Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

PAX5 Haploinsufficiency Induces Low T Cell Infiltration in the Cancer Microenvironment via Reduced Chemokines

Author(s): Lei Wang, Xue Liang, Mi Liang, Dang Li , Jia Gu , Wei Huang and Jianfeng Zhou *

Volume 22, Issue 9, 2022

Page: [826 - 834] Pages: 9

DOI: 10.2174/1566524021666211206094046

Price: $65

Abstract

Aim: To investigate the effects of PAXT mutations on tumor immunity.

Background: Loss of function of PAX5 plays a key role in the PAX5 mutation tumor.

Objective: PAX5 haploinsufficiency promoting tumorigenesis is related to immune escape, but there was no report about mechanisms of PAX5 mutation inducing tumor immunological escape.

Methods: We constructed the PAX5 haplodeletion A20 cell lines using gene-editing technology, built allografted A20 tumor models and evaluated the effect of PAX5 haplodeletion on T cells and chemokines in the tumor microenvironment (TME).

Results: Our results from different methods indicated percentages of CD3+ CD4+ T cells and CD3+ CD8+ T cells in TME of PAX5 haplodeletion clones decreased significantly compared with that of PAX5 wild type control. Several chemokines, such as Ccl2, Ccl4, Cxcl9 and Cxcl10, in TME of PAX5.

Conclusion: Our study showed that PAX5 haploinsufficiency induced low T cell infiltration in TME using decreased chemokines.

Keywords: Pax5, haploinsufficiency, non-t-cell inflamed tumor, lymphoma, immunotherapy, cytokines.

« Previous
[1]
Medvedovic J, Ebert A, Tagoh H, Busslinger M. Pax5: A master regulator of B cell development and leukemogenesis. Adv Immunol 2011; 111: 179-206.
[http://dx.doi.org/10.1016/B978-0-12-385991-4.00005-2] [PMID: 21970955]
[2]
Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446(7137): 758-64.
[http://dx.doi.org/10.1038/nature05690] [PMID: 17344859]
[3]
Iacobucci I, Lonetti A, Paoloni F, et al. The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A report on behalf of the GIMEMA acute leukemia working party. Haematologica 2010; 95(10): 1683-90.
[http://dx.doi.org/10.3324/haematol.2009.020792] [PMID: 20534699]
[4]
Kim M, Choi JE, She CJ, et al. PAX5 deletion is common and concurrently occurs with CDKN2A deletion in B-lineage acute lymphoblastic leukemia. Blood Cells Mol Dis 2011; 47(1): 62-6.
[http://dx.doi.org/10.1016/j.bcmd.2011.04.003] [PMID: 21549623]
[5]
Liso A, Capello D, Marafioti T, et al. Aberrant somatic hypermutation in tumor cells of nodular-lymphocyte-predominant and classic Hodgkin lymphoma. Blood 2006; 108(3): 1013-20.
[http://dx.doi.org/10.1182/blood-2005-10-3949] [PMID: 16614247]
[6]
Gaidano G, Pasqualucci L, Capello D, et al. Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood 2003; 102(5): 1833-41.
[http://dx.doi.org/10.1182/blood-2002-11-3606] [PMID: 12714522]
[7]
Montesinos-Rongen M, Van Roost D, Schaller C, Wiestler OD, Deckert M. Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 2004; 103(5): 1869-75.
[http://dx.doi.org/10.1182/blood-2003-05-1465] [PMID: 14592832]
[8]
Teo AE, Chen Z, Miranda RN, McDonnell T, Medeiros LJ, McCarty N. Differential PAX5 levels promote malignant B-cell infiltration, progression and drug resistance, and predict a poor prognosis in MCL patients independent of CCND1. Leukemia 2016; 30(3): 580-93.
[http://dx.doi.org/10.1038/leu.2015.140] [PMID: 26073757]
[9]
Liu XM, Zhang L, Ruan M, et al. Significance of PAX5 deletion in childhood B-lineage acute lymphoblastic leukemia without reproducible chromosomal abnormalities. Zhongguo Dang Dai Er Ke Za Zhi 2016; 18(4): 287-91.
[PMID: 27097569]
[10]
Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet 2019; 51(2): 296-307.
[http://dx.doi.org/10.1038/s41588-018-0315-5] [PMID: 30643249]
[11]
Kawamata N, Pennella MA, Woo JL, Berk AJ, Koeffler HP. Dominant-negative mechanism of leukemogenic PAX5 fusions. Oncogene 2012; 31(8): 966-77.
[http://dx.doi.org/10.1038/onc.2011.291] [PMID: 21765475]
[12]
Dang J, Wei L, de Ridder J, et al. PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. Blood 2015; 125(23): 3609-17.
[http://dx.doi.org/10.1182/blood-2015-02-626127] [PMID: 25855603]
[13]
Heltemes-Harris LM, Willette MJL, Ramsey LB, et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. J Exp Med 2011; 208(6): 1135-49.
[http://dx.doi.org/10.1084/jem.20101947] [PMID: 21606506]
[14]
Martín-Lorenzo A, Auer F, Chan LN, et al. Loss of Pax5 exploits Sca1-BCR-ABLp190 Susceptibility to Confer the metabolic shift essential for pB-ALL. Cancer Res 2018; 78(10): 2669-79.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3262] [PMID: 29490943]
[15]
Trujillo JA, Sweis RF, Bao R, Luke JJ. T cell-inflamed versus Non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol Res 2018; 6(9): 990-1000.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0277] [PMID: 30181337]
[16]
Gu J, Li T, Zhao L, et al. Identification of significant pathways induced by PAX5 haploinsufficiency based on protein-protein interaction networks and cluster analysis in raji cell line. BioMed Res Int 2017; 2017: 5326370.
[http://dx.doi.org/10.1155/2017/5326370] [PMID: 28316978]
[17]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[18]
Spranger S. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol 2016; 28(8): 383-91.
[http://dx.doi.org/10.1093/intimm/dxw014] [PMID: 26989092]
[19]
Gajewski TF. The next hurdle in cancer immunotherapy: overcoming the non-t-cell-inflamed tumor microenvironment. Semin Oncol 2015; 42(4): 663-71.
[http://dx.doi.org/10.1053/j.seminoncol.2015.05.011] [PMID: 26320069]
[20]
Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014; 371(23): 2189-99.
[http://dx.doi.org/10.1056/NEJMoa1406498] [PMID: 25409260]
[21]
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8(328): 328rv4.
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[22]
Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003; 348(3): 203-13.
[http://dx.doi.org/10.1056/NEJMoa020177] [PMID: 12529460]
[23]
Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005; 102(51): 18538-43.
[http://dx.doi.org/10.1073/pnas.0509182102] [PMID: 16344461]
[24]
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313(5795): 1960-4.
[http://dx.doi.org/10.1126/science.1129139] [PMID: 17008531]
[25]
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017; 17(9): 559-72.
[http://dx.doi.org/10.1038/nri.2017.49] [PMID: 28555670]
[26]
Amati AL, Zakrzewicz A, Siebers R, et al. Chemokines (CCL3, CCL4, and CCL5) inhibit ATP-Induced release of IL-1β by monocytic cells. Mediators Inflamm 2017; 2017: 1434872.
[http://dx.doi.org/10.1155/2017/1434872] [PMID: 28757683]
[27]
De la Fuente López M, Landskron G, Parada D, et al. The relationship between chemokines CCL2, CCL3, and CCL4 with the tumor microenvironment and tumor-associated macrophage markers in colorectal cancer. Tumour Biol 2018; 40(11): 1010428318810059.
[http://dx.doi.org/10.1177/1010428318810059] [PMID: 30419802]
[28]
Brown CE, Vishwanath RP, Aguilar B, et al. Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J Immunol 2007; 179(5): 3332-41.
[http://dx.doi.org/10.4049/jimmunol.179.5.3332] [PMID: 17709550]
[29]
Allen F, Bobanga ID, Rauhe P, et al. CCL3 augments tumor rejection and enhances CD8+ T cell infiltration through NK and CD103+ dendritic cell recruitment via IFNγ. OncoImmunology 2017; 7(3): e1393598.
[http://dx.doi.org/10.1080/2162402X.2017.1393598] [PMID: 29399390]
[30]
Sektioglu IM, Carretero R, Bulbuc N, et al. Basophils promote tumor rejection via chemotaxis and infiltration of CD8+ T Cells. Cancer Res 2017; 77(2): 291-302.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0993] [PMID: 27879269]
[31]
Liu JY, Li F, Wang LP, et al. CTL- vs Treg lymphocyte-attracting chemokines, CCL4 and CCL20, are strong reciprocal predictive markers for survival of patients with oesophageal squamous cell carcinoma. Br J Cancer 2015; 113(5): 747-55.
[http://dx.doi.org/10.1038/bjc.2015.290] [PMID: 26284335]
[32]
Wang X, Lang M, Zhao T, et al. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3+treg cells in pancreatic ductal adenocarcinoma. Oncogene 2017; 36(21): 3048-58.
[http://dx.doi.org/10.1038/onc.2016.458] [PMID: 27991933]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy