Z. Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal. Chim. Acta, 2020, 1094, 18-25.
[http://dx.doi.org/10.1016/j.aca.2019.10.003] [PMID: 31761044]
[190]
Liu, Y.; Zeng, H.; Chai, Y.; Yuan, R.; Liu, H. Ti3C2/BiVO4 Schottky junction as a signal indicator for ultrasensitive photoelectrochemical detection of VEGF165. Chem. Commun. (Camb.), 2019, 55(91), 13729-13732.
[http://dx.doi.org/10.1039/C9CC07108C] [PMID: 31661085]
[191]
Fang, D.; Zhao, D.; Zhang, S.; Huang, Y.; Dai, H.; Lin, Y. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sens. Actuators B Chem., 2020, 305, 127544.
[http://dx.doi.org/10.1016/j.snb.2019.127544]
[192]
Yoffe, A.D. Electronic properties of low dimensional solids: The physics and chemistry of layer type transition metal dichalcogenides and their intercalate complexes. Solid State Ion., 1990, 39, 1-7.
[http://dx.doi.org/10.1016/0167-2738(90)90021-I]
[193]
Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11), 699-712.
[http://dx.doi.org/10.1038/nnano.2012.193] [PMID: 23132225]
[194]
Su, S.; Sun, H.; Cao, W.; Chao, J.; Peng, H.; Zuo, X.; Yuwen, L.; Fan, C.; Wang, L. Dual-target electrochemical biosensing based on DNA structural switching on gold nanoparticle-decorated MoS2 nanosheets. ACS Appl. Mater. Interfaces, 2016, 8(11), 6826-6833.
[http://dx.doi.org/10.1021/acsami.5b12833] [PMID: 26938994]
[195]
Kong, R-M.; Ding, L.; Wang, Z-J.; You, J.; Qu, F. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal. Bioanal. Chem., 2014, 407(2), 369-377.
[PMID: 25366976]
[196]
Zhang, W.; Yang, J.; Wu, D. Surface-functionalized MoS 2 nanosheets sensor for direct electrochemical detection of PIK3CA gene related to lung cancer. J. Electrochem. Soc., 2020, 167, 027501.
[http://dx.doi.org/10.1149/1945-7111/ab61ec]
[197]
Chen, X.; Hao, S.; Zong, B.; Liu, C.; Mao, S. Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens. Bioelectron., 2019, 145, 111711.
[http://dx.doi.org/10.1016/j.bios.2019.111711] [PMID: 31563801]
[198]
Majd, S.M.; Salimi, A.; Ghasemi, F. An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens. Bioelectron., 2018, 105, 6-13.
[http://dx.doi.org/10.1016/j.bios.2018.01.009] [PMID: 29331901]
[199]
Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc., 2013, 135(16), 5998-6001.
[http://dx.doi.org/10.1021/ja4019572] [PMID: 23570230]
[200]
Kenry; Geldert, A.; Zhang, X.; Zhang, H.; Lim, C.T. Highly sensitive and selective aptamer-based fluorescence detection of a malarial biomarker using single-layer MoS2 nanosheets. ACS Sens., 2016, 1, 1315-1321.
[201]
Geldert, A. K.; Lim, C.T. Paper-based MoS2 nanosheet- mediated FRET aptasensor for rapid malaria diagnosis. Sci. Rep., 2017, 7(1), 17510.
[202]
Zhu, F.; Li, D.; Ding, Q.; Lei, C.; Ren, L.; Ding, X.; Sun, X. 2D magnetic MoS2-Fe3O4 hybrid nanostructures for ultrasensitive exosome detection in GMR sensor. Biosens. Bioelectron., 2020, 147, 111787.
[http://dx.doi.org/10.1016/j.bios.2019.111787] [PMID: 31655381]
[203]
Huang, K-J.; Liu, Y-J.; Shi, G-W.; Yang, X-R.; Liu, Y-M. Label-free aptamer sensor for 17β-estradiol based on vanadium disulfide nanoflowers and Au nanoparticles. Sens. Actuators B Chem., 2014, 201, 579-585.
[http://dx.doi.org/10.1016/j.snb.2014.05.055]
[204]
Yin, X.; Cai, J.; Feng, H.; Wu, Z.; Zou, J.; Cai, Q. A novel VS2 nanosheet-based biosensor for rapid fluorescence detection of Cytochrome C. New J. Chem., 2014, 3, 39.
[205]
He, D.; He, X.; Wang, K.; Tong, Z.; Yang, X.; Li, X.; Zou, Z. Nanometer-sized manganese Oxide-Quenched fluorescent oligonucleotides: An effective sensing platform for probing biomolecular interactions. In: Chemical communications; Cambridge, England, 2014; p. 50.
[206]
Adeel, M.; Rahman, M.; Lee, J-J. Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold nanoparticles decorated boron nitride nanosheets. Biosens. Bioelectron., 2018, 126, 143-150.
[PMID: 30399516]
[207]
Kumar, V.; Brent, J.; Shorie, M.; Kaur, H. G.; Thomas, A.; Lewis, E.; Rooney, A.; Nguyễn, L.; Zhong, X.; Burke, M.; Haigh, S.; Walton, A.; McNaughter, P.; Tedstone, A.; Savjani, N.; Muryn, C.; O’Brien, P.; Ganguli, A.; Priyanka, D. A nanostructured aptamer-functionalised black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces, 2016, 8, 35.
[208]
Yuan, Y.; Li, R.; Liu, Z.Y. Establishing water-soluble layered WS2 nanosheet as a platform for biosensing. Anal. Chem., 2014, 86, 3610-3615.
[http://dx.doi.org/10.1021/ac5002096]
[209]
Xi, Q.; Zhou, D-M.; Kan, Y-Y.; Ge, J.; Wu, Z-K.; Yu, R-Q.; Jiang, J-H. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal. Chem., 2014, 86(3), 1361-1365.
[http://dx.doi.org/10.1021/ac403944c] [PMID: 24446758]
[210]
Zhang, X.; Chi, K-N.; Li, D-L.; Deng, Y.; Ma, Y-C.; Xu, Q-Q.; Hu, R.; Yang, Y-H. 2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein. Biosens. Bioelectron., 2019, 129, 64-71.
[http://dx.doi.org/10.1016/j.bios.2019.01.009] [PMID: 30684856]
[211]
He, L.; Duan, F.; Song, Y.; Guo, C.; Zhao, H.; Tian, J.-Y.; Zhang, Z.; Liu, C.-S.; Zhang, X.; Wang, P.; Du, M.; Fang, S.-M. 2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: Consistency between electrochemical and surface plasmon resonance methods. 2D Materials, 2017, 4, 025098.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy