Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Gabapentin Antioxidant Derivatives with Anti-Inflammatory and Neuroprotective Potency

Author(s): Georgios Papagiouvannis*, Panagiotis Theodosis-Nobelos, Paraskevi Tziona, Antonios Gavalas, Panos N. Kourounakis and Eleni A. Rekka

Volume 19, Issue 7, 2022

Published on: 31 January, 2022

Page: [579 - 590] Pages: 12

DOI: 10.2174/1570180818666211210161922

Price: $65

Abstract

Aims: The aim of this work is to investigate the antioxidant and anti-inflammatory potency of novel gabapentin derivatives, which could be proven useful as neuroprotective agents.

Background: Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders worldwide. Due to its multi-factorial character, no effective treatment has been obtained yet. In this direction, the multi-targeting compounds approach could be useful for the development of novel, more effective drugs against AD. Oxidative stress and inflammation are highly involved in the progression of neurodegeneration, while gabapentin has been investigated for the treatment of behavioral symptoms in AD.

Objective: In this work, derivatives of cinnamic acid, Trolox, and 3,5-di-tertbutyl-4-hydroxybenzoic acid amidated with gabapentin methyl ester were designed and studied. Compounds with these structural characteristics are expected to act in various biochemical pathways, affecting neurodegenerative processes.

Methods: The designed compounds were synthesized with classical amidation methods, purified by flash column chromatography, and identified spectrometrically (1H-NMR and 13C-NMR). Their purity was determined by CHN elemental analysis. They were tested in vitro for their antioxidant and antiinflammatory properties and for their inhibitory effect on acetylcholinesterase. Their in vivo antiinflammatory activity was also tested.

Results: Molecules that incorporated antioxidant moiety possessed inhibitory activity against rat microsomal membrane lipid peroxidation and oxidative protein glycation, as well as radical scavenging activity. Moreover, most of them presented moderate inhibition towards lipoxygenase (up to 51% at 100μΜ) and acetylcholinesterase (AchE) (IC50 up to 274μΜ) activities. Finally, all synthesized compounds presented in vivo anti-inflammatory activity, decreasing carrageenan-induced rat paw edema up to 53%, and some of them could inhibit cyclooxygenase significantly.

Conclusion: These results indicate that the designed compounds could be proven useful as multitargeting molecules against AD since they affect various biochemical pathways associated with neurodegeneration. Thus, more effective drugs can be obtained, and the possible adverse effects of drug combinations can be limited.

Keywords: Neurodegeneration, Alzheimer’s disease, oxidative stress, inflammation, gabapentin, multi-targeting compounds.

Graphical Abstract

[1]
Bunch, T.J.; Weiss, J.P.; Crandall, B.G.; May, H.T.; Bair, T.L.; Osborn, J.S.; Anderson, J.L.; Muhlestein, J.B.; Horne, B.D.; Lappe, D.L.; Day, J.D. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer’s dementia. Heart Rhythm, 2010, 7(4), 433-437.
[http://dx.doi.org/10.1016/j.hrthm.2009.12.004] [PMID: 20122875]
[2]
Kumar, A.; Singh, A.; Ekavali, A. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[3]
Daebel, V. Chinnathambi, S.; Biernat, J.; Schwalbe, M.; Habenstein, B.; Loquet, A.; Akoury, E.; Tepper, K.; Müller, H.; Baldus, M.; Griesinger, C.; Zweckstetter, M.; Mandelkow, E.; Vijayan, V.; Lange, A. β-Sheet core of tau paired helical filaments revealed by solid-state NMR. J. Am. Chem. Soc., 2012, 134(34), 13982-13989.
[http://dx.doi.org/10.1021/ja305470p] [PMID: 22862303]
[4]
Guerrero-Muñoz, M.J.; Gerson, J.; Castillo-Carranza, D.L. Tau oligomers: The toxic player at synapses in Alzheimer’s disease. Front. Cell. Neurosci., 2015, 9, 464.
[http://dx.doi.org/10.3389/fncel.2015.00464] [PMID: 26696824]
[5]
Retz, W.; Gsell, W.; Münch, G.; Rösler, M.; Riederer, P. Free radicals in Alzheimer’s disease. J. Neural Transm. Suppl., 1998, 54, 221-236.
[http://dx.doi.org/10.1007/978-3-7091-7508-8_22] [PMID: 9850931]
[6]
Ganguly, G.; Chakrabarti, S.; Chatterjee, U.; Saso, L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alz-heimer’s disease and Parkinson’s disease. Drug Des. Devel. Ther., 2017, 11, 797-810.
[http://dx.doi.org/10.2147/DDDT.S130514] [PMID: 28352155]
[7]
Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: Understanding the therapeutics strategies. Mol. Neurobiol., 2016, 53(1), 648-661.
[http://dx.doi.org/10.1007/s12035-014-9053-6] [PMID: 25511446]
[8]
Rai, S.; Kamat, P.K.; Nath, C.; Shukla, R. A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J. Neuroimmunol., 2013, 254(1-2), 1-9.
[http://dx.doi.org/10.1016/j.jneuroim.2012.08.008] [PMID: 23021418]
[9]
Ko, S.Y.; Ko, H.A.; Chu, K.H.; Shieh, T.M.; Chi, T.C.; Chen, H.I.; Chang, W.C.; Chang, S.S. The possible mechanism of advanced gly-cation end products (AGEs) for Alzheimer’s disease. PLoS One, 2015, 10(11), e0143345.
[http://dx.doi.org/10.1371/journal.pone.0143345] [PMID: 26587989]
[10]
Griffin, W.S.; Stanley, L.C.; Ling, C.; White, L.; MacLeod, V.; Perrot, L.J.; White, C.L., III; Araoz, C. Brain interleukin 1 and S-100 immu-noreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1989, 86(19), 7611-7615.
[http://dx.doi.org/10.1073/pnas.86.19.7611] [PMID: 2529544]
[11]
Wyss-Coray, T.; Yan, F.; Lin, A.H.T.; Lambris, J.D.; Alexander, J.J.; Quigg, R.J.; Masliah, E. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10837-10842.
[http://dx.doi.org/10.1073/pnas.162350199] [PMID: 12119423]
[12]
Kim, Y.S.; Joh, T.H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med., 2006, 38(4), 333-347.
[http://dx.doi.org/10.1038/emm.2006.40] [PMID: 16953112]
[13]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigen-desch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[14]
Shi, J.; Wang, Q.; Johansson, J.U.; Liang, X.; Woodling, N.S.; Priyam, P.; Loui, T.M.; Merchant, M.; Breyer, R.M.; Montine, T.J.; Andreas-son, K. Inflammatory prostaglandin E2 signaling in a mouse model of Alzheimer disease. Ann. Neurol., 2012, 72(5), 788-798.
[http://dx.doi.org/10.1002/ana.23677] [PMID: 22915243]
[15]
Firuzi, O.; Zhuo, J.; Chinnici, C.M.; Wisniewski, T.; Praticò, D. 5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer’s disease. FASEB J., 2008, 22(4), 1169-1178.
[http://dx.doi.org/10.1096/fj.07-9131.com] [PMID: 17998412]
[16]
Martin, L.; Latypova, X.; Wilson, C.M.; Magnaudeix, A.; Perrin, M.L.; Terro, F. Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res. Rev., 2013, 12(1), 39-49.
[http://dx.doi.org/10.1016/j.arr.2012.06.008] [PMID: 22771380]
[17]
Derrick, J.S.; Lim, M.H. Tools of the trade: investigations into design strategies of small molecules to target components in Alzheimer’s disease. ChemBioChem, 2015, 16(6), 887-898.
[http://dx.doi.org/10.1002/cbic.201402718] [PMID: 25773481]
[18]
Hara, K.; Sata, T. Inhibitory effect of gabapentin on N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Acta Anaesthesiol. Scand., 2007, 51(1), 122-128.
[http://dx.doi.org/10.1111/j.1399-6576.2006.01183.x] [PMID: 17073851]
[19]
Supasitthumrong, T.; Bolea-Alamanac, B.M.; Asmer, S.; Woo, V.L.; Abdool, P.S.; Davies, S.J.C. Gabapentin and pregabalin to treat ag-gressivity in dementia: A systematic review and illustrative case report. Br. J. Clin. Pharmacol., 2019, 85(4), 690-703.
[http://dx.doi.org/10.1111/bcp.13844] [PMID: 30575088]
[20]
Kanski, J.; Aksenova, M.; Stoyanova, A.; Butterfield, D.A. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxida-tion in synaptosomal and neuronal cell culture systems in vitro: Structure-activity studies. J. Nutr. Biochem., 2002, 13(5), 273-281.
[http://dx.doi.org/10.1016/S0955-2863(01)00215-7] [PMID: 12015157]
[21]
Lee, H.E.; Kim, D.H.; Park, S.J.; Kim, J.M.; Lee, Y.W.; Jung, J.M.; Lee, C.H.; Hong, J.G.; Liu, X.; Cai, M.; Park, K.J.; Jang, D.S.; Ryu, J.H. Neuroprotective effect of sinapic acid in a mouse model of amyloid β(1-42) protein-induced Alzheimer’s disease. Pharmacol. Biochem. Behav., 2012, 103(2), 260-266.
[http://dx.doi.org/10.1016/j.pbb.2012.08.015] [PMID: 22971592]
[22]
Raspor, P. Plesničar, S.; Gazdag, Z.; Pesti, M.; Miklavcic, M.; Lah, B.; Logar-Marinsek, R.; Poljsak, B. Prevention of intracellular oxida-tion in yeast: the role of vitamin E analogue, Trolox (6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxyl acid). Cell Biol. Int., 2005, 29(1), 57-63.
[http://dx.doi.org/10.1016/j.cellbi.2004.11.010] [PMID: 15763500]
[23]
Godoy, M.E.; Rotelli, A.; Pelzer, L.; Tonn, C.E. Anti-inflammatory activity of cinnamic acid esters. Molecules, 2000, 5, 547-548.
[http://dx.doi.org/10.3390/50300547]
[24]
Tsiakitzis, K.C.; Papagiouvannis, G.; Theodosis-Nobelos, P.; Tziona, P.; Kourounakis, P.N.; Rekka, E.A. Synthesis, antioxidant, and anti-inflammatory effects of antioxidant acid amides with GABA and N-acyl-pyrrolidin-2-ones. Curr. Chem. Biol., 2017, 11(2), 127-139.
[http://dx.doi.org/10.2174/2212796811666170509123209]
[25]
Ziakas, G.N.; Rekka, E.A.; Gavalas, A.M.; Eleftheriou, P.T.; Kourounakis, P.N. New analogues of butylated hydroxytoluene as anti-inflammatory and antioxidant agents. Bioorg. Med. Chem., 2006, 14(16), 5616-5624.
[http://dx.doi.org/10.1016/j.bmc.2006.04.030] [PMID: 16690318]
[26]
Stefek, M.; Krizanova, L.; Trnkova, Z. Oxidative modification of serum albumin in an experimental glycation model of diabetes mellitus in vitro: effect of the pyridoindole antioxidant stobadine. Life Sci., 1999, 65(18-19), 1995-1997.
[http://dx.doi.org/10.1016/S0024-3205(99)00463-4] [PMID: 10576453]
[27]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[28]
Theodosis-Nobelos, P.; Papagiouvanis, G.; Pantelidou, M.; Kourounakis, P.N.; Athanasekou, C.; Rekka, E.A. Design, synthesis and study of nitrogen monoxide donors as potent hypolipidaemic and anti-inflammatory agents. Molecules, 2019, 25(1), 19.
[http://dx.doi.org/10.3390/molecules25010019] [PMID: 31861583]
[29]
Theodosis-Nobelos, P.; Tziona, P.; Poptsis, A.; Athanasekou, C.; Kourounakis, P.N.; Rekka, E.A. Novel polyfunctional esters of ibu-profen and ketoprofen with hypolipidemic, lipoxygenase inhibitory and enhanced anti-inflammatory activity. Med. Chem. Res., 2017, 26, 461-472.
[http://dx.doi.org/10.1007/s00044-016-1767-8]
[30]
Theodosis-Nobelos, P.; Papagiouvannis, G.; Kourounakis, P.N.; Rekka, E.A. Active anti-inflammatory and hypolipidemic derivatives of lorazepam. Molecules, 2019, 24(18), 3277.
[http://dx.doi.org/10.3390/molecules24183277] [PMID: 31505754]
[31]
Theodosis-Nobelos, P.; Athanasekou, C.; Rekka, E.A. Dual antioxidant structures with potent anti-inflammatory, hypolipidemic and cyto-protective properties. Bioorg. Med. Chem. Lett., 2017, 27(21), 4800-4804.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.054] [PMID: 29017787]
[32]
Intagliata, S.; Spadaro, A.; Lorenti, M.; Panico, A.; Siciliano, E.A.; Barbagallo, S.; Macaluso, B.; Kamble, S.H.; Modica, M.N.; Montenegro, L. In vitro antioxidant and anti-glycation activity of resveratrol and its novel triester with trolox. Antioxidants, 2020, 10(1), 12.
[http://dx.doi.org/10.3390/antiox10010012] [PMID: 33374280]
[33]
Kaduszkiewicz, H.; Zimmermann, T.; Beck-Bornholdt, H.P.; van den Bussche, H. Cholinesterase inhibitors for patients with Alzheimer’s disease: systematic review of randomised clinical trials. BMJ, 2005, 331(7512), 321-327.
[http://dx.doi.org/10.1136/bmj.331.7512.321] [PMID: 16081444]
[34]
Sang, Z.; Wang, K.; Han, X.; Cao, M.; Tan, Z.; Liu, W. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(2), 1008-1024.
[http://dx.doi.org/10.1021/acschemneuro.8b00530] [PMID: 30537804]
[35]
Cai, K.; Nanga, R.P.; Lamprou, L.; Schinstine, C.; Elliott, M.; Hariharan, H.; Reddy, R.; Epperson, C.N. The impact of gabapentin admin-istration on brain GABA and glutamate concentrations: a 7T ¹H-MRS study. Neuropsychopharmacology, 2012, 37(13), 2764-2771.
[http://dx.doi.org/10.1038/npp.2012.142] [PMID: 22871916]
[36]
P, J.J.; Manju, S.L.; Ethiraj, K.R.; Elias, G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur. J. Pharm. Sci., 2018, 121, 356-381.
[http://dx.doi.org/10.1016/j.ejps.2018.06.003] [PMID: 29883727]
[37]
Theodosis-Nobelos, P.; Kourounakis, P.N.; Rekka, E.A. Anti-inflammatory and hypolipidemic effect of novel conjugates with trolox and other antioxidant acids. Med. Chem., 2017, 13(3), 214-225.
[http://dx.doi.org/10.2174/1573406412666161104122310] [PMID: 27823562]
[38]
Di Rosa, M.; Giroud, J.P.; Willoughby, D.A. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J. Pathol., 1971, 104(1), 15-29.
[http://dx.doi.org/10.1002/path.1711040103] [PMID: 4398139]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy