Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

The Impact of Polyphenolics in the Management of Breast Cancer: Mechanistic Aspects and Recent Patents

Author(s): Heba A.S. El-Nashar*, Shaza H. Aly, Amirhossein Ahmadi and Mohamed El-Shazly*

Volume 17, Issue 4, 2022

Published on: 12 April, 2022

Page: [358 - 379] Pages: 22

DOI: 10.2174/1574892816666211213090623

Price: $65

Abstract

Background: Breast cancer is the most frequently diagnosed type of cancer in women, accounting for 2.1 million cases, and stands as the fifth leading cause of death. Several treatment strategies are available, such as surgical resection, radiation, hormonal therapy, and conventional chemotherapy; however, these are associated with severe adverse effects in the patients.

Objectives: This review aims to summarize the different studies (in vitro, in vivo, and new patents) concerning the therapeutic potential of plant polyphenolics in the management of breast cancer, published in the period from January 2016 to January 2021. Moreover, this review will focus on the underlying mechanisms of action and molecular characteristics of these compounds.

Methods: The data of this review were collected from different scientific databases, such as Pub- Med, Science Direct, Google Scholarship, SciFinder, and Egyptian Knowledge Bank (EKB).

Results: During the period 2016-2021, in the in vitro studies, investigation on 52 compounds of polyphenolic nature with promising anti-breast cancer activity has been conducted, while 14 compounds have been reported via in vivo studies. Besides, about 15 compounds have been registered as patent drugs. Different mechanisms of action and molecular targets have been reported, providing a clarified basis and precise reflection of the anticancer properties of these compounds against breast cancer.

Conclusion: Polyphenolics represent a comprehensive source of anticancer lead compounds against the progression of breast cancer invasion and metastasis.

Keywords: Breast cancer, chemotherapy, polyphenolics, patents, metastasis, anticancer.

[1]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J. Breast Cancer: Epidemiology and Etiology. Cell Biochem Biophys 2015; 72(2): 333-8.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[3]
Di Cosimo S, Baselga J. Management of breast cancer with targeted agents: importance of heterogeneity. [corrected]. Nat Rev Clin Oncol 2010; 7(3): 139-47.
[http://dx.doi.org/10.1038/nrclinonc.2009.234] [PMID: 20125090]
[4]
Kayl AE, Meyers CA. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Curr Opin Obstet Gynecol 2006; 18(1): 24-8.
[http://dx.doi.org/10.1097/01.gco.0000192996.20040.24] [PMID: 16493256]
[5]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[6]
Li J, Hu L, Zhou T, et al. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci 2019; 232: 116617.
[http://dx.doi.org/10.1016/j.lfs.2019.116617] [PMID: 31260685]
[7]
Ávila-Gálvez MÁ, Giménez-Bastida JA, Espín JC, González-Sarrías A. Dietary Phenolics against Breast Cancer. A Critical Evidence-Based Review and Future Perspectives. Int J Mol Sci 2020; 21(16): E5718.
[http://dx.doi.org/10.3390/ijms21165718] [PMID: 32784973]
[8]
Lage NN, Layosa MAA, Arbizu S, et al. Dark sweet cherry (Prunus avium) phenolics enriched in anthocyanins exhibit enhanced activity against the most aggressive breast cancer subtypes without toxicity to normal breast cells. J Funct Foods 2020; 64: 103710.
[http://dx.doi.org/10.1016/j.jff.2019.103710]
[9]
Teixeira A, Baenas N, Dominguez-Perles R, et al. Natural bioactive compounds from winery by-products as health promoters: A review. Int J Mol Sci 2014; 15(9): 15638-78.
[http://dx.doi.org/10.3390/ijms150915638] [PMID: 25192288]
[10]
Ferraz da Costa DC, Pereira Rangel L, Quarti J, Santos RA, Silva JL, Fialho E. Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy. Molecules 2020; 25(15): E3531.
[http://dx.doi.org/10.3390/molecules25153531] [PMID: 32752302]
[11]
Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18(14): 1818-92.
[http://dx.doi.org/10.1089/ars.2012.4581] [PMID: 22794138]
[12]
Bonta RK. Dietary Phenolic Acids and Flavonoids as Potential Anti-Cancer Agents: Current State of the Art and Future Perspectives. Anticancer Agents Med Chem 2020; 20(1): 29-48.
[http://dx.doi.org/10.2174/1871520619666191019112712] [PMID: 31648651]
[13]
Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ 2008; 337: a1344.
[http://dx.doi.org/10.1136/bmj.a1344] [PMID: 18786971]
[14]
Lu Y, Foo LY. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 2000; 68(1): 81-5.
[http://dx.doi.org/10.1016/S0308-8146(99)00167-3]
[15]
Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 2016; 8(9): E552.
[http://dx.doi.org/10.3390/nu8090552] [PMID: 27618095]
[16]
Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C. Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed Pharmacother 2018; 108: 547-57.
[http://dx.doi.org/10.1016/j.biopha.2018.09.069] [PMID: 30243088]
[17]
Abotaleb M, Liskova A, Kubatka P, Büsselberg D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020; 10(2): E221.
[http://dx.doi.org/10.3390/biom10020221] [PMID: 32028623]
[18]
Monks NR, Bordignon SA, Ferraz A, et al. Anti-tumour screening of Brazilian plants. Pharm Biol 2002; 40(8): 603-16.
[http://dx.doi.org/10.1076/phbi.40.8.603.14658]
[19]
Montagner M, Sahai E. in vitro models of breast cancer metastatic dormancy. Front Cell Dev Biol 2020; 8: 37.
[http://dx.doi.org/10.3389/fcell.2020.00037] [PMID: 32195244]
[20]
Jin J, Qiu S, Wang P, et al. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J Exp Clin Cancer Res 2019; 38(1): 1-16.
[http://dx.doi.org/10.1186/s13046-019-1351-4] [PMID: 30606223]
[21]
Huang W-C, Su H-H, Fang L-W, Wu SJ, Liou CJ. Licochalcone A inhibits cellular motility by suppressing E-cadherin and MAPK signaling in breast cancer. Cells 2019; 8(3): 218.
[http://dx.doi.org/10.3390/cells8030218] [PMID: 30841634]
[22]
Elhady SS, Eltamany EE, Shaaban AE, et al. Jaceidin flavonoid isolated from Chiliadenus montanus attenuates tumor progression in mice via VEGF inhibition: In vivo and in silico studies. Plants 2020; 9(8): 1031.
[http://dx.doi.org/10.3390/plants9081031] [PMID: 32823927]
[23]
Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 2001; 49(6): 2774-9.
[http://dx.doi.org/10.1021/jf001413m] [PMID: 11409965]
[24]
Croft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci 1998; 854(1): 435-42.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09922.x] [PMID: 9928450]
[25]
Shahat AA, Hidayathulla S, Khan AA, et al. Phytochemical profiling, antioxidant and anticancer activities of Gastrocotyle hispida growing in Saudi Arabia. Acta Trop 2019; 191: 243-7.
[http://dx.doi.org/10.1016/j.actatropica.2019.01.013] [PMID: 30659804]
[26]
Messeha SS, Zarmouh NO, Asiri A, Soliman KFA. Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur J Pharmacol 2020; 885: 173419.
[http://dx.doi.org/10.1016/j.ejphar.2020.173419] [PMID: 32750370]
[27]
Aly SH, Elissawy AM, Eldahshan OA, Elshanawany MA, Efferth T, Singab ANB. The pharmacology of the genus Sophora (Fabaceae): An updated review. Phytomedicine 2019; 64: 153070.
[http://dx.doi.org/10.1016/j.phymed.2019.153070] [PMID: 31514082]
[28]
Huang W-C, Gu P-Y, Fang L-W, Huang YL, Lin CF, Liou CJ. Sophoraflavanone G from Sophora flavescens induces apoptosis in triple-negative breast cancer cells. Phytomedicine 2019; 61: 152852.
[http://dx.doi.org/10.1016/j.phymed.2019.152852] [PMID: 31035052]
[29]
Kirollos FN, Elhawary SS, Salama OM, Elkhawas YA. LC-ESI-MS/MS and cytotoxic activity of three Pistacia species. Nat Prod Res 2019; 33(12): 1747-50.
[http://dx.doi.org/10.1080/14786419.2018.1428601] [PMID: 29376415]
[30]
Pailee P, Mahidol C, Ruchirawat S, Prachyawarakorn V. Diverse flavonoids from the roots of Millettia brandisiana. Phytochemistry 2019; 162: 157-64.
[http://dx.doi.org/10.1016/j.phytochem.2019.03.013] [PMID: 30925376]
[31]
Sun J-Q, Zhang G-L, Zhang Y, et al. Spatholobus suberectus column extract inhibits estrogen receptor positive breast cancer via suppressing ER MAPK PI3K/AKT pathway. Evidence-Based Complementary and Alternative Medicine 2016; 2016: 2934340.
[http://dx.doi.org/10.1155/2016/2934340] [PMID: 28096885]
[32]
Peng F, Zhu H, Meng C-W, Ren YR, Dai O, Xiong L. New isoflavanes from Spatholobus suberectus and their cytotoxicity against human breast cancer cell lines. Molecules 2019; 24(18): 3218.
[http://dx.doi.org/10.3390/molecules24183218] [PMID: 31487934]
[33]
Shirode AB, Bharali DJ, Nallanthighal S, Coon JK, Mousa SA, Reliene R. Nanoencapsulation of pomegranate bioactive compounds for breast cancer chemoprevention. Int J Nanomedicine 2015; 10: 475-84.
[http://dx.doi.org/10.2147/IJN.S65145] [PMID: 25624761]
[34]
Pan L, Duan Y, Ma F, Lou L. Punicalagin inhibits the viability, migration, invasion, and EMT by regulating GOLPH3 in breast cancer cells. J Recept Signal Transduct Res 2020; 40(2): 173-80.
[http://dx.doi.org/10.1080/10799893.2020.1719152] [PMID: 32024401]
[35]
Huang X, Li J, Li M, et al. Polyphenol-enriched extracts from trapa acornis husks inhibit Her2-Positive SK-BR-3 breast cancer cell proliferation and In vivo tumor angiogenesis. Nutr Cancer 2021; 73-.
[http://dx.doi.org/10.1080/01635581.2020.1792951] [PMID: 32672134]
[36]
Kosuru R, Rai U, Prakash S, Singh A, Singh S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur J Pharmacol 2016; 789: 229-43.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.046] [PMID: 27475678]
[37]
Elsherbini AM, Sheweita SA, Sultan AS. Pterostilbene as a Phytochemical Compound Induces Signaling Pathways Involved in the Apoptosis and Death of Mutant P53-Breast Cancer Cell Lines. Nutr Cancer 2021; 73(10): 1976-84.
[http://dx.doi.org/10.1080/01635581.2020.1817513] [PMID: 32900227]
[38]
Aghamiri S, Jafarpour A, Zandsalimi F, Aghemiri M, Shoja M. Effect of resveratrol on the radiosensitivity of 5-FU in human breast cancer MCF-7 cells. J Cell Biochem 2019; 120(9): 15671-7.
[http://dx.doi.org/10.1002/jcb.28836] [PMID: 31069826]
[39]
Horgan XJ, Tatum H, Brannan E, Paull DH, Rhodes LV. Resveratrol analogues surprisingly effective against triple‑negative breast cancer, independent of ERα. Oncol Rep 2019; 41(6): 3517-26.
[http://dx.doi.org/10.3892/or.2019.7122] [PMID: 31002359]
[40]
Jin X, Wei Y, Liu Y, et al. Resveratrol promotes sensitization to Doxorubicin by inhibiting epithelial-mesenchymal transition and modulating SIRT1/β-catenin signaling pathway in breast cancer. Cancer Med 2019; 8(3): 1246-57.
[http://dx.doi.org/10.1002/cam4.1993] [PMID: 30697969]
[41]
Wu H, Chen L, Zhu F, Han X, Sun L, Chen K. The cytotoxicity effect of resveratrol: Cell cycle arrest and induced apoptosis of breast cancer 4T1 Cells. Toxins (Basel) 2019; 11(12): 731.
[http://dx.doi.org/10.3390/toxins11120731] [PMID: 31847250]
[42]
Sun Y, Zhou Q-M, Lu Y-Y, et al. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules 2019; 24(6): 1131.
[http://dx.doi.org/10.3390/molecules24061131] [PMID: 30901941]
[43]
Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res 2006; 8(6): 215.
[http://dx.doi.org/10.1186/bcr1612] [PMID: 17096862]
[44]
Paulus A, Chitta K, Akhtar S, et al. AT-101 downregulates BCL2 and MCL1 and potentiates the cytotoxic effects of lenalidomide and dexamethasone in preclinical models of multiple myeloma and Waldenström macroglobulinaemia. Br J Haematol 2014; 164(3): 352-65.
[http://dx.doi.org/10.1111/bjh.12633] [PMID: 24236538]
[45]
Bulut G, Atmaca H, Karaca B. Trastuzumab in combination with AT-101 induces cytotoxicity and apoptosis in Her2 positive breast cancer cells. Future Oncol 2020; 16(3): 4485-95.
[http://dx.doi.org/10.2217/fon-2019-0521] [PMID: 31829029]
[46]
Fang Y, Yu Y, Hou Q, et al. The Chinese herb isolate isorhapontigenin induces apoptosis in human cancer cells by down-regulating overexpression of antiapoptotic protein XIAP. J Biol Chem 2012; 287(42): 35234-43.
[http://dx.doi.org/10.1074/jbc.M112.389494] [PMID: 22896709]
[47]
Subedi L, Teli MK, Lee JH, Gaire BP, Kim MH, Kim SY. A stilbenoid isorhapontigenin as a potential anti-cancer agent against breast cancer through inhibiting sphingosine kinases/tubulin stabilization. Cancers (Basel) 2019; 11(12): 1947.
[http://dx.doi.org/10.3390/cancers11121947] [PMID: 31817453]
[48]
Messeha SS, Zarmouh NO, Asiri A, Soliman KFA. Gene Expression Alterations Associated with Oleuropein-Induced Antiproliferative Effects and S-Phase Cell Cycle Arrest in Triple-Negative Breast Cancer Cells. Nutrients 2020; 12(12): 3755.
[http://dx.doi.org/10.3390/nu12123755] [PMID: 33297339]
[49]
Bayat S, Mansoori Derakhshan S, Mansoori Derakhshan N, Shekari Khaniani M, Alivand MR. Downregulation of HDAC2 and HDAC3 via oleuropein as a potent prevention and therapeutic agent in MCF-7 breast cancer cells. J Cell Biochem 2019; 120(6): 9172-80.
[http://dx.doi.org/10.1002/jcb.28193] [PMID: 30618185]
[50]
Sharma A, Mishra T, Thacker G, Mishra M, Narender T, Trivedi AK. Chebulinic acid inhibits MDA-MB-231 breast cancer metastasis and promotes cell death through down regulation of SOD1 and induction of autophagy. Cell Biol Int 2020; 44(12): 2553-69.
[http://dx.doi.org/10.1002/cbin.11463] [PMID: 32902904]
[51]
Curcio M, Cirillo G, Tucci P, et al. Dextran-curcumin nanoparticles as a methotrexate delivery vehicle: A step forward in breast cancer combination therapy. Pharmaceuticals (Basel) 2019; 13(1): 2.
[http://dx.doi.org/10.3390/ph13010002] [PMID: 31881645]
[52]
Coker-Gurkan A, Bulut D, Genc R, Arisan ED, Obakan-Yerlikaya P, Palavan-Unsal N. Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Mol Biol Rep 2019; 46(1): 355-69.
[http://dx.doi.org/10.1007/s11033-018-4479-y] [PMID: 30467667]
[53]
Wang M, Jiang S, Zhou L, et al. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int J Biol Sci 2019; 15(6): 1200-14.
[http://dx.doi.org/10.7150/ijbs.33710] [PMID: 31223280]
[54]
Jung KH, Lee JH, Park JW, et al. Targeted therapy of triple negative MDA-MB-468 breast cancer with curcumin delivered by epidermal growth factor-conjugated phospholipid nanoparticles. Oncol Lett 2018; 15(6): 9093-100.
[http://dx.doi.org/10.3892/ol.2018.8471] [PMID: 29805641]
[55]
Hafezi K, Hemmati AA, Abbaszadeh H, Valizadeh A, Makvandi M. Anticancer activity and molecular mechanisms of α-conidendrin, a polyphenolic compound present in Taxus yunnanensis, on human breast cancer cell lines. Phytother Res 2020; 34(6): 1397-408.
[http://dx.doi.org/10.1002/ptr.6613] [PMID: 31971313]
[56]
El-Nashar HAS, Mostafa NM, Eldahshan OA, Singab ANB. A new antidiabetic and anti-inflammatory biflavonoid from Schinus polygama (Cav.) Cabrera leaves. Nat Prod Res 2020; 1-9.
[http://dx.doi.org/10.1080/14786419.2020.1864365] [PMID: 33356557]
[57]
Changizi V, Azariasl S, Motevaseli E, Jafari Nodooshan S. Assessment Synergistic Effects of Integrated Therapy with Epigallocatechin-3-Gallate (EGCG) & Arsenic Trioxide and Irradiation on Breast Cancer Cell Line. Iran J Public Health 2020; 49(8): 1555-63.
[http://dx.doi.org/10.18502/ijph.v49i8.3901] [PMID: 33083333]
[58]
Xu P, Yan F, Zhao Y, et al. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients 2020; 12(4): 1042.
[http://dx.doi.org/10.3390/nu12041042] [PMID: 32290071]
[59]
Zan L, Chen Q, Zhang L, Li X. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered 2019; 10(1): 374-82.
[http://dx.doi.org/10.1080/21655979.2019.1657327] [PMID: 31431131]
[60]
Jiang X, Cao C, Sun W, et al. Scandenolone from Cudrania tricuspidata fruit extract suppresses the viability of breast cancer cells (MCF-7) in vitro and in vivo. Food Chem Toxicol 2019; 126: 56-66.
[http://dx.doi.org/10.1016/j.fct.2019.02.020] [PMID: 30753858]
[61]
Kumbhar PS, Sakate AM, Patil OB, Manjappa AS, Disouza JI. Podophyllotoxin-polyacrylic acid conjugate micelles: improved anticancer efficacy against multidrug-resistant breast cancer. J Egypt Natl Canc Inst 2020; 32(1): 42.
[http://dx.doi.org/10.1186/s43046-020-00053-1] [PMID: 33191444]
[62]
Montalesi E, Cipolletti M, Cracco P, Fiocchetti M, Marino M. Divergent effects of daidzein and its metabolites on estrogen-induced survival of breast cancer cells. Cancers (Basel) 2020; 12(1): 167.
[http://dx.doi.org/10.3390/cancers12010167] [PMID: 31936631]
[63]
Sachithanandam V, Parthiban A, Lalitha P, et al. Biological evaluation of gallic acid and quercetin derived from Ceriops tagal: insights from extensive in vitro and in silico studies. J Biomol Struct Dyn 2020; 40(4): 1490-1502..
[http://dx.doi.org/10.1080/07391102.2020.1828173] [PMID: 32996435]
[64]
Li J, Zhang J, Wang Y, et al. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int J Pharm 2017; 523(1): 300-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.040] [PMID: 28336457]
[65]
Soleimani M, Sajedi N. Myricetin Apoptotic Effects on T47D Breast Cancer Cells is a P53-Independent Approach. Asian Pac J Cancer Prev 2020; 21(12): 3697-704.
[http://dx.doi.org/10.31557/APJCP.2020.21.12.3697] [PMID: 33369470]
[66]
Sajedi N, Homayoun M, Mohammadi F, Soleimani M. Myricetin Exerts its Apoptotic Effects on MCF-7 Breast Cancer Cells through Evoking the BRCA1-GADD45 Pathway. Asian Pac J Cancer Prev 2020; 21(12): 3461-8.
[http://dx.doi.org/10.31557/APJCP.2020.21.12.3461] [PMID: 33369440]
[67]
Zhang H-W, Hu J-J, Fu R-Q, et al. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci Rep 2018; 8(1): 11255.
[http://dx.doi.org/10.1038/s41598-018-29308-7] [PMID: 30050147]
[68]
Jiang CH, Sun TL, Xiang DX, Wei SS, Li WQ. Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops (Humulus lupulus L.). Front Pharmacol 2018; 9: 530.
[http://dx.doi.org/10.3389/fphar.2018.00530] [PMID: 29872398]
[69]
Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J. Highly Cancer Selective Antiproliferative Activity of Natural Prenylated Flavonoids. Molecules 2018; 23(11): 2922.
[http://dx.doi.org/10.3390/molecules23112922] [PMID: 30423918]
[70]
Sun X, Chang X, Wang Y, Xu B, Cao X. Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF-κB Signaling Pathway in Human Breast Cancer Cells. BioMed Res Int 2019; 2019: 9241769-9.
[http://dx.doi.org/10.1155/2019/9241769] [PMID: 31341911]
[71]
Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, et al. Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7 - a comparative study. Cell Mol Biol 2018; 64(8): 1-10.
[http://dx.doi.org/10.14715/cmb/2018.64.8.1] [PMID: 29981677]
[72]
Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, et al. Comparison of Two Components of Propolis: Caffeic Acid (CA) and Caffeic Acid Phenethyl Ester (CAPE) Induce Apoptosis and Cell Cycle Arrest of Breast Cancer Cells MDA-MB-231. Molecules 2017; 22(9): E1554.
[http://dx.doi.org/10.3390/molecules22091554] [PMID: 28926932]
[73]
Rahman NA, Yazan LS, Wibowo A, et al. Induction of apoptosis and G2/M arrest by ampelopsin E from Dryobalanops towards triple negative breast cancer cells, MDA-MB-231. BMC Complement Altern Med 2016; 16(1): 354-4.
[http://dx.doi.org/10.1186/s12906-016-1328-1] [PMID: 27609190]
[74]
Razak NA, Abu N, Ho WY, et al. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep 2019; 9(1): 1514.
[http://dx.doi.org/10.1038/s41598-018-37796-w] [PMID: 30728391]
[75]
Sriwiriyajan S, Sukpondma Y, Srisawat T, Madla S, Graidist P. (-)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer. Biomed Pharmacother 2017; 92: 732-43.
[http://dx.doi.org/10.1016/j.biopha.2017.05.130] [PMID: 28586745]
[76]
Iriti M, Kubina R, Cochis A, et al. Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells. Phytother Res 2017; 31(10): 1529-38.
[http://dx.doi.org/10.1002/ptr.5878] [PMID: 28752532]
[77]
Bernard MM, McConnery JR, Hoskin DW. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells. Exp Mol Pathol 2017; 102(2): 370-6.
[http://dx.doi.org/10.1016/j.yexmp.2017.03.006] [PMID: 28315687]
[78]
Tedasen A, Sukrong S, Sritularak B, Srisawat T, Graidist P. 5,7,4′-Trihydroxy-6,8-diprenylisoflavone and lupalbigenin, active components of Derris scandens, induce cell death on breast cancer cell lines. Biomed Pharmacother 2016; 81: 235-41.
[http://dx.doi.org/10.1016/j.biopha.2016.03.044] [PMID: 27261599]
[79]
Bothiraja C, Joshi PP, Dama GY, et al. Rapid method for isolation of plumbagin, an alternative medicine from roots of Plumbago zeylanica. Eur J Integr Med 2011; 3(1): 39-42.
[http://dx.doi.org/10.1016/j.eujim.2011.02.008]
[80]
Kawiak A, Domachowska A, Lojkowska E. Plumbagin Increases Paclitaxel-Induced Cell Death and Overcomes Paclitaxel Resistance in Breast Cancer Cells through ERK-Mediated Apoptosis Induction. J Nat Prod 2019; 82(4): 878-85.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00964] [PMID: 30810041]
[81]
Kawiak A, Domachowska A, Jaworska A, Lojkowska E. Plumbagin sensitizes breast cancer cells to tamoxifen-induced cell death through GRP78 inhibition and Bik upregulation. Sci Rep 2017; 7: 43781.
[http://dx.doi.org/10.1038/srep43781] [PMID: 28287102]
[82]
Sakunrangsit N, Ketchart W. Plumbagin inhibits cancer stem-like cells, angiogenesis and suppresses cell proliferation and invasion by targeting Wnt/β-catenin pathway in endocrine resistant breast cancer. Pharmacol Res 2019; 150: 104517.
[http://dx.doi.org/10.1016/j.phrs.2019.104517] [PMID: 31693936]
[83]
Lee KS, Nam GS, Baek J, Kim S, Nam KS. Inhibition of TPA‑induced metastatic potential by morin hydrate in MCF‑7 human breast cancer cells via the Akt/GSK‑3β/c‑Fos signaling pathway. Int J Oncol 2020; 56(2): 630-40.
[http://dx.doi.org/10.3892/ijo.2020.4954] [PMID: 31939617]
[84]
Li Y, Gan C, Zhang Y, et al. Inhibition of Stat3 signaling pathway by natural product pectolinarigenin attenuates breast cancer metastasis. Front Pharmacol 2019; 10: 1195.
[http://dx.doi.org/10.3389/fphar.2019.01195] [PMID: 31649548]
[85]
Yang L, Wang N, Zheng G. Enhanced effect of combining chlorogenic acid on selenium nanoparticles in inhibiting amyloid β aggregation and reactive oxygen species formation in vitro. Nanoscale Res Lett 2018; 13(1): 303.
[http://dx.doi.org/10.1186/s11671-018-2720-1] [PMID: 30269259]
[86]
Changizi Z, Moslehi A, Rohani AH, Eidi A. Chlorogenic acid induces 4T1 breast cancer tumor’s apoptosis via p53, Bax, Bcl-2, and caspase-3 signaling pathways in BALB/c mice. J Biochem Mol Toxicol 2021; 35(2): e22642.
[http://dx.doi.org/10.1002/jbt.22642] [PMID: 33058431]
[87]
Wang S, Wang N, Huang X, et al. Baohuoside i suppresses breast cancer metastasis by downregulating the tumor-associated macrophages/C-X-C motif chemokine ligand 1 pathway. Phytomedicine 2020; 78: 153331.
[http://dx.doi.org/10.1016/j.phymed.2020.153331] [PMID: 32911383]
[88]
Li X, Xu J, Tang X, et al. Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo. Mol Med Rep 2016; 13(5): 4007-13.
[http://dx.doi.org/10.3892/mmr.2016.4990] [PMID: 26985659]
[89]
Zuo J, Jiang Y, Zhang E, et al. Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sci 2019; 227: 145-52.
[http://dx.doi.org/10.1016/j.lfs.2019.04.047] [PMID: 31009625]
[90]
Fan L, Zhang Y, Zhou Q, et al. Casticin inhibits breast cancer cell migration and invasion by down-regulation of PI3K/Akt signaling pathway. Biosci Rep 2018; 38(6): BSR20180738.
[http://dx.doi.org/10.1042/BSR20180738] [PMID: 30401729]
[91]
Yan W, Ma X, Zhao X, Zhang S. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway In vivo and vitro. Drug Des Devel Ther 2018; 12: 3961-72.
[http://dx.doi.org/10.2147/DDDT.S181939] [PMID: 30510404]
[92]
Xie X, Feng J, Kang Z, et al. Taxifolin protects RPE cells against oxidative stress-induced apoptosis. Mol Vis 2017; 23: 520-8.
[PMID: 28761325]
[93]
Go JH, Wei JD, Park JI, Ahn KS, Kim JH. Wogonin suppresses the LPS‑enhanced invasiveness of MDA‑MB‑231 breast cancer cells by inhibiting the 5‑LO/BLT2 cascade. Int J Mol Med 2018; 42(4): 1899-908.
[http://dx.doi.org/10.3892/ijmm.2018.3776] [PMID: 30015917]
[94]
Li J, Gong X, Jiang R, et al. Fisetin Inhibited Growth and Metastasis of Triple-Negative Breast Cancer by Reversing Epithelial-to-Mesenchymal Transition via PTEN/Akt/GSK3β Signal Pathway. Front Pharmacol 2018; 9: 772.
[http://dx.doi.org/10.3389/fphar.2018.00772] [PMID: 30108501]
[95]
El-Nashar HAS, Mostafa NM, El-Badry MA, Eldahshan OA, Singab ANB. Chemical composition, antimicrobial and cytotoxic activities of essential oils from Schinus polygamus (Cav.) cabrera leaf and bark grown in Egypt. Nat Prod Res 2020; 1-4: 1-4.
[http://dx.doi.org/10.1080/14786419.2020.1765343] [PMID: 32441134]
[96]
Sachdev K, Kulshreshtha DK. Flavonoids from Dodonaea viscosa. Phytochemistry 1983; 22(5): 1253-6.
[http://dx.doi.org/10.1016/0031-9422(83)80234-9]
[97]
Sachdev K, Kulshreshtha DK. Viscosol, a C-3′ prenylated flavonoid from Dodonaea viscosa. Phytochemistry 1986; 25(8): 1967-9.
[http://dx.doi.org/10.1016/S0031-9422(00)81185-1]
[98]
Makunga NP, Engelbrecht A-m. Method and composition for treating breast cancer.Washington 2019.
[99]
Hussain H, Green IR. A patent review of the therapeutic potential of isoflavones (2012-2016). Expert Opin Thera Pat 2017; 27(10): 1135-46.
[http://dx.doi.org/10.1080/13543776.2017.1339791] [PMID: 28586284]
[100]
Mustafa K, Emine K, Mehmet N. A composition for breast cancer treatment. WO2020242391A1, 2020.
[101]
Ahmad A, Tandon S, Xuan TD, Nooreen Z. A Review on Phytoconstituents and Biological activities of Cuscuta species. Biomed Pharmacother 2017; 92: 772-95.
[http://dx.doi.org/10.1016/j.biopha.2017.05.124] [PMID: 28591690]
[102]
Kongtawelert P. Pharmaceutical compositions having synergistic effects of natural extracts for cancer treatment undergoing chemotherapy. WO2021006822A1, 2021.
[103]
Thomas A, Toveann A. A method and a compound for preventing mammalian cancer cell Proliferation and for treating cancer. WO2021023914A1, 2021.
[104]
Yuxin D. New Galangin compound and its preparation method and application. CN110183404A, 2019.
[105]
Yanjun S, Junmin W, Sanitation F, et al. A kind of isopentene group flavone compound and its preparation method and application. CN110396076A, 2019.
[106]
Xixiang Y, Yang D, Wenjie Z. Two kinds of flavone compounds and its extraction separation method and purposes in purslane. CN110305094A, 2019.
[107]
Jingming J, Guoqing L, Gaosheng H, et al. Biisopentenyl flavonoid compound and preparation method and application thereof. CN111454241A, 2020.
[108]
Wei Z, Deling W. Compound separated from flos Pruni mume and having antitumor activity, and its preparation method. CN111995647A, 2020.
[109]
Fu P, Liang Z. Chalcone compound and preparation method and application thereof. CN110563563A, 2019.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy