Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Construction and Evaluation of Recombinant Chimeric Fibrillin and Elastin Fragment in Human Mesenchymal Stem Cells

Author(s): Eui-Seung Jeong, Bo-Hyun Park, Sujin Lee and Jun-Hyeog Jang*

Volume 29, Issue 2, 2022

Published on: 15 February, 2022

Page: [176 - 183] Pages: 8

DOI: 10.2174/0929866528666211207110043

Price: $65

Abstract

Background: Diverse extracellular matrix (ECM) proteins physically interact with stem cells and regulate stem cell function. However, the large molecular weight of the natural ECM renders large-scale fabrication of a similar functional structure challenging.

Objective: The objective of this study was to construct a low molecular weight and multifunctional chimeric form of recombinant ECM to stimulate mesenchymal stem cell (MSC) for tissue repair. We engineered Fibrillin-1PF14 fused to an elastin-like polypeptide to develop a new biomimetic ECM for stem cell differentiation and investigated whether this recombinant chimeric Fibrillin-Elastin fragment (rcFE) was effective on human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs).

Methods: hTMSCs were grown in the medium supplemented with rcFE, then the effect of the protein was confirmed through cell adhesion assay, proliferation assay, and real-time PCR.

Results: rcFE enhanced the adhesion activity of hTMSCs by 2.7-fold at the optimal concentration, and the proliferation activity was 2.6-fold higher than that of the control group (non-treatment rcFE). In addition, when smooth muscle cell differentiation markers were identified by real-time PCR, Calponin increased about 6-fold, α-actin about 9-fold, and MYH11 about 10-fold compared to the control group.

Conclusion: Chimeric rcFE enhanced cellular functions such as cell adhesion, proliferation, and smooth muscle differentiation of hTMSCs, suggesting that the rcFE can facilitate the induction of tissue regeneration.

Keywords: Extracellular matrix, fibrillin-1, elastin-like peptide, hTMSCs, cell differentiation, tissue regeneration.

Graphical Abstract

[1]
Boso, D.; Maghin, E.; Carraro, E.; Giagante, M.; Pavan, P.; Piccoli, M. Extracellular matrix-derived hydrogels as biomaterial for different skeletal muscle tissue replacements. Materials, 2020, 13(11), 2483.
[http://dx.doi.org/10.3390/ma13112483] [PMID: 32486040]
[2]
Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci., 2010, 123(Pt 24), 4195-4200.
[http://dx.doi.org/10.1242/jcs.023820] [PMID: 21123617]
[3]
Yang, Y.; Lin, H.; Shen, H.; Wang, B.; Lei, G.; Tuan, R.S. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater., 2018, 69, 71-82.
[http://dx.doi.org/10.1016/j.actbio.2017.12.043] [PMID: 29317369]
[4]
Aamodt, J.M.; Grainger, D.W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials, 2016, 86, 68-82.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.003] [PMID: 26890039]
[5]
Kielty, C.M.; Baldock, C.; Lee, D.; Rock, M.J.; Ashworth, J.L.; Shuttleworth, C.A. Fibrillin: From microfibril assembly to biomechanical function. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2002, 357(1418), 207-217.
[http://dx.doi.org/10.1098/rstb.2001.1029] [PMID: 11911778]
[6]
Sakai, L.Y.; Keene, D.R.; Engvall, E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol., 2001, 154, 275-281.
[PMID: 3536967]
[7]
McGettrick, A.J.; Knott, V.; Willis, A.; Handford, P.A. Molecular effects of calcium binding mutations in Marfan syndrome depend on domain context. Hum. Mol. Genet., 2000, 9(13), 1987-1994.
[http://dx.doi.org/10.1093/hmg/9.13.1987] [PMID: 10942427]
[8]
Bax, D.V.; Mahalingam, Y.; Cain, S.; Mellody, K.; Freeman, L.; Younger, K.; Shuttleworth, C.A.; Humphries, M.J.; Couchman, J.R.; Kielty, C.M. Cell adhesion to fibrillin-1: Identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J. Cell Sci., 2007, 120(Pt 8), 1383-1392.
[http://dx.doi.org/10.1242/jcs.003954] [PMID: 17374638]
[9]
Lorena, D.; Darby, I.A.; Reinhardt, D.P.; Sapin, V.; Rosenbaum, J.; Desmoulière, A. Fibrillin-1 expression in normal and fibrotic rat liver and in cultured hepatic fibroblastic cells: modulation by mechanical stress and role in cell adhesion. Lab. Invest., 2004, 84(2), 203-212.
[http://dx.doi.org/10.1038/labinvest.3700023] [PMID: 14661032]
[10]
Zeyer, K.A.; Zhang, R.M.; Kumra, H.; Hassan, A.; Reinhardt, D.P. The Fibrillin-1 RGD integrin binding site regulates gene expression and cell function through microRNAs. J. Mol. Biol., 2019, 431(2), 401-421.
[http://dx.doi.org/10.1016/j.jmb.2018.11.021] [PMID: 30500337]
[11]
Mariko, B.; Ghandour, Z.; Raveaud, S.; Quentin, M.; Usson, Y.; Verdetti, J.; Huber, P.; Kielty, C.; Faury, G. Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells. Am. J. Physiol. Cell Physiol., 2010, 299(5), C977-C987.
[http://dx.doi.org/10.1152/ajpcell.00377.2009] [PMID: 20686071]
[12]
Wise, S.G.; Waterhouse, A.; Michael, P.; Ng, M.K. Extracellular matrix molecules facilitating vascular biointegration. J. Funct. Biomater., 2012, 3(3), 569-587.
[http://dx.doi.org/10.3390/jfb3030569] [PMID: 24955633]
[13]
Behan, W.M.; Longman, C.; Petty, R.K.; Comeglio, P.; Child, A.H.; Boxer, M.; Foskett, P.; Harriman, D.G. Muscle fibrillin deficiency in Marfan’s syndrome myopathy. J. Neurol. Neurosurg. Psychiatry, 2003, 74(5), 633-638.
[http://dx.doi.org/10.1136/jnnp.74.5.633] [PMID: 12700307]
[14]
Bitterman, A.D.; Sponseller, P.D. Marfan syndrome: A clinical update. J. Am. Acad. Orthop. Surg., 2017, 25(9), 603-609.
[http://dx.doi.org/10.5435/JAAOS-D-16-00143] [PMID: 28837453]
[15]
Wagner, A.H.; Zaradzki, M.; Arif, R.; Remes, A.; Müller, O.J.; Kallenbach, K. Marfan syndrome: A therapeutic challenge for long-term care. Biochem. Pharmacol., 2019, 164, 53-63.
[http://dx.doi.org/10.1016/j.bcp.2019.03.034] [PMID: 30926475]
[16]
Koenders, M.M.; Yang, L.; Wismans, R.G.; van der Werf, K.O.; Reinhardt, D.P.; Daamen, W.; Bennink, M.L.; Dijkstra, P.J.; van Kuppevelt, T.H.; Feijen, J. Microscale mechanical properties of single elastic fibers: The role of fibrillin-microfibrils. Biomaterials, 2009, 30(13), 2425-2432.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.038] [PMID: 19217657]
[17]
Annabi, N.; Mithieux, S.M.; Camci-Unal, G.; Dokmeci, M.R.; Weiss, A.S.; Khademhosseini, A. Elastomeric recombinant protein-based biomaterials. Biochem. Eng. J., 2013, 77, 110-118.
[http://dx.doi.org/10.1016/j.bej.2013.05.006] [PMID: 23935392]
[18]
Le, D.H.T.; Sugawara-Narutaki, A. Elastin-like polypeptides as building motifs toward designing functional nanobiomaterials. Mol. Syst. Des. Eng., 2019, 4, 545-565.
[http://dx.doi.org/10.1039/C9ME00002J]
[19]
Mackay, J.A.; Chilkoti, A. Temperature sensitive peptides: Engineering hyperthermia-directed therapeutics. Int. J. Hyperthermia, 2008, 24(6), 483-495.
[http://dx.doi.org/10.1080/02656730802149570] [PMID: 18608590]
[20]
Sugawara-Narutaki, A.; Yasunaga, S.; Sugioka, Y.; Le, D.H.T.; Kitamura, I.; Nakamura, J.; Ohtsuki, C. Rheology of dispersions of high-aspect-ratio nanofibers assembled from elastin-like double-hydrophobic polypeptides. Int. J. Mol. Sci., 2019, 20(24), 6262.
[http://dx.doi.org/10.3390/ijms20246262] [PMID: 31842263]
[21]
Yi, A.; Sim, D.; Lee, Y.J.; Sarangthem, V.; Park, R.W. Development of elastin-like polypeptide for targeted specific gene delivery in vivo. J. Nanobiotechnology, 2020, 18(1), 15.
[http://dx.doi.org/10.1186/s12951-020-0574-z] [PMID: 31952530]
[22]
Valiaev, A.; Lim, D.W.; Schmidler, S.; Clark, R.L.; Chilkoti, A.; Zauscher, S. Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides. J. Am. Chem. Soc., 2008, 130(33), 10939-10946.
[http://dx.doi.org/10.1021/ja800502h] [PMID: 18646848]
[23]
Saxena, R.; Nanjan, M.J. Elastin-like polypeptides and their applications in anticancer drug delivery systems: A review. Drug Deliv., 2015, 22(2), 156-167.
[http://dx.doi.org/10.3109/10717544.2013.853210] [PMID: 24215207]
[24]
Hubmacher, D.; Cirulis, J.T.; Miao, M.; Keeley, F.W.; Reinhardt, D.P. Functional consequences of homocysteinylation of the elastic fiber proteins fibrillin-1 and tropoelastin. J. Biol. Chem., 2010, 285(2), 1188-1198.
[http://dx.doi.org/10.1074/jbc.M109.021246] [PMID: 19889633]
[25]
Caplan, A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med., 2017, 6(6), 1445-1451.
[http://dx.doi.org/10.1002/sctm.17-0051] [PMID: 28452204]
[26]
Hwang, S.H.; Lee, W.; Park, S.H.; Lee, H.J.; Park, S.H.; Lee, D.C.; Lim, M.H.; Back, S.A.; Yun, B.G.; Jeun, J.H.; Lim, J.Y.; Kang, J.M.; Kim, S.W. Evaluation of characteristic of human turbinate derived mesenchymal stem cells cultured in the serum free media. PLoS One, 2017, 12(10), e0186249.
[http://dx.doi.org/10.1371/journal.pone.0186249] [PMID: 29049314]
[27]
Kwon, J.S.; Park, S.H.; Baek, J.H.; Dung, T.M.; Kim, S.W.; Min, B.H.; Kim, J.H.; Kim, M.S. Gene transfection of human turbinate mesenchymal stromal cells derived from human inferior turbinate tissues. Stem Cells Int., 2016, 2016, 4735264.
[http://dx.doi.org/10.1155/2016/4735264] [PMID: 26783402]
[28]
Kwon, J.S.; Kim, S.W.; Kwon, D.Y.; Park, S.H.; Son, A.R.; Kim, J.H.; Kim, M.S. In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Biomaterials, 2014, 35(20), 5337-5346.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.045] [PMID: 24720878]
[29]
Hwang, S.H.; Kim, S.W.; Kim, S.Y. Human turbinate mesenchymal stromal cells as a potential option for cartilage tissue engineering. Tissue Eng. Regen. Med., 2011, 8, 536-543.
[30]
Lee, S.; Kim, J.E.; Seo, H.J.; Jang, J.H. Design of fibronectin type III domains fused to an elastin-like polypeptide for the osteogenic differentiation of human mesenchymal stem cells. Acta Biochim. Biophys. Sin., 2019, 51(8), 856-863.
[http://dx.doi.org/10.1093/abbs/gmz063] [PMID: 31267123]
[31]
Hwang, S.H.; Kim, S.Y.; Park, S.H.; Choi, M.Y.; Kang, H.W.; Seol, Y.J.; Park, J.H.; Cho, D.W.; Hong, O.K.; Rha, J.G.; Kim, S.W. Human inferior turbinate: An alternative tissue source of multipotent mesenchymal stromal cells. Otolaryngol. Head Neck Surg., 2012, 147(3), 568-574.
[http://dx.doi.org/10.1177/0194599812447172] [PMID: 22588732]
[32]
Ahmad, T.; Lee, J.; Shin, Y.M.; Shin, H.J.; Madhurakat Perikamana, S.K.; Park, S.H.; Kim, S.W.; Shin, H. Hybrid-spheroids incorporating ECM like engineered fragmented fibers potentiate stem cell function by improved cell/cell and cell/ECM interactions. Acta Biomater., 2017, 64, 161-175.
[http://dx.doi.org/10.1016/j.actbio.2017.10.022] [PMID: 29037892]
[33]
Zhang, Y.; Babczyk, P.; Pansky, A.; Kassack, M.U.; Tobiasch, E. P2 receptors influence hMSCs differentiation towards endothelial cell and smooth muscle cell lineages. Int. J. Mol. Sci., 2020, 21(17), 6200.
[http://dx.doi.org/10.3390/ijms21176210] [PMID: 32867347]
[34]
Gu, W.; Hong, X.; Le Bras, A.; Nowak, W.N.; Issa Bhaloo, S.; Deng, J.; Xie, Y.; Hu, Y.; Ruan, X.Z.; Xu, Q. Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. J. Biol. Chem., 2018, 293(21), 8089-8102.
[http://dx.doi.org/10.1074/jbc.RA118.001739] [PMID: 29643181]
[35]
Yue, B. Biology of the extracellular matrix: An overview. J. Glaucoma, 2014, 23(8)(Suppl. 1), S20-S23.
[http://dx.doi.org/10.1097/IJG.0000000000000108] [PMID: 25275899]
[36]
Godwin, A.R.F.; Singh, M.; Lockhart-Cairns, M.P.; Alanazi, Y.F.; Cain, S.A.; Baldock, C. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol., 2019, 84, 17-30.
[http://dx.doi.org/10.1016/j.matbio.2019.06.006] [PMID: 31226403]
[37]
Kielty, C.M.; Wess, T.J.; Haston, L.; Ashworth, J.L.; Sherratt, M.J.; Shuttleworth, C.A. Fibrillin-rich microfibrils: Elastic biopolymers of the extracellular matrix. J. Muscle Res. Cell Motil., 2002, 23(5-6), 581-596.
[http://dx.doi.org/10.1023/A:1023479010889] [PMID: 12785107]
[38]
Jensen, S.A.; Handford, P.A. New insights into the structure, assembly and biological roles of 10-12 nm connective tissue microfibrils from fibrillin-1 studies. Biochem. J., 2016, 473(7), 827-838.
[http://dx.doi.org/10.1042/BJ20151108] [PMID: 27026396]
[39]
Zeyer, K.A.; Reinhardt, D.P. Fibrillin-containing microfibrils are key signal relay stations for cell function. J. Cell Commun. Signal., 2015, 9(4), 309-325.
[http://dx.doi.org/10.1007/s12079-015-0307-5] [PMID: 26449569]
[40]
Song, R.; Zhang, L. Cardiac ECM: Its epigenetic regulation and role in heart development and repair. Int. J. Mol. Sci., 2020, 21(22), 8610.
[http://dx.doi.org/10.3390/ijms21228610] [PMID: 33203135]
[41]
Bax, D.V.; Bernard, S.E.; Lomas, A.; Morgan, A.; Humphries, J.; Shuttleworth, C.A.; Humphries, M.J.; Kielty, C.M. Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J. Biol. Chem., 2003, 278(36), 34605-34616.
[http://dx.doi.org/10.1074/jbc.M303159200] [PMID: 12807887]
[42]
Sakamoto, H.; Broekelmann, T.; Cheresh, D.A.; Ramirez, F.; Rosenbloom, J.; Mecham, R.P. Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J. Biol. Chem., 1996, 271(9), 4916-4922.
[http://dx.doi.org/10.1074/jbc.271.9.4916] [PMID: 8617764]
[43]
Williamson, M.R.; Shuttleworth, A.; Canfield, A.E.; Black, R.A.; Kielty, C.M. The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment. Biomaterials, 2007, 28(35), 5307-5318.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.019] [PMID: 17850863]
[44]
Amruthwar, S.S.; Janorkar, A.V. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Dent. Mater., 2013, 29(2), 211-220.
[http://dx.doi.org/10.1016/j.dental.2012.10.003] [PMID: 23127995]
[45]
Tejeda-Montes, E.; Smith, K.H.; Rebollo, E.; Gómez, R.; Alonso, M.; Rodriguez-Cabello, J.C.; Engel, E.; Mata, A. Bioactive membranes for bone regeneration applications: effect of physical and biomolecular signals on mesenchymal stem cell behavior. Acta Biomater., 2014, 10(1), 134-141.
[http://dx.doi.org/10.1016/j.actbio.2013.09.001] [PMID: 24035887]
[46]
Samaha, F.F.; Ip, H.S.; Morrisey, E.E.; Seltzer, J.; Tang, Z.; Solway, J.; Parmacek, M.S. Developmental pattern of expression and genomic organization of the calponin-h1 gene. A contractile smooth muscle cell marker. J. Biol. Chem., 1996, 271(1), 395-403.
[http://dx.doi.org/10.1074/jbc.271.1.395] [PMID: 8550594]
[47]
Su, N.; Chen, M.; Chen, S.; Li, C.; Xie, Y.; Zhu, Y.; Zhang, Y.; Zhao, L.; He, Q.; Du, X.; Chen, D.; Chen, L. Overexpression of H1 calponin in osteoblast lineage cells leads to a decrease in bone mass by disrupting osteoblast function and promoting osteoclast formation. J. Bone Miner. Res., 2013, 28(3), 660-671.
[http://dx.doi.org/10.1002/jbmr.1778] [PMID: 23044709]
[48]
Yamamura, H.; Hirano, N.; Koyama, H.; Nishizawa, Y.; Takahashi, K. Loss of smooth muscle calponin results in impaired blood vessel maturation in the tumor-host microenvironment. Cancer Sci., 2007, 98(5), 757-763.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00452.x] [PMID: 17391313]
[49]
Matthew, J.D.; Khromov, A.S.; McDuffie, M.J.; Somlyo, A.V.; Somlyo, A.P.; Taniguchi, S.; Takahashi, K. Contractile properties and proteins of smooth muscles of a calponin knockout mouse. J. Physiol., 2000, 529(Pt 3), 811-824.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00811.x] [PMID: 11118508]
[50]
Perrin, B.J.; Ervasti, J.M. The actin gene family: function follows isoform. Cytoskeleton, 2010, 67(10), 630-634.
[http://dx.doi.org/10.1002/cm.20475] [PMID: 20737541]
[51]
Yuan, S.M. α-smooth muscle actin and ACTA2 gene expressions in vasculopathies. Rev. Bras. Cir. Cardiovasc., 2015, 30(6), 644-649.
[http://dx.doi.org/10.5935/1678-9741.20150081] [PMID: 26934405]
[52]
Foth, B.J.; Goedecke, M.C.; Soldati, D. New insights into myosin evolution and classification. Proc. Natl. Acad. Sci. USA, 2006, 103(10), 3681-3686.
[http://dx.doi.org/10.1073/pnas.0506307103] [PMID: 16505385]
[53]
Babu, G.J.; Warshaw, D.M.; Periasamy, M. Smooth muscle myosin heavy chain isoforms and their role in muscle physiology. Microsc. Res. Tech., 2000, 50(6), 532-540.
[http://dx.doi.org/10.1002/1097-0029(20000915)50:6<532::AID-JEMT10>3.0.CO;2-E] [PMID: 10998642]
[54]
Chakraborty, R.; Saddouk, F.Z.; Carrao, A.C.; Krause, D.S.; Greif, D.M.; Martin, K.A. Promoters to study vascular smooth muscle. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4), 603-612.
[http://dx.doi.org/10.1161/ATVBAHA.119.312449] [PMID: 30727757]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy