Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

H19: A Vital Long Noncoding RNA in the Treatment of Diabetes and Diabetic Complications

Author(s): Leiqi Zhu, Yuanyang Li, Fangqi Xia, Mengzhen Xue, Yaqi Wang, Dengke Jia, Yan Gao, Luoying Li, Yue Shi, Silong Chen, Guangfu Xu and Chengfu Yuan*

Volume 28, Issue 12, 2022

Published on: 12 January, 2022

Page: [1011 - 1018] Pages: 8

DOI: 10.2174/1381612827666211210123959

Price: $65

Abstract

Background: Increasing academic efforts have been made to explore the correlation of long noncoding RNAs (lncRNAs) with human diseases, particularly metabolic diseases like diabetes mellitus. Taking lncRNA H19 as an example, this review intends to reveal the functions and mechanism of lncRNA H19 in diabetes mellitus and diabetic complications.

Methods: The research results associated with lncRNA H19 and diabetes mellitus are collected and summarized on PubMed.

Conclusion: LncRNA H19 is a potential instructive marker for the treatment of diabetes mellitus and diabetic complications.

Keywords: H19, long noncoding RNA, miRNA, treatment, hyperglycemia, diabetes, diabetic complications.

[1]
Diagnosis and classification of diabetes mellitus. Diabetes Care 2013; 36(Suppl. 1): S67-74.
[http://dx.doi.org/10.2337/dc13-S067] [PMID: 23264425]
[2]
Yang L, Froberg JE, Lee JT. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci 2014; 39(1): 35-43.
[http://dx.doi.org/10.1016/j.tibs.2013.10.002] [PMID: 24290031]
[3]
Jiang S, Cheng SJ, Ren LC, et al. An expanded landscape of human long noncoding RNA. Nucleic Acids Res 2019; 47(15): 7842-56.
[http://dx.doi.org/10.1093/nar/gkz621] [PMID: 31350901]
[4]
Luo Y, Fang Z, Ling Y, Luo W. LncRNA-H19 acts as a ceRNA to regulate HE4 expression by sponging miR-140 in human umbilical vein endothelial cells under hyperglycemia with or without α-Mangostin. Biomed Pharmacother 2019; 118: 109256.
[http://dx.doi.org/10.1016/j.biopha.2019.109256] [PMID: 31362245]
[5]
Sun L, Goff LA, Trapnell C, et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA 2013; 110(9): 3387-92.
[http://dx.doi.org/10.1073/pnas.1222643110] [PMID: 23401553]
[6]
Li P, Ruan X, Yang L, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab 2015; 21(3): 455-67.
[http://dx.doi.org/10.1016/j.cmet.2015.02.004] [PMID: 25738460]
[7]
Ruan X, Li P, Cangelosi A, Yang L, Cao H. A long non-coding RNA, lncLGR, regulates hepatic glucokinase expression and glycogen storage during fasting. Cell Rep 2016; 14(8): 1867-75.
[http://dx.doi.org/10.1016/j.celrep.2016.01.062] [PMID: 26904944]
[8]
Zhao XY, Li S, Wang GX, Yu Q, Lin JD. A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol Cell 2014; 55(3): 372-82.
[http://dx.doi.org/10.1016/j.molcel.2014.06.004] [PMID: 25002143]
[9]
Yang L, Li P, Yang W, et al. Integrative transcriptome analyses of metabolic responses in mice define pivotal lncrna metabolic regulators. Cell Metab 2016; 24(4): 627-39.
[http://dx.doi.org/10.1016/j.cmet.2016.08.019] [PMID: 27667668]
[10]
Kato M, Wang M, Chen Z, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat Commun 2016; 7: 12864.
[http://dx.doi.org/10.1038/ncomms12864] [PMID: 27686049]
[11]
Sallam T, Jones MC, Gilliland T, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 2016; 534(7605): 124-8.
[http://dx.doi.org/10.1038/nature17674] [PMID: 27251289]
[12]
Li B, Zhou Y, Chen J, et al. Long noncoding RNA H19 acts as a miR-29b sponge to promote wound healing in diabetic foot ulcer. FASEB J 2021; 35(1): e20526.
[http://dx.doi.org/10.1096/fj.201900076RRRRR] [PMID: 33174326]
[13]
Zhang N, Geng T, Wang Z, et al. Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia. JCI Insight 2018; 3(10): 120304.
[http://dx.doi.org/10.1172/jci.insight.120304] [PMID: 29769440]
[14]
Kollias AN, Ulbig MW. Diabetic retinopathy: Early diagnosis and effective treatment. Dtsch Arztebl Int 2010; 107(5): 75-83.
[PMID: 20186318]
[15]
Fong DS, Aiello L, Gardner TW, et al. Retinopathy in diabetes. Diabetes Care 2004; 27(Suppl. 1): S84-7.
[http://dx.doi.org/10.2337/diacare.27.2007.S84] [PMID: 14693935]
[16]
Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 2004; 18(12): 1450-2.
[http://dx.doi.org/10.1096/fj.03-1476fje] [PMID: 15231732]
[17]
Antonetti DA, Barber AJ, Bronson SK, et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 2006; 55(9): 2401-11.
[http://dx.doi.org/10.2337/db05-1635] [PMID: 16936187]
[18]
Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007; 2007: 95103.
[http://dx.doi.org/10.1155/2007/95103] [PMID: 18274606]
[19]
Thomas AA, Feng B, Chakrabarti S. ANRIL: A Regulator of VEGF in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 58(1): 470-80.
[http://dx.doi.org/10.1167/iovs.16-20569] [PMID: 28122089]
[20]
Thomas AA, Biswas S, Feng B, Chen S, Gonder J, Chakrabarti S. lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia 2019; 62(3): 517-30.
[http://dx.doi.org/10.1007/s00125-018-4797-6] [PMID: 30612136]
[21]
Cao Y, Feng B, Chen S, Chu Y, Chakrabarti S. Mechanisms of endothelial to mesenchymal transition in the retina in diabetes. Invest Ophthalmol Vis Sci 2014; 55(11): 7321-31.
[http://dx.doi.org/10.1167/iovs.14-15167] [PMID: 25335984]
[22]
Feng B, Cao Y, Chen S, Chu X, Chu Y, Chakrabarti S. miR-200b mediates endothelial-to-mesenchymal transition in diabetic cardiomyopathy. Diabetes 2016; 65(3): 768-79.
[http://dx.doi.org/10.2337/db15-1033] [PMID: 26718496]
[23]
Peng H, Li Y, Wang C, et al. ROCK1 induces endothelial-to-mesenchymal transition in glomeruli to aggravate albuminuria in diabetic nephropathy. Sci Rep 2016; 6: 20304.
[http://dx.doi.org/10.1038/srep20304] [PMID: 26842599]
[24]
Cruz-Solbes AS, Youker K. Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT): Role and implications in kidney fibrosis. Results Probl Cell Differ 2017; 60: 345-72.
[http://dx.doi.org/10.1007/978-3-319-51436-9_13] [PMID: 28409352]
[25]
Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007; 117(3): 524-9.
[http://dx.doi.org/10.1172/JCI31487] [PMID: 17332879]
[26]
Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis--a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014; 10(7): 390-402.
[http://dx.doi.org/10.1038/nrrheum.2014.53] [PMID: 24752182]
[27]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011; 146(3): 353-8.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[28]
Shi Y, Wang Y, Luan W, et al. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 2014; 9(1): e86295.
[http://dx.doi.org/10.1371/journal.pone.0086295] [PMID: 24466011]
[29]
Zhu M, Chen Q, Liu X, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J 2014; 281(16): 3766-75.
[http://dx.doi.org/10.1111/febs.12902] [PMID: 24988946]
[30]
Vennin C, Spruyt N, Dahmani F, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget 2015; 6(30): 29209-23.
[http://dx.doi.org/10.18632/oncotarget.4976] [PMID: 26353930]
[31]
Li X, Wang H, Yao B, Xu W, Chen J, Zhou X. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep 2016; 6: 36340.
[http://dx.doi.org/10.1038/srep36340] [PMID: 27796346]
[32]
Shoshan-Barmatz V, Mizrachi D, Keinan N. Oligomerization of the mitochondrial protein VDAC1: from structure to function and cancer therapy. Prog Mol Biol Transl Sci 2013; 117: 303-34.
[http://dx.doi.org/10.1016/B978-0-12-386931-9.00011-8] [PMID: 23663973]
[33]
Shteinfer-Kuzmine A, Amsalem Z, Arif T, Zooravlov A, Shoshan-Barmatz V. Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy. Mol Oncol 2018; 12(7): 1077-103.
[http://dx.doi.org/10.1002/1878-0261.12313] [PMID: 29698587]
[34]
Lippert J, Ritz E, Schwarzbeck A, Schneider P. The rising tide of endstage renal failure from diabetic nephropathy type II-an epidemiological analysis. Nephrol Dial Transplant 1995; 10(4): 462-7.
[http://dx.doi.org/10.1093/ndt/10.4.462] [PMID: 7623988]
[35]
Friedman S, Jones HW III, Golbetz HV, Lee JA, Little HL, Myers BD. Mechanisms of proteinuria in diabetic nephropathy. II. A study of the size-selective glomerular filtration barrier. Diabetes 1983; 32(Suppl. 2): 40-6.
[http://dx.doi.org/10.2337/diab.32.2.S40] [PMID: 6086024]
[36]
Menini S, Iacobini C, Oddi G, et al. Increased glomerular cell (podocyte) apoptosis in rats with streptozotocin-induced diabetes mellitus: role in the development of diabetic glomerular disease. Diabetologia 2007; 50(12): 2591-9.
[http://dx.doi.org/10.1007/s00125-007-0821-y] [PMID: 17901943]
[37]
Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature 1991; 351(6322): 153-5.
[http://dx.doi.org/10.1038/351153a0] [PMID: 1709450]
[38]
Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 2007; 13(3): 313-6.
[http://dx.doi.org/10.1261/rna.351707] [PMID: 17237358]
[39]
Tsang WP, Ng EK, Ng SS, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31(3): 350-8.
[http://dx.doi.org/10.1093/carcin/bgp181] [PMID: 19926638]
[40]
Chen S, Bu D, Ma Y, et al. H19 overexpression induces resistance to 1,25(OH)2D3 by targeting VDR through mir-675-5p in colon cancer cells. Neoplasia 2017; 19(3): 226-36.
[http://dx.doi.org/10.1016/j.neo.2016.10.007] [PMID: 28189050]
[41]
Valdivielso JM. The physiology of vitamin D receptor activation. Contrib Nephrol 2009; 163: 206-12.
[http://dx.doi.org/10.1159/000223800] [PMID: 19494615]
[42]
Fan W, Peng Y, Liang Z, Yang Y, Zhang J. A negative feedback loop of H19/miR-675/EGR1 is involved in diabetic nephropathy by downregulating the expression of the vitamin D receptor. J Cell Physiol 2019; 234(10): 17505-13.
[http://dx.doi.org/10.1002/jcp.28373] [PMID: 30815865]
[43]
Shi S, Song L, Yu H, et al. Knockdown of LncRNA-H19 ameliorates kidney fibrosis in diabetic mice by suppressing mir-29a-mediated EndMT. Front Pharmacol 2020; 11: 586895.
[http://dx.doi.org/10.3389/fphar.2020.586895] [PMID: 33324218]
[44]
Eddy AA, Neilson EG. Chronic kidney disease progression. J Am Soc Nephrol 2006; 17(11): 2964-6.
[http://dx.doi.org/10.1681/ASN.2006070704] [PMID: 17035605]
[45]
Nitta K, Shi S, Nagai T, et al. Oral administration of N-acetyl-seryl-aspartyl-lysyl-proline ameliorates kidney disease in both type 1 and type 2 diabetic mice via a therapeutic regimen. BioMed Res Int 2016; 2016: 9172157.
[http://dx.doi.org/10.1155/2016/9172157] [PMID: 27088094]
[46]
Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 2014; 63(6): 2120-31.
[http://dx.doi.org/10.2337/db13-1029] [PMID: 24574044]
[47]
Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne) 2013; 4: 7.
[http://dx.doi.org/10.3389/fendo.2013.00007] [PMID: 23390421]
[48]
Yazdanpanah L, Nasiri M, Adarvishi S. Literature review on the management of diabetic foot ulcer. World J Diabetes 2015; 6(1): 37-53.
[http://dx.doi.org/10.4239/wjd.v6.i1.37] [PMID: 25685277]
[49]
Li B, Luan S, Chen J, et al. The msc-derived exosomal lncrna h19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids 2020; 19: 814-26.
[http://dx.doi.org/10.1016/j.omtn.2019.11.034] [PMID: 31958697]
[50]
Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell Transplant 2016; 25(5): 829-48.
[http://dx.doi.org/10.3727/096368915X689622] [PMID: 26423725]
[51]
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2015; 4(9): 560-82.
[http://dx.doi.org/10.1089/wound.2015.0635] [PMID: 26339534]
[52]
Ti D, Hao H, Fu X, Han W. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci 2016; 59(12): 1305-12.
[http://dx.doi.org/10.1007/s11427-016-0240-4] [PMID: 27864711]
[53]
Gezer U, Özgür E, Cetinkaya M, Isin M, Dalay N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int 2014; 38(9): 1076-9.
[http://dx.doi.org/10.1002/cbin.10301] [PMID: 24798520]
[54]
Gong YY, Peng MY, Yin DQ, Yang YF. Long non-coding RNA H19 promotes the osteogenic differentiation of rat ectomesenchymal stem cells via Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 2018; 22(24): 8805-13.
[PMID: 30575922]
[55]
Wu J, Zhao J, Sun L, Pan Y, Wang H, Zhang WB. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone 2018; 108: 62-70.
[http://dx.doi.org/10.1016/j.bone.2017.12.013] [PMID: 29253550]
[56]
Zhang Z, Li Y, Sheng C, Yang C, Chen L, Sun J. Tanshinone IIA inhibits apoptosis in the myocardium by inducing microRNA-152-3p expression and thereby downregulating PTEN. Am J Transl Res 2016; 8(7): 3124-32.
[PMID: 27508033]
[57]
Hou SQ, Ouyang M, Brandmaier A, Hao H, Shen WH. PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation. BioEssays 2017; 39(10)
[http://dx.doi.org/10.1002/bies.201700082] [PMID: 28891157]
[58]
Wang XM, Yao M, Liu SX, Hao J, Liu QJ, Gao F. Interplay between the Notch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis. Am J Physiol Renal Physiol 2014; 306(2): F205-13.
[http://dx.doi.org/10.1152/ajprenal.90005.2013] [PMID: 24226527]
[59]
Xiao Y, Liu R, Li X, et al. Long noncoding RNA H19 contributes to cholangiocyte proliferation and cholestatic liver fibrosis in biliary atresia. Hepatology 2019; 70(5): 1658-73.
[http://dx.doi.org/10.1002/hep.30698] [PMID: 31063660]
[60]
Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv 2018; 25(1): 241-55.
[http://dx.doi.org/10.1080/10717544.2018.1425774] [PMID: 29334272]
[61]
Okano T, Ohwada S, Sato Y, et al. Blood transfusions impair anastomotic wound healing, reduce luminol-dependent chemiluminescence, and increase interleukin-8. Hepatogastroenterology 2001; 48(42): 1669-74.
[PMID: 11813598]
[62]
Mazzucco L, Medici D, Serra M, et al. The use of autologous platelet gel to treat difficult-to-heal wounds: a pilot study. Transfusion 2004; 44(7): 1013-8.
[http://dx.doi.org/10.1111/j.1537-2995.2004.03366.x] [PMID: 15225241]
[63]
Song X, Shan D, Chen J, Jing Q. miRNAs and lncRNAs in vascular injury and remodeling. Sci China Life Sci 2014; 57(8): 826-35.
[http://dx.doi.org/10.1007/s11427-014-4698-y] [PMID: 25104456]
[64]
Lu YF, Liu Y, Fu WM, et al. Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-β1 signaling. FASEB J 2017; 31(3): 954-64.
[http://dx.doi.org/10.1096/fj.201600722R] [PMID: 27895107]
[65]
Zhang J, Liu CY, Wan Y, Peng L, Li WF, Qiu JX. Long non-coding RNA H19 promotes the proliferation of fibroblasts in keloid scarring. Oncol Lett 2016; 12(4): 2835-9.
[http://dx.doi.org/10.3892/ol.2016.4931] [PMID: 27698867]
[66]
de Almeida TF, de Castro Pires T, Monte-Alto-Costa A. Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice. Exp Biol Med (Maywood) 2016; 241(4): 353-8.
[http://dx.doi.org/10.1177/1535370215612940] [PMID: 26515142]
[67]
Dong M, Fan XJ, Chen ZH, et al. Aberrant expression of enhancer of zeste homologue 2, correlated with HIF-1α, refines relapse risk and predicts poor outcome for breast cancer. Oncol Rep 2014; 32(3): 1101-7.
[http://dx.doi.org/10.3892/or.2014.3322] [PMID: 25017254]
[68]
Wang L, Jin Q, Lee JE, Su IH, Ge K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA 2010; 107(16): 7317-22.
[http://dx.doi.org/10.1073/pnas.1000031107] [PMID: 20368440]
[69]
Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I, et al. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst Rev 2016; (5): CD006899.
[http://dx.doi.org/10.1002/14651858.CD006899.pub3]
[70]
Guo JR, Yin L, Chen YQ, et al. Autologous blood transfusion augments impaired wound healing in diabetic mice by enhancing lncRNA H19 expression via the HIF-1α signaling pathway. Cell Commun Signal 2018; 16(1): 84.
[http://dx.doi.org/10.1186/s12964-018-0290-6] [PMID: 30458806]
[71]
Guo YJ, Wang SH, Yuan Y, et al. Vulnerability for apoptosis in the hippocampal dentate gyrus of STZ-induced diabetic rats with cognitive impairment. J Endocrinol Invest 2014; 37(1): 87-96.
[http://dx.doi.org/10.1007/s40618-013-0030-0] [PMID: 24464455]
[72]
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 2015; 70: 5.47.1-5.47.20.
[73]
Gao Y, Wu F, Zhou J, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res 2014; 42(22): 13799-811.
[http://dx.doi.org/10.1093/nar/gku1160] [PMID: 25399420]
[74]
Narayanan RP, Fu B, Payton A, et al. IGF2 gene polymorphisms and IGF-II concentration are determinants of longitudinal weight trends in type 2 diabetes. Exp Clin Endocrinol Diabetes 2013; 121(6): 361-7.
[http://dx.doi.org/10.1055/s-0033-1345122] [PMID: 23757053]
[75]
Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9(1): 47-59.
[http://dx.doi.org/10.1038/nrm2308] [PMID: 18097445]
[76]
Yu JL, Li C, Che LH, Zhao YH, Guo YB. Downregulation of long noncoding RNA H19 rescues hippocampal neurons from apoptosis and oxidative stress by inhibiting IGF2 methylation in mice with streptozotocin-induced diabetes mellitus. J Cell Physiol 2019; 234(7): 10655-70.
[http://dx.doi.org/10.1002/jcp.27746] [PMID: 30536889]
[77]
Coustan DR. Gestational diabetes mellitus. Clin Chem 2013; 59(9): 1310-21.
[http://dx.doi.org/10.1373/clinchem.2013.203331] [PMID: 23536513]
[78]
Metzger BE, Buchanan TA, Coustan DR, et al. Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care 2007; 30(Suppl. 2): S251-60.
[http://dx.doi.org/10.2337/dc07-s225] [PMID: 17596481]
[79]
Bateson P, Barker D, Clutton-Brock T, et al. Developmental plasticity and human health. Nature 2004; 430(6998): 419-21.
[http://dx.doi.org/10.1038/nature02725] [PMID: 15269759]
[80]
Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 2000; 49(12): 2208-11.
[http://dx.doi.org/10.2337/diabetes.49.12.2208] [PMID: 11118027]
[81]
Fetita LS, Sobngwi E, Serradas P, Calvo F, Gautier JF. Consequences of fetal exposure to maternal diabetes in offspring. J Clin Endocrinol Metab 2006; 91(10): 3718-24.
[http://dx.doi.org/10.1210/jc.2006-0624] [PMID: 16849402]
[82]
Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care 2008; 31(2): 340-6.
[http://dx.doi.org/10.2337/dc07-1596] [PMID: 18000174]
[83]
Pettitt DJ, Aleck KA, Baird HR, Carraher MJ, Bennett PH, Knowler WC. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 1988; 37(5): 622-8.
[http://dx.doi.org/10.2337/diab.37.5.622] [PMID: 3360218]
[84]
Tremblay J, Hamet P. Impact of genetic and epigenetic factors from early life to later disease. Metabolism 2008; 57(Suppl. 2): S27-31.
[http://dx.doi.org/10.1016/j.metabol.2008.07.012] [PMID: 18803962]
[85]
Nagase H, Ghosh S. Epigenetics: differential DNA methylation in mammalian somatic tissues. FEBS J 2008; 275(8): 1617-23.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06330.x] [PMID: 18331347]
[86]
Serradas P, Goya L, Lacorne M, et al. Fetal insulin-like growth factor-2 production is impaired in the GK rat model of type 2 diabetes. Diabetes 2002; 51(2): 392-7.
[http://dx.doi.org/10.2337/diabetes.51.2.392] [PMID: 11812746]
[87]
Devedjian JC, George M, Casellas A, et al. Transgenic mice overexpressing insulin-like growth factor-II in beta cells develop type 2 diabetes. J Clin Invest 2000; 105(6): 731-40.
[http://dx.doi.org/10.1172/JCI5656] [PMID: 10727441]
[88]
Calderari S, Gangnerau MN, Thibault M, et al. Defective IGF2 and IGF1R protein production in embryonic pancreas precedes beta cell mass anomaly in the Goto-Kakizaki rat model of type 2 diabetes. Diabetologia 2007; 50(7): 1463-71.
[http://dx.doi.org/10.1007/s00125-007-0676-2] [PMID: 17476475]
[89]
Waterland RA, Lin JR, Smith CA, Jirtle RL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 2006; 15(5): 705-16.
[http://dx.doi.org/10.1093/hmg/ddi484] [PMID: 16421170]
[90]
Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 2000; 405(6785): 486-9.
[http://dx.doi.org/10.1038/35013106] [PMID: 10839547]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy