Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Exercise and Mitochondrial Function: Importance and Inference- A Mini Review

Author(s): Vaishali K., Nitesh Kumar*, Vanishree Rao, Rakesh Krishna Kovela and Mukesh Kumar Sinha*

Volume 22, Issue 9, 2022

Published on: 13 January, 2022

Page: [755 - 760] Pages: 6

DOI: 10.2174/1566524021666211129110542

Price: $65

Abstract

Skeletal muscles must generate and distribute energy properly in order to function perfectly. Mitochondria in skeletal muscle cells form vast networks to meet this need, and their functions may improve as a result of exercise. In the present review, we discussed exercise-induced mitochondrial adaptations, age-related mitochondrial decline, and a biomarker as a mitochondrial function indicator and exercise interference.

Keywords: Skeletal muscle, endurance exercise, strength training, mitochondrial activity, biomarker, aging.

Next »
[1]
Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 2012; 26(6): 711-23.
[http://dx.doi.org/10.1016/j.beem.2012.05.003] [PMID: 23168274]
[2]
Brand MD, Orr AL, Perevoshchikova IV, Quinlan CL. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol 2013; 169(Suppl. 2): 1-8.
[http://dx.doi.org/10.1111/bjd.12208] [PMID: 23786614]
[3]
Hargreaves M. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol 2000; 27(3): 225-8.
[http://dx.doi.org/10.1046/j.1440-1681.2000.03225.x] [PMID: 10744352]
[4]
Diederichs F. From cycling between coupled reactions to the cross-bridge cycle: mechanical power output as an integral part of energy metabolism. Metabolites 2012; 2(4): 667-700.
[http://dx.doi.org/10.3390/metabo2040667] [PMID: 24957757]
[5]
Hagberg JM, Coyle EF, Baldwin KM, et al. The historical context and scientific legacy of John O. Holloszy. J Appl Physiol 2019; 127(2): 277-305.
[http://dx.doi.org/10.1152/japplphysiol.00669.2018] [PMID: 30730811]
[6]
Hood DA. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90(3): 1137-57.
[http://dx.doi.org/10.1152/jappl.2001.90.3.1137] [PMID: 11181630]
[7]
Drake JC, Wilson RJ, Yan Z. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle. FASEB J 2016; 30(1): 13-22.
[http://dx.doi.org/10.1096/fj.15-276337] [PMID: 26370848]
[8]
Koves TR, Noland RC, Bates AL, Henes ST, Muoio DM, Cortright RN. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am J Physiol Cell Physiol 2005; 288(5): C1074-82.
[http://dx.doi.org/10.1152/ajpcell.00391.2004] [PMID: 15647392]
[9]
Ferreira R, Vitorino R, Alves RM, et al. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 2010; 10(17): 3142-54.
[http://dx.doi.org/10.1002/pmic.201000173] [PMID: 20665633]
[10]
Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH. Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 2006; 61(6): 534-40.
[http://dx.doi.org/10.1093/gerona/61.6.534] [PMID: 16799133]
[11]
Gan Z, Fu T, Kelly DP, Vega RB. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 2018; 28(10): 969-80.
[http://dx.doi.org/10.1038/s41422-018-0078-7] [PMID: 30108290]
[12]
Fan W, Evans R. PPARs and ERRs: Molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol 2015; 33: 49-54.
[http://dx.doi.org/10.1016/j.ceb.2014.11.002] [PMID: 25486445]
[13]
Chaube B, Malvi P, Singh SV, Mohammad N, Viollet B, Bhat MK. AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discov 2015; 1(1): 15063.
[http://dx.doi.org/10.1038/cddiscovery.2015.63] [PMID: 27551487]
[14]
Oliveira AN, Hood DA. Exercise is mitochondrial medicine for muscle. Sports Med Health Sci 2019; 1(1): 11-8.
[http://dx.doi.org/10.1016/j.smhs.2019.08.008]
[15]
Lee IH. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp Mol Med 2019; 51(9): 1-11.
[http://dx.doi.org/10.1038/s12276-019-0302-7] [PMID: 31492861]
[16]
Vargas-Ortiz K, Pérez-Vázquez V, Macías-Cervantes MH. Exercise and sirtuins: A way to mitochondrial health in skeletal muscle. Int J Mol Sci 2019; 20(11): 2717.
[http://dx.doi.org/10.3390/ijms20112717] [PMID: 31163574]
[17]
Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol 2007; 21(8): 1745-55.
[http://dx.doi.org/10.1210/me.2007-0079] [PMID: 17456799]
[18]
Outeiro TF, Marques O, Kazantsev A. Therapeutic role of sirtuins in neurodegenerative disease. Biochim Biophys Acta 2008; 1782(6): 363-9.
[http://dx.doi.org/10.1016/j.bbadis.2008.02.010]
[19]
Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Med Health Sci 2019; 1(1): 24-32.
[http://dx.doi.org/10.1016/j.smhs.2019.08.003]
[20]
Huertas JR, Casuso RA, Agustín PH, Cogliati S. Stay fit, stay young: Mitochondria in movement: The role of exercise in the new mitochondrial paradigm. Oxid Med Cell Longev 2019; 20197058350
[http://dx.doi.org/10.1155/2019/7058350] [PMID: 31320983]
[21]
Andrade-Souza VA, Ghiarone T, Sansonio A, et al. Exercise twice-a-day potentiates markers of mitochondrial biogenesis in men. FASEB J 2020; 34(1): 1602-19.
[http://dx.doi.org/10.1096/fj.201901207RR] [PMID: 31914620]
[22]
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol 2016; 7: 486.
[http://dx.doi.org/10.3389/fphys.2016.00486] [PMID: 27872595]
[23]
Powers SK, Ji LL, Kavazis AN, Jackson MJ. Reactive oxygen species: Impact on skeletal muscle. Compr Physiol 2011; 1(2): 941-69.
[http://dx.doi.org/10.1002/cphy.c100054] [PMID: 23737208]
[24]
Groennebaek T, Vissing K. Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol 2017; 8: 713.
[http://dx.doi.org/10.3389/fphys.2017.00713] [PMID: 28966596]
[25]
Farup J, de Paoli F, Bjerg K, Riis S, Ringgard S, Vissing K. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scand J Med Sci Sports 2015; 25(6): 754-63.
[http://dx.doi.org/10.1111/sms.12396] [PMID: 25603897]
[26]
Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 1985; 2012(113 (1985)): 71-7.
[27]
Steele HE, Horvath R, Lyon JJ, Chinnery PF. Monitoring clinical progression with mitochondrial disease biomarkers. Brain 2017; 140(10): 2530-40.
[http://dx.doi.org/10.1093/brain/awx168] [PMID: 28969370]
[28]
Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010; 5(6): 463-6.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[29]
Greggio C, Jha P, Kulkarni SS, et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab 2017; 25(2): 301-11.
[http://dx.doi.org/10.1016/j.cmet.2016.11.004] [PMID: 27916530]
[30]
Nielsen J, Gejl KD, Hey-Mogensen M, et al. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol 2017; 595(9): 2839-47.
[http://dx.doi.org/10.1113/JP273040] [PMID: 27696420]
[31]
Glancy B, Hartnell LM, Malide D, et al. Mitochondrial reticulum for cellular energy distribution in muscle. Nature 2015; 523(7562): 617-20.
[http://dx.doi.org/10.1038/nature14614] [PMID: 26223627]
[32]
Larsen S, Nielsen J, Hansen CN, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 2012; 590(14): 3349-60.
[http://dx.doi.org/10.1113/jphysiol.2012.230185] [PMID: 22586215]
[33]
Hughes AL, Hughes CE, Henderson KA, Yazvenko N, Gottschling DE. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. eLife 2016; 5e13943
[http://dx.doi.org/10.7554/eLife.13943] [PMID: 27097106]
[34]
Vincow ES, Thomas RE, Merrihew GE, et al. Autophagy accounts for approximately one-third of mitochondrial protein turnover and is protein selective. Autophagy 2019; 15(9): 1592-605.
[http://dx.doi.org/10.1080/15548627.2019.1586258] [PMID: 30865561]
[35]
Groennebaek T, Nielsen J, Jespersen NR, et al. Utilization of biomarkers as predictors of skeletal muscle mitochondrial content after physiological intervention and in clinical settings. Am J Physiol Endocrinol Metab 2020; 318(6): E886-9.
[http://dx.doi.org/10.1152/ajpendo.00101.2020] [PMID: 32255679]
[36]
Finsterer J, Zarrouk-Mahjoub S. Biomarkers for detecting mitochondrial disorders. J Clin Med 2018; 7(2): 16.
[http://dx.doi.org/10.3390/jcm7020016] [PMID: 29385732]
[37]
Pitceathly RD, Morrow JM, Sinclair CD, et al. Extra-ocular muscle MRI in genetically-defined mitochondrial disease. Eur Radiol 2016; 26(1): 130-7.
[http://dx.doi.org/10.1007/s00330-015-3801-5] [PMID: 25994195]
[38]
Hall AM, Vilasi A, Garcia-Perez I, et al. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int 2015; 87(3): 610-22.
[http://dx.doi.org/10.1038/ki.2014.297] [PMID: 25207879]
[39]
Tranchant C, Anheim M. Movement disorders in mitochondrial diseases. Rev Neurol (Paris) 2016; 172(8-9): 524-9.
[http://dx.doi.org/10.1016/j.neurol.2016.07.003] [PMID: 27476418]
[40]
Balasubramaniam S, Riley LG, Bratkovic D, et al. Unique presentation of cutis laxa with Leigh-like syndrome due to ECHS1 deficiency. J Inherit Metab Dis 2017; 40(5): 745-7.
[http://dx.doi.org/10.1007/s10545-017-0036-4] [PMID: 28409271]
[41]
Zhang Y, Oliveira AN, Hood DA. The intersection of exercise and aging on mitochondrial protein quality control. Exp Gerontol 2020; 131110824
[http://dx.doi.org/10.1016/j.exger.2019.110824] [PMID: 31911185]
[42]
Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005; 102(15): 5618-23.
[http://dx.doi.org/10.1073/pnas.0501559102] [PMID: 15800038]
[43]
Morgenstern M, Stiller SB, Lübbert P, et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep 2017; 19(13): 2836-52.
[http://dx.doi.org/10.1016/j.celrep.2017.06.014] [PMID: 28658629]
[44]
Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 2017; 86: 685-714.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014352] [PMID: 28301740]
[45]
Callegari S, Dennerlein S. Sensing the stress: A role for the UPRmt and UPRam in the quality control of mitochondria. Front Cell Dev Biol 2018; 6: 31.
[http://dx.doi.org/10.3389/fcell.2018.00031] [PMID: 29644217]
[46]
Robinson MM, Dasari S, Konopka AR, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab 2017; 25(3): 581-92.
[http://dx.doi.org/10.1016/j.cmet.2017.02.009] [PMID: 28273480]
[47]
Joseph A-M, Ljubicic V, Adhihetty PJ, Hood DA. Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity. Am J Physiol Cell Physiol 2010; 298(6): C1308-14.
[http://dx.doi.org/10.1152/ajpcell.00644.2008] [PMID: 20107041]
[48]
Zhang Y, Iqbal S, O’Leary MF, et al. Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. Am J Physiol Cell Physiol 2013; 305(5): C502-11.
[http://dx.doi.org/10.1152/ajpcell.00058.2013] [PMID: 23784543]
[49]
Higuchi-Sanabria R, Frankino PA, Paul JW III, Tronnes SU, Dillin A. A futile battle? Protein quality control and the stress of aging. Dev Cell 2018; 44(2): 139-63.
[http://dx.doi.org/10.1016/j.devcel.2017.12.020] [PMID: 29401418]
[50]
Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle 2015; 5(1): 1-17.
[http://dx.doi.org/10.1186/s13395-015-0033-y] [PMID: 25664165]
[51]
Chen CCW, Erlich AT, Crilly MJ, Hood DA. Parkin is required for exercise-induced mitophagy in muscle: Impact of aging. Am J Physiol Endocrinol Metab 2018; 315(3): E404-15.
[http://dx.doi.org/10.1152/ajpendo.00391.2017] [PMID: 29812989]
[52]
Ma CL, Ma XT, Wang JJ, Liu H, Chen YF, Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav Brain Res 2017; 317: 332-9.
[http://dx.doi.org/10.1016/j.bbr.2016.09.067] [PMID: 27702635]
[53]
Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull 2008; 24(4): 265-70.
[http://dx.doi.org/10.1007/s12264-008-0402-1] [PMID: 18668156]
[54]
Oliveira RF, Paiva KM, da Rocha GS, et al. Neurobiological effects of forced swim exercise on the rodent hippocampus: A systematic review. Acta Neurobiol Exp (Warsz) 2021; 81(1): 58-68.
[http://dx.doi.org/10.21307/ane-2021-007] [PMID: 33949162]
[55]
Nunes AC, Duarte RB, Sousa TB, dos Santos JR, Freire MA, Costa MS. Expression of the immediate-early gene egr-1 and substance P in the spinal cord following locomotor training in adult rats. Brain Res 2010; 1345: 125-36.
[http://dx.doi.org/10.1016/j.brainres.2010.05.041] [PMID: 20546710]
[56]
Herzig S, Martinou JC. Mitochondrial dynamics: To be in good shape to survive. Curr Mol Med 2008; 8(2): 131-7.
[http://dx.doi.org/10.2174/156652408783769625] [PMID: 18336293]
[57]
Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165845
[http://dx.doi.org/10.1016/j.bbadis.2020.165845] [PMID: 32473386]
[58]
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity Cell 2006; 124(4): 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy