Research Article

穿心莲内酯和血管紧张素(1-7)联合应用可协同提高老年小鼠的肌肉功能和力量

卷 22, 期 10, 2022

发表于: 14 January, 2022

页: [908 - 918] 页: 11

弟呕挨: 10.2174/1566524021666211207112106

价格: $65

摘要

背景:骨骼肌减少症是一种进行性和广泛性骨骼肌疾病,其特征为肌肉无力、肌肉质量损失和发力能力下降。衰老会导致肌肉减少症。已经评估了几种治疗策略来预防或减轻这种疾病。其中之一是血管紧张素1-7 [Ang-(1-7)],这是一种抗骨骼肌萎缩的肽,可以调节多种原因导致的肌肉质量下降,包括衰老。另一种调节肌肉质量和功能的是穿心莲内酯,它是一种双环二萜内酯,可降低核因子kappa B (NF-κB)信号,并减轻某些肌肉疾病的严重程度。 目的:探讨Ang-(1-7)联合穿心莲内酯对衰老性肌肉减少小鼠运动性能、肌力和纤维直径的影响。 方法:老年雄性C57BL/6J小鼠分别给予穿心莲内酯、Ang-(1-7)或联合用药3个月。测量他们的身体表现、肌肉力量和纤维直径。 结果:结果显示老年小鼠(24个月大)经Ang-(1-7)或穿心莲内酯治疗后,与未接受治疗的老年小鼠相比,其跑步机测试表现、肌肉力量和纤维直径均有所改善。Ang-(1-7)与穿心莲内酯联合给药对老年小鼠的身体性能、肌肉力量和纤维直径有增强的协同作用。 结论:我们的结果表明穿心莲内酯和Ang-(1-7)对老龄小鼠肌肉功能、力量和纤维直径的影响增强。

关键词: 肌少症,肾素-血管紧张素系统,虚弱,身体表现,肌肉功能,血管紧张素-(1-7)。

[1]
Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on Sarcopenia. J Am Med Dir Assoc 2011; 12(4): 249-56.
[http://dx.doi.org/10.1016/j.jamda.2011.01.003] [PMID: 21527165]
[2]
Glass D, Roubenoff R. Recent advances in the biology and therapy of muscle wasting. Ann N Y Acad Sci 2010; 1211: 25-36.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05809.x] [PMID: 21062293]
[3]
Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C. The developmental origins of Sarcopenia. J Nutr Health Aging 2008; 12(7): 427-32.
[http://dx.doi.org/10.1007/BF02982703] [PMID: 18615224]
[4]
Dodds RM, Syddall HE, Cooper R, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One 2014; 9(12): e113637.
[http://dx.doi.org/10.1371/journal.pone.0113637] [PMID: 25474696]
[5]
Sayer AA, Syddall HE, Gilbody HJ, Dennison EM, Cooper C. Does Sarcopenia originate in early life? Findings from the Hertfordshire cohort study. J Gerontol A Biol Sci Med Sci 2004; 59(9): M930-4.
[http://dx.doi.org/10.1093/gerona/59.9.M930] [PMID: 15472158]
[6]
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019; 48(4): 601.
[http://dx.doi.org/10.1093/ageing/afz046] [PMID: 31081853]
[7]
Zambelli V, Sigurtà A, Rizzi L, et al. Angiotensin-(1-7) exerts a protective action in a rat model of ventilator-induced diaphragmatic dysfunction. Intensive Care Med Exp 2019; 7(1): 8.
[http://dx.doi.org/10.1186/s40635-018-0218-x] [PMID: 30659381]
[8]
Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin-angiotensin system: an old player with novel functions in skeletal muscle. Med Res Rev 2015; 35(3): 437-63.
[http://dx.doi.org/10.1002/med.21343] [PMID: 25764065]
[9]
Morales MG, Abrigo J, Acuña MJ, et al. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Dis Model Mech 2016; 9(4): 441-9.
[http://dx.doi.org/10.1242/dmm.023390] [PMID: 26851244]
[10]
Yoshihara T, Deminice R, Hyatt H, Ozdemir M, Nguyen BL, Powers SK. Angiotensin 1-7 protects against ventilator-induced diaphragm dysfunction. Clin Transl Sci 2021.
[http://dx.doi.org/10.1111/cts.13015] [PMID: 33742769]
[11]
Nozato S, Yamamoto K, Takeshita H, et al. Angiotensin 1-7 alleviates aging-associated muscle weakness and bone loss, but is not associated with accelerated aging in ACE2-knockout mice. Clin Sci (Lond) 2019; 133(18): 2005-18.
[http://dx.doi.org/10.1042/CS20190573] [PMID: 31519791]
[12]
Shen YC, Chen CF, Chiou WF. Andrographolide prevents oxygen radical production by human neutrophils: Possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol 2002; 135(2): 399-406.
[http://dx.doi.org/10.1038/sj.bjp.0704493] [PMID: 11815375]
[13]
Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther Oncol 2003; 3(3): 147-58.
[http://dx.doi.org/10.1046/j.1359-4117.2003.01090.x] [PMID: 14641821]
[14]
Calabrese C, Berman SH, Babish JG, et al. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res 2000; 14(5): 333-8.
[http://dx.doi.org/10.1002/1099-1573(200008)14:5<333:AID-PTR584>3.0.CO;2-D] [PMID: 10925397]
[15]
Lee TY, Lee KC, Chang HH. Modulation of the cannabinoid receptors by andrographolide attenuates hepatic apoptosis following bile duct ligation in rats with fibrosis. Apoptosis 2010; 15(8): 904-14.
[http://dx.doi.org/10.1007/s10495-010-0502-z] [PMID: 20446039]
[16]
Lee MJ, Rao YK, Chen K, Lee YC, Chung YS, Tzeng YM. Andrographolide and 14-deoxy-11,12-didehydroandrographolide from Andrographis paniculata attenuate high glucose-induced fibrosis and apoptosis in murine renal mesangeal cell lines. J Ethnopharmacol 2010; 132(2): 497-505.
[http://dx.doi.org/10.1016/j.jep.2010.07.057] [PMID: 20813180]
[17]
Ye JF, Zhu H, Zhou ZF, et al. Protective mechanism of andrographolide against carbon tetrachloride-induced acute liver injury in mice. Biol Pharm Bull 2011; 34(11): 1666-70.
[http://dx.doi.org/10.1248/bpb.34.1666] [PMID: 22040877]
[18]
Xia YF, Ye BQ, Li YD, et al. Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol 2004; 173(6): 4207-17.
[http://dx.doi.org/10.4049/jimmunol.173.6.4207] [PMID: 15356172]
[19]
Acharyya S, Villalta SA, Bakkar N, et al. Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 2007; 117(4): 889-901.
[http://dx.doi.org/10.1172/JCI30556] [PMID: 17380205]
[20]
Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 2008; 27(5): 375-87.
[http://dx.doi.org/10.1080/08830180802302389] [PMID: 18853344]
[21]
Peterson JM, Kline W, Canan BD, et al. Peptide-based inhibition of NF-κB rescues diaphragm muscle contractile dysfunction in a murine model of Duchenne muscular dystrophy. Mol Med 2011; 17(5-6): 508-15.
[http://dx.doi.org/10.2119/molmed.2010.00263] [PMID: 21267511]
[22]
Ziaaldini MM, Marzetti E, Picca A, Murlasits Z. Biochemical pathways of sarcopenia and their modulation by physical exercise: A narrative review. Front Med (Lausanne) 2017; 4: 167.
[http://dx.doi.org/10.3389/fmed.2017.00167] [PMID: 29046874]
[23]
Oh J, Sinha I, Tan KY, et al. Age-associated NF-κB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function. Aging (Albany NY) 2016; 8(11): 2871-96.
[http://dx.doi.org/10.18632/aging.101098] [PMID: 27852976]
[24]
Cabrera D, Gutiérrez J, Cabello-Verrugio C, et al. Andrographolide attenuates skeletal muscle dystrophy in mdx mice and increases efficiency of cell therapy by reducing fibrosis. Skelet Muscle 2014; 4: 6.
[http://dx.doi.org/10.1186/2044-5040-4-6] [PMID: 24655808]
[25]
Abrigo J, Marín T, Aguirre F, et al. N-Acetyl Cysteine attenuates the Sarcopenia and muscle apoptosis induced by chronic liver disease. Curr Mol Med 2019; 20(1): 60-71.
[http://dx.doi.org/10.2174/1566524019666190917124636] [PMID: 31530262]
[26]
Aartsma-Rus A, van Putten M. Assessing functional performance in the mdx mouse model. J Vis Exp 2014.
[http://dx.doi.org/10.3791/51303]
[27]
Bonetto A, Andersson DC, Waning DL. Assessment of muscle mass and strength in mice. Bonekey Rep 2015; 4: 732.
[http://dx.doi.org/10.1038/bonekey.2015.101] [PMID: 26331011]
[28]
Morales MG, Cabrera D, Céspedes C, et al. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2). Cell Tissue Res 2013; 353(1): 173-87.
[http://dx.doi.org/10.1007/s00441-013-1642-6] [PMID: 23673415]
[29]
Cabello-Verrugio C, Acuña MJ, Morales MGG, et al. Fibrotic response induced by angiotensin-II requires NAD(P)H oxidase-induced reactive oxygen species (ROS) in skeletal muscle cells. Biochem Biophys Res Commun 2011; 410(3): 665-70.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.051] [PMID: 21693104]
[30]
Morales MG, Abrigo J, Meneses C, et al. The Ang-(1-7)/Mas-1 axis attenuates the expression and signalling of TGF-β1 induced by AngII in mouse skeletal muscle. Clin Sci (Lond) 2014; 127(4): 251-64.
[http://dx.doi.org/10.1042/CS20130585] [PMID: 24588264]
[31]
Meneses C, Morales MG, Abrigo J, Simon F, Brandan E, Cabello-Verrugio C. The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflugers Arch 2015; 467(9): 1975-84.
[http://dx.doi.org/10.1007/s00424-014-1617-9] [PMID: 25292283]
[32]
Takeshita H, Yamamoto K, Nozato S, et al. Angiotensin-converting enzyme 2 deficiency accelerates and angiotensin 1-7 restores age-related muscle weakness in mice. J Cachexia Sarcopenia Muscle 2018; 9(5): 975-86.
[http://dx.doi.org/10.1002/jcsm.12334] [PMID: 30207087]
[33]
Takeshita H, Yamamoto K, Mogi M, Nozato S, Horiuchi M, Rakugi H. Different effects of the deletion of angiotensin converting enzyme 2 and chronic activation of the renin-angiotensin system on muscle weakness in middle-aged mice. Hypertens Res 2020; 43(4): 296-304.
[http://dx.doi.org/10.1038/s41440-019-0375-7] [PMID: 31853045]
[34]
Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 2008; 7(2): 83-105.
[http://dx.doi.org/10.1016/j.arr.2007.09.002] [PMID: 17964225]
[35]
Cai D, Frantz JD, Tawa NE Jr, et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004; 119(2): 285-98.
[http://dx.doi.org/10.1016/j.cell.2004.09.027] [PMID: 15479644]
[36]
Cao PR, Kim HJ, Lecker SH. Ubiquitin-protein ligases in muscle wasting. Int J Biochem Cell Biol 2005; 37(10): 2088-97.
[http://dx.doi.org/10.1016/j.biocel.2004.11.010] [PMID: 16125112]
[37]
Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37(10): 1974-84.
[http://dx.doi.org/10.1016/j.biocel.2005.04.018] [PMID: 16087388]
[38]
Villalobos LA, San Hipólito-Luengo Á, Ramos-González M, et al. The Angiotensin-(1-7)/Mas axis counteracts angiotensin II-dependent and -independent pro-inflammatory signaling in human vascular smooth muscle cells. Front Pharmacol 2016; 7: 482.
[http://dx.doi.org/10.3389/fphar.2016.00482] [PMID: 28018220]
[39]
Thoma A, Lightfoot AP. NF-kB and inflammatory cytokine signalling: Role in skeletal muscle atrophy. Adv Exp Med Biol 2018; 1088: 267-79.
[http://dx.doi.org/10.1007/978-981-13-1435-3_12] [PMID: 30390256]
[40]
Lightfoot AP, Cooper RG. The role of myokines in muscle health and disease. Curr Opin Rheumatol 2016; 28(6): 661-6.
[http://dx.doi.org/10.1097/BOR.0000000000000337] [PMID: 27548653]
[41]
Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G. Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 2003; 60(6): 993-7.
[http://dx.doi.org/10.1212/01.WNL.0000049913.27181.51] [PMID: 12654966]
[42]
Schneider C, Gold R, Dalakas MC, et al. MHC class I-mediated cytotoxicity does not induce apoptosis in muscle fibers nor in inflammatory T cells: Studies in patients with polymyositis, dermatomyositis, and inclusion body myositis. J Neuropathol Exp Neurol 1996; 55(12): 1205-9.
[http://dx.doi.org/10.1097/00005072-199612000-00003] [PMID: 8957443]
[43]
Ruegg UT. Pharmacological prospects in the treatment of Duchenne muscular dystrophy. Curr Opin Neurol 2013; 26(5): 577-84.
[http://dx.doi.org/10.1097/WCO.0b013e328364fbaf] [PMID: 23995279]
[44]
Alvarez K, Fadic R, Brandan E. Augmented synthesis and differential localization of heparan sulfate proteoglycans in Duchenne muscular dystrophy. J Cell Biochem 2002; 85(4): 703-13.
[http://dx.doi.org/10.1002/jcb.10184] [PMID: 11968010]
[45]
Acuña MJ, Pessina P, Olguin H, et al. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Hum Mol Genet 2014; 23(5): 1237-49.
[http://dx.doi.org/10.1093/hmg/ddt514] [PMID: 24163134]
[46]
Cuthbertson D, Smith K, Babraj J, et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 2005; 19(3): 422-4.
[http://dx.doi.org/10.1096/fj.04-2640fje] [PMID: 15596483]
[47]
Vasilaki A, McArdle F, Iwanejko LM, McArdle A. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. Mech Ageing Dev 2006; 127(11): 830-9.
[http://dx.doi.org/10.1016/j.mad.2006.08.004] [PMID: 16996110]
[48]
Kumar A, Davuluri G, Welch N, et al. Oxidative stress mediates ethanol-induced skeletal muscle mitochondrial dysfunction and dysregulated protein synthesis and autophagy. Free Radic Biol Med 2019; 145: 284-99.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.031] [PMID: 31574345]
[49]
Bak DH, Na J, Im SI, et al. Antioxidant effect of human placenta hydrolysate against oxidative stress on muscle atrophy. J Cell Physiol 2019; 234(2): 1643-58.
[http://dx.doi.org/10.1002/jcp.27034] [PMID: 30132871]
[50]
Aravena J, Abrigo J, Gonzalez F, et al. Angiotensin (1-7) decreases myostatin-induced NF-κB +phy. Int J Mol Sci 2020; 21(3): E1167.
[http://dx.doi.org/10.3390/ijms21031167] [PMID: 32050585]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy