Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Recent Efforts in the Discovery of Urease Inhibitor Identifications

Author(s): Wan-Qing Song, Mei-Ling Liu, Su-Ya Li and Zhu-Ping Xiao*

Volume 22, Issue 2, 2022

Published on: 10 December, 2021

Page: [95 - 107] Pages: 13

DOI: 10.2174/1568026621666211129095441

Price: $65

conference banner
Abstract

Urease is an attractive drug target for designing anti-infective agents against pathogens such as Helicobacter pylori, Proteus mirabilis, and Ureaplasma urealyticum. In the past century, hundreds of medicinal chemists focused their efforts on explorations of urease inhibitors. Despite the FDA’s approval of acetohydroxamic acid as a urease inhibitor for the treatment of struvite nephrolithiasis and the widespread use of N-(n-butyl)thiophosphoric triamide as a soil urease inhibitor as nitrogen fertilizer synergists in agriculture, urease inhibitors with high potency and safety are urgently needed. Exploration of novel urease inhibitors has therefore become a hot research topic recently. Herein, inhibitors identified worldwide from 2016 to 2021 have been reviewed. They structurally belong to more than 20 classes of compounds such as urea/thioure analogues, hydroxamic acids, sulfonamides, metal complexes, and triazoles. Some inhibitors showed excellent potency with IC50 values lower than 10 nM, having 10000-fold higher potency than the positive control thiourea.

Keywords: Urease, Virulence factor, Urease inhibitor, Naturally occurring inhibitor, Non-covalent inhibitor, Covalent inhibitor.

Graphical Abstract

[1]
Wahid, S.; Jahangir, S.; Versiani, M.A.; Khan, K.M.; Salar, U.; Ashraf, M.; Farzand, U.; Wadood, A. Kanwal; Ashfaq-Ur-Rehaman; Arshia; Taha, M.; Perveen, S. Atenolol thiourea hybrid as potent urease inhibitors: design, biology-oriented drug synthesis, inhibitory activity screening, and molecular docking studies. Bioorg. Chem., 2020, 94, 103359.
[http://dx.doi.org/10.1016/j.bioorg.2019.103359] [PMID: 31640931]
[2]
Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; Deng, R.C.; Wang, X.D.; Ouyang, H.; Yang, P.; He, J.; Wang, Y.F.; Zhu, M.; Peng, X.C.; Peng, W.X.; Zhu, H.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 68, 212-221.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.047] [PMID: 23974021]
[3]
Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; He, J.; Ouyang, H.; Feng, Y.T.; Lu, C.L.; Lin, W.Q.; Wang, J.X.; Xiang, Y.P.; Zhu, H.L. Synthesis, structure-activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 63, 685-695.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.016] [PMID: 23567958]
[4]
Rodriguez, M.J.; Saggar, S.; Berben, P.; Palmada, T.; Lopez-Villalobos, N.; Pal, P. Use of a urease inhibitor to mitigate ammonia emissions from urine patches. Environ. Technol., 2021, 42(1), 20-31.
[http://dx.doi.org/10.1080/09593330.2019.1620345] [PMID: 31088332]
[5]
Bilquees, B. Kanwal; Khalid, M.K.; Arif, L.; Uzma, S.; Farida, B.; Muhammad, A.; Muhammad, T.; Shahnaz, P. Synthesis, in vitro urease inhibitory activity, and molecular docking studies of thiourea and urea derivatives. Bioorg. Chem., 2018, 80, 129-144.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.007]
[6]
Kanwal; Khan, M.; Arshia; Khan, K.M.; Parveen, S.; Shaikh, M.; Fatima, N.; Choudhary, M.I. Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies. Bioorg. Chem., 2019, 83, 595-610.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.070] [PMID: 30513472]
[7]
Chopdar, K.S.; Mohapatra, K.S.; Nayak, B.; Raval, M.K. In silico Screening of ZINC database for discovery of novel urease inhibitors as a remedy to gastro-duodenal ulcer caused by Helicobacter pylori. Int. J. Pharm. Sci. Drug Res., 2020, 12(1), 46-52.
[http://dx.doi.org/10.25004/IJPSDR.2020.120108]
[8]
Muhammad, I.; Saba, W.; Koji, O.; Mahmood, A.; Zobia, N.; Sundus, J.; Nazia, B.; Habib, B.; Asma, A.; Muhammad, M. Identification of novel bacterial urease inhibitors through molecular shape and structure based virtual screening approaches. RSC Advances, 2020, 10, 16061-16070.
[http://dx.doi.org/10.1039/D0RA02363A]
[9]
Taniris, C.B.; Thamara, F.S.; Thamilla, M.S.M.; da Edjan, C.D.S.; Edeildo, F.S-J.; Luzia, V.M.; Isis, M.F.; Josue, C.C.S.; Thiago, M.A.; Ângelo, F. Ionic liquid-assisted synthesis of dihydropyrimidin(thi)one Biginelli adducts and investigation of their mechanism of urease inhibition. New J. Chem., 2019, 43, 15187-15200.
[http://dx.doi.org/10.1039/C9NJ03556G]
[10]
Iftikhar, F.; Ali, Y.; Ahmad Kiani, F.; Fahad Hassan, S.; Fatima, T.; Khan, A.; Niaz, B.; Hassan, A.; Latif Ansari, F.; Rashid, U. Design, synthesis, in vitro evaluation and docking studies on dihydropyrimidine-based urease inhibitors. Bioorg. Chem., 2017, 74, 53-65.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.003] [PMID: 28753459]
[11]
Taha, M.; Wadood, A. Synthesis and molecular docking study of piperazine derivatives as potent urease inhibitors. Bioorg. Chem., 2018, 78, 411-417.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.007] [PMID: 29689419]
[12]
Aamer, S.; Sajid-ur, R.; Pervaiz, A.C.; Fayaz, A.L.; Qamar, A.; Mubashir, H.; Hussain, R.; Ulrich, F.; Seo, S.Y. Long chain 1-acyl-3-arylthioureas as jack bean urease inhibitors, synthesis, kinetic mechanism and molecular docking studies. J. Taiwan Inst. Chem. Eng., 2017, 77, 54-63.
[http://dx.doi.org/10.1016/j.jtice.2017.04.044]
[13]
Larik, F.A.; Faisal, M.; Saeed, A.; Channar, P.A.; Korabecny, J.; Jabeen, F.; Mahar, I.A.; Kazi, M.A.; Abbas, Q.; Murtaza, G.; Khan, G.S.; Hassan, M.; Seo, S.Y. Investigation on the effect of alkyl chain linked mono-thioureas as Jack bean urease inhibitors, SAR, pharmacokinetics ADMET parameters and molecular docking studies. Bioorg. Chem., 2019, 86, 473-481.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.011] [PMID: 30772648]
[14]
Muhammad, R.K.; Sumera, Z.; Muhammad, K.R.; Masahiro, E.; Amin, B.; Muhammad, Z.; Muhammad, A.N.; Jamshed, I. Solution-phase microwave assisted parallel synthesis, biological evaluation and in silico docking studies of 2-chlorobenzoyl thioureas derivatives. J. Mol. Struct., 2018, 1164, 354-362.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.056]
[15]
Maalik, A.; Rahim, H.; Saleem, M.; Fatima, N.; Rauf, A.; Wadood, A.; Malik, M.I.; Ahmed, A.; Rafique, H.; Zafar, M.N.; Riaz, M.; Rasheed, L.; Mumtaz, A. Synthesis, antimicrobial, antioxidant, cytotoxic, antiurease and molecular docking studies of N-(3-trifluoromethyl)benzoyl-N'-aryl thiourea derivatives. Bioorg. Chem., 2019, 88, 102946.
[http://dx.doi.org/10.1016/j.bioorg.2019.102946] [PMID: 31054433]
[16]
Li, W.Y.; Ni, W.W.; Ye, Y.X.; Fang, H.L.; Pan, X.M.; He, J.L.; Zhou, T.L.; Yi, J.; Liu, S.S.; Zhou, M.; Xiao, Z.P.; Zhu, H.L. N-monoarylacetothioureas as potent urease inhibitors: Synthesis, SAR, and biological evaluation. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 404-413.
[http://dx.doi.org/10.1080/14756366.2019.1706503] [PMID: 31880473]
[17]
Ni, W.W.; Fang, H.L.; Ye, Y.X.; Li, W.Y.; Liu, L.; Fu, Z.J.D.; Zhu, W.Y.; Li, K.; Li, F.; Zou, X.; Ouyang, H.; Xiao, Z.P.; Zhu, H.L. Synthesis and structure-activity relationship studies of N-monosubstituted aroylthioureas as urease inhibitors. Med. Chem., 2020, 16, 1-14.
[http://dx.doi.org/10.2174/1573406416999200818152440] [PMID: 32819232]
[18]
Rizvi, F.; Khan, M.; Jabeen, A.; Siddiqui, H.; Choudhary, M.I. Studies on isoniazid derivatives through a medicinal chemistry approach for the identification of new inhibitors of urease and inflammatory markers. Sci. Rep., 2019, 9(1), 6738.
[http://dx.doi.org/10.1038/s41598-019-43082-0] [PMID: 31043636]
[19]
Shehzad, M.T.; Khan, A.; Islam, M.; Hameed, A.; Khiat, M.; Halim, S.A.; Anwar, M.U.; Shah, S.R.; Hussain, J.; Csuk, R.; Khan, S.; Al-Harrasi, A.; Shafiq, Z. Synthesis and urease inhibitory activity of 1,4-benzodioxane-based thiosemicarbazones: biochemical and computational approach. J. Mol. Struct., 2020, 1209, 127922.
[http://dx.doi.org/10.1016/j.molstruc.2020.127922]
[20]
Pervez, H.; Khan, N.; Iqbal, J.; Zaib, S.; Yaqub, M.; Naseer, M.M. Synthesis and in vitro bio-activity evaluation of N4-benzyl substituted 5-chloroisatin-3-thiosemicarbazones as urease and glycation inhibitors. Acta Chim. Slov., 2018, 65(1), 108-118.
[http://dx.doi.org/10.17344/acsi.2017.3649] [PMID: 29562103]
[21]
Islam, M.; Khan, A.; Shehzad, M.T.; Hameed, A.; Ahmed, N.; Halim, S.A.; Khiat, M.; Anwar, M.U.; Hussain, J.; Csuk, R.; Shafiq, Z.; Al-Harrasi, A. Synthesis and characterization of new thiosemicarbazones, as potent urease inhibitors: in vitro and in silico studies. Bioorg. Chem., 2019, 87, 155-162.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.008] [PMID: 30884309]
[22]
Qazi, S.U.; Rahman, S.U.; Awan, A.N.; Al-Rashida, M.; Alharthy, R.D.; Asari, A.; Hameed, A.; Iqbal, J. Semicarbazone derivatives as urease inhibitors: synthesis, biological evaluation, molecular docking studies and in-silico ADME evaluation. Bioorg. Chem., 2018, 79, 19-26.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.029] [PMID: 29709568]
[23]
Ni, W.W.; Fang, H.L.; Ye, Y.X.; Li, W.Y.; Yuan, C.P.; Li, D.D.; Mao, S.J.; Li, S.E.; Zhu, Q.H.; Ouyang, H.; Xiao, Z.P.; Zhu, H.L. N-monosubstituted thiosemicarbazide as novel Ure inhibitors: synthesis, biological evaluation and molecular docking. Future Med. Chem., 2020, 12(18), 1633-1645.
[http://dx.doi.org/10.4155/fmc-2020-0048] [PMID: 32892642]
[24]
Mohammed, A.I.E.; Yaseen, A.M.; Shaier, M.E.; Mohamed, R.; Alan, B.; Brown, A.A.; Aly, G.E.; Din, A.; Abuo, R. Identification and molecular modeling of new quinolin-2-one thiosemicarbazide scaffold with antimicrobial urease inhibitory activity. Mol. Divers., 2021, 25, 13-27.
[http://dx.doi.org/10.1007/s11030-019-10021-0]
[25]
Menteşe, E.; Bektaş, H.; Sokmen, B.B.; Emirik, M.; Çakır, D.; Kahveci, B. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1H-benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease. Bioorg. Med. Chem. Lett., 2017, 27(13), 3014-3018.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.019] [PMID: 28526368]
[26]
Menteşe, E.; Emirik, M.; Sökmen, B.B. Design, molecular docking and synthesis of novel 5,6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors. Bioorg. Chem., 2019, 86, 151-158.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.061] [PMID: 30710848]
[27]
Taha, M.; Ullah, H.; Al Muqarrabun, L.M.R.; Khan, M.N.; Rahim, F.; Ahmat, N.; Javid, M.T.; Ali, M.; Khan, K.M. Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: synthesis and molecular modeling studies. Bioorg. Med. Chem., 2018, 26(1), 152-160.
[http://dx.doi.org/10.1016/j.bmc.2017.11.028] [PMID: 29183662]
[28]
Chopdar, K.S.; Dash, G.C.; Mohapatra, P.K.; Nayak, B.; Raval, M.K. Monte-Carlo method-based QSAR model to discover phytochemical urease inhibitors using SMILES and GRAPH descriptors. J. Biomol. Struct. Dyn., 2021, 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1867643] [PMID: 33403941]
[29]
Asgari, M.S.; Azizian, H.; Nazari Montazer, M.; Mohammadi-Khanaposhtani, M.; Asadi, M.; Sepehri, S.; Ranjbar, P.R.; Rahimi, R.; Biglar, M.; Larijani, B.; Amanlou, M.; Mahdavi, M. New 1,2,3-triazole-(thio)barbituric acid hybrids as urease inhibitors: design, synthesis, in vitro urease inhibition, docking study, and molecular dynamic simulation. Arch. Pharm. (Weinheim), 2020, 353(9), e2000023.
[http://dx.doi.org/10.1002/ardp.202000023] [PMID: 32596826]
[30]
Biglar, M.; Mirzazadeh, R.; Asadi, M.; Sepehri, S.; Valizadeh, Y.; Sarrafi, Y.; Amanlou, M.; Larijani, B.; Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Novel, N. N-dimethylbarbituric-pyridinium derivatives as potent urease inhibitors: synthesis, in vitro, and in silico studies. Bioorg. Chem., 2020, 95, 103529.
[http://dx.doi.org/10.1016/j.bioorg.2019.103529] [PMID: 31884139]
[31]
Abdulwahab, H.G.; Harras, M.F.; El Menofy, N.G.; Hegab, A.M.; Essa, B.M.; Selim, A.A.; Sakr, T.M.; El-Zahabi, H.S.A. Novel thiobarbiturates as potent urease inhibitors with potential antibacterial activity: design, synthesis, radiolabeling and biodistribution study. Bioorg. Med. Chem., 2020, 28(23), 115759.
[http://dx.doi.org/10.1016/j.bmc.2020.115759]] [PMID: 32992246]
[32]
Matee, U.K.; Misbah, A.; Sohail, A.S.; Zulfiqar, A.K.; Nazeer, A.K.; Muhammad, A.; Sadia, N.; Jameel, R.; Umar, F. Design and synthesis of thiobarbituric acid analogues as potent urease inhibitors. J. Mol. Struct., 2021, 1231, 129959.
[http://dx.doi.org/10.1016/j.molstruc.2021.129959]
[33]
Saeb, S.; Homa, A.; Mohammad, N.M.; Maryam, M.K.; Mehdi, A.; Fatemeh, M.; Mehdi, S.A.; Mohammad, S.A.; Azadeh, Y.M.; Mahmood, B.; Bagher, L.; Seyed, E.S.E.; Alireza, F.; Massoud, A.; Mohammad, M. Novel (thio)barbituric-phenoxy-N-phenylacetamide derivatives as potent urease inhibitors: synthesis, in vitro urease inhibition, and in silico evaluations. Struct. Chem., 2021, 32, 37-48.
[http://dx.doi.org/10.1007/s11224-020-01617-6]
[34]
Pedrood, K.; Azizian, H.; Montazer, M.N.; Mohammadi-Khanaposhtani, M.; Asgari, M.S.; Asadi, M.; Bahadorikhalili, S.; Rastegar, H.; Larijani, B.; Amanlou, M.; Mahdavi, M. Arylmethylene hydrazine derivatives containing 1,3-dimethylbarbituric moiety as novel urease inhibitors. Sci. Rep., 2021, 11(1), 10607.
[http://dx.doi.org/10.1038/s41598-021-90104-x] [PMID: 34012008]
[35]
Shi, W.K.; Deng, R.C.; Wang, P.F.; Yue, Q.Q.; Liu, Q.; Ding, K.L.; Yang, M.H.; Zhang, H.Y.; Gong, S.H.; Deng, M.; Liu, W.R.; Feng, Q.J.; Xiao, Z.P.; Zhu, H.L. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem., 2016, 24(19), 4519-4527.
[http://dx.doi.org/10.1016/j.bmc.2016.07.052] [PMID: 27492194]
[36]
Ni, W.W.; Liu, Q.; Ren, S.Z.; Li, W.Y.; Yi, L.L.; Jing, H.; Sheng, L.X.; Wan, Q.; Zhong, P.F.; Fang, H.L.; Ouyang, H.; Xiao, Z.P.; Zhu, H.L. The synthesis and evaluation of phenoxyacylhydroxamic acids as potential agents for Helicobacter pylori infections. Bioorg. Med. Chem., 2018, 26(14), 4145-4152.
[http://dx.doi.org/10.1016/j.bmc.2018.07.003] [PMID: 29983280]
[37]
Liu, Q.; Shi, W.K.; Ren, S.Z.; Ni, W.W.; Li, W.Y.; Chen, H.M.; Liu, P.; Yuan, J.; He, X.S.; Liu, J.J.; Cao, P.; Yang, P.Z.; Xiao, Z.P.; Zhu, H.L. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. Eur. J. Med. Chem., 2018, 156, 126-136.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.065] [PMID: 30006158]
[38]
Liu, Q.; Ni, W.W.; Li, Z.; Bai, C.F.; Tan, D.D.; Pu, C.J.; Zhou, D.; Tian, Q.P.; Luo, N.; Tan, K.L.; Dai, L.; Yan, Y.; Pei, Y.; Li, X.H.; Xiao, Z.P.; Zhu, H.L. Resolution and evaluation of 3-chlorophenyl-3-hydroxypropionylhydroxamic acid as antivirulence agent with excellent eradication efficacy in Helicobacter pylori infected mice. Eur. J. Pharm. Sci., 2018, 121, 293-300.
[http://dx.doi.org/10.1016/j.ejps.2018.05.029] [PMID: 29860117]
[39]
Arora, R.; Issar, U.; Kakkar, R. Identification of novel urease inhibitors: pharmacophore modeling, virtual screening and molecular docking studies. J. Biomol. Struct. Dyn., 2019, 37(16), 4312-4326.
[http://dx.doi.org/10.1080/07391102.2018.1546620] [PMID: 30580662]
[40]
Benini, S.; Kosikowska, P.; Cianci, M.; Mazzei, L.; Vara, A.G.; Berlicki, Ł.; Ciurli, S. The crystal structure of Sporosarcina pasteurii urease in a complex with citrate provides new hints for inhibitor design. Eur. J. Biochem., 2013, 18(3), 391-399.
[http://dx.doi.org/10.1007/s00775-013-0983-7] [PMID: 23412551]
[41]
El-Zahabi, H.S.A.; Abdulwahab, H.G.; Edrees, M.M.; Hegab, A.M. Utility of anthranilic acid and diethylacetylenedicarboxylate for the synthesis of nitrogenous organo/organometallic compounds as urease inhibitors. Arch. Pharm. (Weinheim), 2019, 352(7), e1800314.
[http://dx.doi.org/10.1002/ardp.201800314] [PMID: 31210387]
[42]
Prashith, K.T.R.; Lavanya, D.; Pooja, R. Lichens as promising resources of enzyme inhibitors: a review. J. Drug Deliv. Ther., 2019, 9(2-s), 665-676.
[http://dx.doi.org/10.22270/jddt.v9i2-s.2546]
[43]
Hassan, S.T.S.; Švajdlenka, E.; Emil, Š. Biological evaluation and molecular docking of protocatechuic acid from Hibiscus sabdariffa L. as a potent urease inhibitor by an ESI-MS based method. Molecules, 2017, 22(10), 1696.
[http://dx.doi.org/10.3390/molecules22101696] [PMID: 29019930]
[44]
Šudomová, M.; Hassan, S.T.S.; Khan, H.; Rasekhian, M.; Nabavi, S.M. Multi-biochemical and in silico Study on anti-enzymatic actions of pyroglutamic acid against PDE-5, ACE, and urease using various analytical techniques: unexplored pharmacological properties and cytotoxicity evaluation. Biomolecules, 2019, 9(9), 392.
[http://dx.doi.org/10.3390/biom9090392] [PMID: 31438631]
[45]
Nida, T.; Panayiotis, C.V.; Fiza, A.; Muhammad, I. Choudhary; Sammer, Y. Biological activity tuning of antibacterial urotropine via co-crystallization: synthesis, biological activity evaluation and computational insight. CrystEngComm, 2020, 22, 3439-3450.
[http://dx.doi.org/10.1039/D0CE00226G]
[46]
Jalaluddin, A.; Khan, A.W.; Sumaira, J.; Maryam, A.G.; Etimad, H.; Muniza, S.; Amsal, S.M.; Iqbal, C. Studies on new urease inhibitors by using biochemical, STD-NMR spectroscopy, and molecular docking methods. Med. Chem. Res., 2017, 26, 2452-2467.
[http://dx.doi.org/10.1007/s00044-017-1945-3]
[47]
Hakimi, A.M.; Lashgari, N.; Mahernia, S.; Ziarani, G.M.; Amanlou, M. Facile one-pot four-component synthesis of 3,4-dihydro-2-pyridone derivatives: novel urease inhibitor scaffold. Res. Pharm. Sci., 2017, 12(5), 353-363.
[http://dx.doi.org/10.4103/1735-5362.213980] [PMID: 28974973]
[48]
Wakeu Kweka, B.N.; Jouda, J.B.; Foudjo Melacheu, G.; Sidjui Sidjui, L.; Mkounga, P.; Lateef, M.; Ali, M.S.; Wandji, J.; Djama Mbazoa, C. Oligoamide, a new lactam from the leaves of Angylocalyx oligophyllus. Nat. Prod. Res., 2019, 33(14), 2011-2015.
[http://dx.doi.org/10.1080/14786419.2018.1483925] [PMID: 29882428]
[49]
Serpil, D.; Fatma, A.; Nesrin, C.; Serdar, U.; Ahmet, D.; Neslihan, D. Structure-based hybridization, conventional and microwave irradiated synthesis, biological evaluation and molecular docking studies of new compounds derived from Thiomorpholin. Lett. Drug Des. Discov., 2017, 14, 444-463.
[http://dx.doi.org/10.2174/1570180813666161024165613]
[50]
Naeem, A.; Imtiaz, K.; Sadaf, B.; Majid, A.; Umar, F.; Ajmal, K.; Shahid, H.; Jonathan, M.W.; Aliya, I. 2-Nitrobenzohydrazide as a potent urease inhibitor: synthesis, characterization and single crystal X-ray diffraction analysis. J. Chem. Soc. Pak., 2018, 40(01), 165-170.
[51]
Abbas, A.; Ali, B. Kanwal; Khan, K.M.; Iqbal, J.; Ur Rahman, S.; Zaib, S.; Perveen, S. Synthesis and in vitro urease inhibitory activity of benzohydrazide derivatives, in silico and kinetic studies. Bioorg. Chem., 2019, 82, 163-177.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.036] [PMID: 30321779]
[52]
Vanjare, B.D.; Mahajan, P.G.; Dige, N.C.; Raza, H.; Hassan, M.; Seo, S.Y.; Lee, K.H. Synthesis of novel xanthene based analogues: their optical properties, jack bean urease inhibition and molecular modelling studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 241, 118667.
[http://dx.doi.org/10.1016/j.saa.2020.118667] [PMID: 32693367]
[53]
Rashid, M.; Rafique, H.; Roshan, S.; Shamas, S.; Iqbal, Z.; Ashraf, Z.; Abbas, Q.; Hassan, M.; Qureshi, Z.U.R.; Asad, M.H.H.B. Enzyme inhibitory kinetics and molecular docking studies of halo-substituted mixed ester/amide-based derivatives as Jack bean urease inhibitors. BioMed Res. Int., 2020, 2020, 8867407.
[http://dx.doi.org/10.1155/2020/8867407] [PMID: 33426080]
[54]
Mnaza, N.; Nasir, R.; Yasmeen, G.; Nasim, F.H.; Ameer, F.Z.; Asma, Y.; Shazia, K.; Muhammad, Z.; Iftikhar, H.B.; Usman, A.R. A facile synthesis of new 5-aryl-thiophenes bearing sulfonamide moiety via Pd(0)-catalyzed Suzuki–Miyaura cross coupling reactions and 5-bromothiophene-2-acetamide: as potent urease inhibitor, antibacterial agent and hemolytically active compounds. J. Saudi Chem. Soc., 2017, 21, S403-S414.
[http://dx.doi.org/10.1016/j.jscs.2014.04.007]
[55]
Arshia; Farida, B.; Noor, B.A.; Muhammad, A.L.; Khalid, M.K.; Abdul, H.; Shahnaz, P. Synthesis and urease inhibitory potential of benzophenone sulfonamide hybrid in vitro and in silico. Bioorg. Med. Chem., 2019, 27, 1009-1022.
[http://dx.doi.org/10.1016/j.bmc.2019.01.043]
[56]
Hamad, A.; Khan, M.A.; Rahman, K.M.; Ahmad, I.; Ul-Haq, Z.; Khan, S.; Shafiq, Z. Development of sulfonamide-based Schiff bases targeting urease inhibition: synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg. Chem., 2020, 102, 104057.
[http://dx.doi.org/10.1016/j.bioorg.2020.104057] [PMID: 32663667]
[57]
Hamad, A.; Abbas Khan, M.; Ahmad, I.; Imran, A.; Khalil, R.; Al-Adhami, T.; Miraz Rahman, K. Quratulain; Zahra, N.; Shafiq, Z. Probing sulphamethazine and sulphamethoxazole based Schiff bases as urease inhibitors; synthesis, characterization, molecular docking and ADME evaluation. Bioorg. Chem., 2020, 105, 104336.
[http://dx.doi.org/10.1016/j.bioorg.2020.104336] [PMID: 33096307]
[58]
Channar, P.A.; Saeed, A.; Albericio, F.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Sulfonamide-linked ciprofloxacin, sulfadiazine and amantadine derivatives as a novel class of inhibitors of Jack bean urease; synthesis, kinetic mechanism and molecular docking. Molecules, 2017, 22(8), 1352.
[http://dx.doi.org/10.3390/molecules22081352] [PMID: 28813027]
[59]
Krajaejun, T.; Lohnoo, T.; Yingyong, W.; Rujirawat, T.; Kumsang, Y.; Jongkhajornpong, P.; Theerawatanasirikul, S.; Kittichotirat, W.; Reamtong, O.; Yolanda, H. The repurposed drug disulfiram inhibits urease and aldehyde dehydrogenase and prevents in vitro growth of the oomycete Pythium insidiosum. Antimicrob. Agents Chemother., 2019, 63(8), e00609-e00619.
[http://dx.doi.org/10.1128/AAC.00609-19] [PMID: 31138572]
[60]
Channar, P.A.; Saeed, A.; Afzal, S.; Hussain, D.; Kalesse, M.; Shehzadi, S.A.; Iqbal, J. Hydrazine clubbed 1,3-thiazoles as potent urease inhibitors: design, synthesis and molecular docking studies. Mol. Divers., 2021, 25(2), 1-13.
[http://dx.doi.org/10.1007/s11030-020-10057-7] [PMID: 32095975]
[61]
Fang, H-L.; Liu, M-L.; Li, S-Y.; Song, W-Q.; Ouyang, H.; Xiao, Z-P.; Zhu, H-L. Identification, potency evaluation, and mechanism clarification of α-glucosidase inhibitors from tender leaves of Lithocarpus polystachyus Rehd. Food Chem., 2021, 371, 131128.
[http://dx.doi.org/10.1016/j.foodchem.2021.131128] [PMID: 34563970]
[62]
Yang, Y.S.; Su, M.M.; Zhang, X.P.; Liu, Q.X.; He, Z.X.; Xu, C.; Zhu, H.L. Developing potential Helicobacter pylori urease inhibitors from novel oxoindoline derivatives: synthesis, biological evaluation and in silico study. Bioorg. Med. Chem. Lett., 2018, 28(19), 3182-3186.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.025] [PMID: 30170940]
[63]
Emre, M.; Bahar, B.S. Synthesis and in vitro urease inhibition of some novel benzimidazolebased hydrazones. J. Heterocycl. Chem., 2019, 56, 2442-2448.
[http://dx.doi.org/10.1002/jhet.3632]
[64]
Arif, M.; Neslihan, D.; Harun, U.; Ahmet, D.; Sule, C.; Yakup, S. Synthesis of novel Schiff bases using green chemistry techniques; antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. J. Mol. Struct., 2019, 1181, 412-422.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.114]
[65]
Xiao, Z.P.; Shi, W.K.; Wang, P.F.; Wei, W.; Zeng, X.T.; Zhang, J.R.; Zhu, N.; Peng, M.; Peng, B.; Lin, X.Y.; Ouyang, H.; Peng, X.C.; Wang, G.C.; Zhu, H.L. Synthesis and evaluation of N-analogs of 1,2-diarylethane as Helicobacter pylori urease inhibitors. Bioorg. Med. Chem., 2015, 23(15), 4508-4513.
[http://dx.doi.org/10.1016/j.bmc.2015.06.014] [PMID: 26113187]
[66]
Samuel, C.S.; Lívia, P.H.; Leandro, T.S.; Cleiton, M.D.S.; Caroline, S.D.; Gisele, A.C.G.; Ivanildo, E.M.; Ângelo, D.F.; Luzia, V.M. Do Schiff bases-based urease inhibitors improve plant growth and affect the activity of soil arginase? Ind. Crops Prod., 2020, 145, 111995.
[http://dx.doi.org/10.1016/j.indcrop.2019.111995]
[67]
Shehzad, M.T.; Khan, A.; Islam, M.; Halim, S.A.; Khiat, M.; Anwar, M.U.; Hussain, J.; Hameed, A.; Pasha, A.R.; Khan, F.A.; Al-Harrasi, A.; Shafiq, Z. Synthesis, characterization and molecular docking of some novel hydrazonothiazolines as urease inhibitors. Bioorg. Chem., 2020, 94, 103404.
[http://dx.doi.org/10.1016/j.bioorg.2019.103404] [PMID: 31699392]
[68]
Taha, M.; Ismail, S.; Imran, S.; Almandil, N.B.; Alomari, M.; Rahim, F.; Uddin, N.; Hayat, S.; Zaman, K.; Ibrahim, M.; Alghanem, B.; Islam, I.; Farooq, R.K.; Boudjelal, M.; Khan, K.M. Synthesis of new urease enzyme inhibitors as antiulcer drug and computational study. J. Biomol. Struct. Dyn., 2021. [epub ahead of print].
[http://dx.doi.org/10.1080/07391102.2021.1910072] [PMID: 33860726]
[69]
Qu, D.; Niu, F.; Zhao, X.; Yan, K.X.; Ye, Y.T.; Wang, J.; Zhang, M.; You, Z. Synthesis, crystal structures, and urease inhibition of an acetohydroxamate-coordinated oxovanadium(V) complex derived from N′-(3-bromo-2-hydroxybenzylidene)-4-methoxybenzo-hydrazide. Bioorg. Med. Chem., 2015, 23(9), 1944-1949.
[http://dx.doi.org/10.1016/j.bmc.2015.03.036] [PMID: 25840795]
[70]
Yu, H.Y.; Guo, S.H.; Cheng, J.Y.; Jiang, G.F.; Li, Z.W.; Zhai, W.Q.; Li, A.; Jiang, Y.M.; You, Z.L. Synthesis and crystal structures of cobalt(III), copper(II), nickel(II) and zinc(II) complexes derived from 4-methoxy-N′-(pyridin-2-ylmethylene)benzohydra-zide with urease inhibitory activity. J. Coord. Chem., 2018, 71(24), 4164-4179.
[http://dx.doi.org/10.1080/00958972.2018.1533959]
[71]
Li, Y.M.; Xu, L.Y.; Duan, M.M.; Zhang, B.T.; Wang, Y.H.; Guan, Y.X.; Wu, J.H.; Jing, C.L.; You, Z.L. Syntheses, characterization, crystal structures and Jack bean urease inhibitory activities of ZnII, CoII/III and NiII complexes derived from reduced Schiff base ligand. Polyhedron, 2019, 166, 146-152.
[http://dx.doi.org/10.1016/j.poly.2019.03.051]
[72]
Duan, M.M.; Li, Y.M.; Xu, L.Y.; Yang, H.L.; Luo, F.W.; Guan, Y.X.; Zhang, B.T.; Jing, C.L.; You, Z.L. Synthesis, crystal structure and urease inhibition of a trinuclear copper(II) complex with reduced Schiff base ligand. Inorg. Chem. Commun., 2019, 100, 27-31.
[http://dx.doi.org/10.1016/j.inoche.2018.12.009]
[73]
Luo, Y.Y.; Wang, J.Q.; Zhang, B.T.; Guan, Y.X.; Yang, T.; Li, X.Y.; Xu, L.Y.; Wang, W.; You, Z.L. Syntheses, characterization and crystal structures of fluorine substituted Schiff base copper(II) and nickel(II) complexes with biological activity. J. Coord. Chem., 2020, 73(12), 1765-1777.
[http://dx.doi.org/10.1080/00958972.2020.1795645]
[74]
Wang, J.Q.; Luo, Y.Y.; Zhang, Y.X.; Chen, Y.; Gao, F.; Ma, Y.; Xian, D.M.; You, Z.L. Synthesis, crystal structure, and urease inhibition of an end-on azido-bridged dinuclear copper(II) complex with an oxidized tridentate Schiff base ligand. J. Coord. Chem., 2021, 74(4-6), 1028-1038.
[http://dx.doi.org/10.1080/00958972.2020.1861603]
[75]
Akçay, H.T.; Menteşe, E.; Sökmen, B.B. Synthesis and spectroscopic characterization of novel methoxy bridged benzimidazolyl-substituted phthalocyanines as potent inhibitors of urease. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117804.
[http://dx.doi.org/10.1016/j.saa.2019.117804] [PMID: 31806475]
[76]
Muhammad, I.; Sadia, R.; Muhammad, N.A.; Fazle, S.; Sobia, A. Selective urease inhibitory and antimicrobial activities of transition metal complexes of amino acid bearing Schiff base ligand: thermal degradation behavior of complexes. Pharm. Chem. J., 2020, 54(5), 469-477.
[http://dx.doi.org/10.1007/s11094-020-02224-9]
[77]
Wang, H.; Xu, C.; Zhang, X.; Zhang, D.; Jin, F.; Fan, Y. Urease inhibition studies of six Ni(II), Co(II) and Cu(II) complexes with two sexidentate N2O4-donor bis-Schiff base ligands: An experimental and DFT computational study. J. Inorg. Biochem., 2020, 204, 110959.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110959] [PMID: 31862584]
[78]
Muhammad, H.; Fariha, K.; Muhammad, R.; Mubashir, H.; Muhammad, M.; Seo, S.Y.; Zhang, Y.L.; Lu, C.R.; Chen, T.; Muhammad, S. Symmetrical heterocyclic cage skeleton: synthesis, urease inhibition activity, kinetic mechanistic insight, and molecular docking analyses. Molecules, 2019, 24, 312.
[http://dx.doi.org/10.3390/molecules24020312]
[79]
Ümit, D.; Emre, M.; Bahar, B.S.; Rıza, B.; Hakkı, T.A. Synthesis of some new methoxy bridged benzimidazolyl-substituted phthalocyanines as potent inhibitors of urease. J. Organomet. Chem., 2018, 873, 86e90.
[http://dx.doi.org/10.1016/j.jorganchem.2018.08.001]
[80]
Assem, B.; Saied, M.; Soliman, M.A.; Adel, E.; Abdullah, M.A.M.; Sammer, Y.; Zaheer, U.H.M.; Iqbal, C.; Ayman, E.F. Synthesis, crystal structure, evaluation of urease inhibition potential and the docking studies of cobalt(III) complex based on barbituric acid Schiff base ligand. Inorg. Chim. Acta, 2020, 503, 119405.
[http://dx.doi.org/10.1016/j.ica.2019.119405]
[81]
Shah, S.R.; Shah, Z.; Khiat, M.; Khan, A.; Hill, L.R.; Khan, S.; Hussain, J.; Csuk, R.; Anwar, M.U.; Al-Harrasi, A. Complexes of N- and O-donor ligands as potential urease inhibitors. ACS Omega, 2020, 5(17), 10200-10206.
[http://dx.doi.org/10.1021/acsomega.0c01089] [PMID: 32391508]
[82]
Amara, M.; Jahanzaib, A.; Aamer, S.; Hyat, N.; Jamshed, I. Synthesis, characterization and urease inhibition studies of transition metal complexes of thioureas bearing ibuprofen moiety. J. Chil. Chem. Soc., 2018, 63(2), 3934-3940.
[http://dx.doi.org/10.4067/s0717-97072018000203934]
[83]
Chu, Y.C.; Wang, T.T.; Ge, X.Y.; Yang, P.H.; Li, W.; Zhao, J.; Zhu, H.L. Synthesis, characterization and biological evaluation of naproxen Cu(II) complexes. J. Mol. Struct., 2019, 1178, 564-569.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.068]
[84]
Zhu, Y.H.; Li, X.; Li, Y.G.; Wang, Q.; Lu, X.J. Synthesis, structures and urease inhibitory activities of three silver(I) complexes derived from 2,6-dichlorophenylacetic acid. Inorg. Chim. Acta, 2019, 484, 42-46.
[http://dx.doi.org/10.1016/j.ica.2018.09.023]
[85]
Li, Y.M.; Xu, L.Y.; Duan, M.M.; Wu, J.H.; Wang, Y.H.; Dong, K.X.; Han, M.X.; You, Z.L. An acetohydroxamate-coordinated oxidovanadium(V) complex derived from pyridinohydrazone ligand with urease inhibitory activity. Inorg. Chem. Commun., 2019, 105, 212-216.
[http://dx.doi.org/10.1016/j.inoche.2019.05.011]
[86]
Nesrin, K.; Serdar, A.; Nimet, B.; Emre, M. Synthesis of novel tetra-substituted benzimidazole compounds containing certain heterostructures with antioxidant and anti-urease activities. J. Heterocycl. Chem., 2020, 57, 1806-1815.
[http://dx.doi.org/10.1002/jhet.3905]
[87]
Zaman, K.; Rahim, F.; Taha, M.; Ullah, H.; Wadood, A.; Nawaz, M.; Khan, F.; Wahab, Z.; Shah, S.A.A.; Rehman, A.U.; Kawde, A.N.; Gollapalli, M. Synthesis, in vitro urease inhibitory potential and molecular docking study of Benzimidazole analogues. Bioorg. Chem., 2019, 89, 103024.
[http://dx.doi.org/10.1016/j.bioorg.2019.103024] [PMID: 31176853]
[88]
Meysam, T.; Elham, H.; Fatemeh, N.N.; Sogand, R.; Faezeh, S.H.; Shahin, B.; Mohammad, N.M.; Mehdi, A.; Massoud, A. Synthesis, molecular docking, and biological evaluation of nitroimidazole derivatives as potent urease inhibitors. Med. Chem. Res., 2021, 30, 1220-1229.
[http://dx.doi.org/10.1007/s00044-021-02727-4]
[89]
Peytam, F.; Adib, M.; Mahernia, S.; Rahmanian-Jazi, M.; Jahani, M.; Masoudi, B.; Mahdavi, M.; Amanlou, M. Isoindolin-1-one derivatives as urease inhibitors: design, synthesis, biological evaluation, molecular docking and in-silico ADME evaluation. Bioorg. Chem., 2019, 87, 1-11.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.051] [PMID: 30852231]
[90]
Muhammad, A.; Abdul, R.; Aamer, S.; Faiz, A.; Sidra, M.; Muhammad, A.; Safdar, H.; Ashfaq, M.Q. Synthesis, biological evaluation and molecular docking studies of Mannich bases derived from 1,3,4-oxadiazole-2-thiones as potential urease inhibitors. Trop. J. Pharm. Res., 2018, 17(1), 127-134.
[http://dx.doi.org/10.4314/tjpr.v17i1.18]
[91]
Muhammad, A.A.; Muhammad, S.R.; Rehman, A.U.; Sabahat, Z.S.; Mubashir, H.; Syed, A.A.S.; Muhammad, A.; Muhammad, S.; Seo, S.Y. Novel Bi-heterocycles as potent Inhibitors of urease and less cytotoxic agents: 3-({5-((2-amino-1,3-thiazol-4-yl)methyl)-1,3,4-oxadiazol-2-yl}sulfanyl)-N-(un/substituted-phenyl) propanamides. Iran. J. Pharm. Res., 2020, 19(1), 487-506.
[http://dx.doi.org/10.22037/ijpr.2019.13084.11362] [PMID: 32922502]
[92]
Farman, A.K.; Aziz, U.R.; Muhammad, A.A.; Sahib, G.A.; Asifullah, K.; Muhammad, A.L.; Ajmal, K. Structural basis of binding and justification for the urease inhibitory activity of acetamide hybrids of N-substituted 1,3,4-oxadiazoles and piperidines. J. Mol. Struct., 2021, 1223, 129141.
[http://dx.doi.org/10.1016/j.molstruc.2020.129141]
[93]
Mermer, A.; Bayrak, H.; Alyar, S.; Alagumuthu, M. Synthesis, DFT calculations, biological investigation, molecular docking studies of β-lactam derivatives. J. Mol. Struct., 2020, 1208, 127891.
[http://dx.doi.org/10.1016/j.molstruc.2020.127891]
[94]
Taha, M.; Rahim, F.; Khan, A.A.; Anouar, E.H.; Ahmed, N.; Shah, S.A.A.; Ibrahim, M.; Zakari, Z.A. Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor. Sci. Rep., 2020, 10(1), 7969.
[http://dx.doi.org/10.1038/s41598-020-64729-3] [PMID: 32409737]
[95]
Salehi Ashani, R.; Azizian, H.; Sadeghi Alavijeh, N.; Fathi Vavsari, V.; Mahernia, S.; Sheysi, N.; Biglar, M.; Amanlou, M.; Balalaie, S. Synthesis, biological evaluation and molecular docking of deferasirox and substituted 1,2,4-triazole derivatives as novel potent urease inhibitors: proposing repositioning candidate. Chem. Biodivers., 2020, 17(5), e1900710.
[http://dx.doi.org/10.1002/cbdv.201900710] [PMID: 32187446]
[96]
Kumari, M.; Tahlan, S.; Narasimhan, B.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V.; Kakkar, S. Synthesis and biological evaluation of heterocyclic 1,2,4-triazole scaffolds as promising pharmacological agents. BMC Chem., 2021, 15(1), 5.
[http://dx.doi.org/10.1186/s13065-020-00717-y] [PMID: 33478538]
[97]
Cebeci, Y.U.; Bayrak, H.; Şirin, Y. Synthesis of novel Schiff bases and azol-β-lactam derivatives starting from morpholine and thiomorpholine and investigation of their antitubercular, antiurease activity, acethylcolinesterase inhibition effect and antioxidant capacity. Bioorg. Chem., 2019, 88, 102928.
[http://dx.doi.org/10.1016/j.bioorg.2019.102928] [PMID: 31005785]
[98]
Aylin, K.; Elif, A.D.; Ahmet, C.; Ahmet, Y.; Olcay, B. Inhibition of urease by some new synthesized 1,2,4-triazol derivatives: inhibition mechanism and molecular docking. Indian J. Chem., 2019, 58B, 720-726.
[99]
Saeed, A.; Larik, F.A.; Channar, P.A.; Mehfooz, H.; Ashraf, M.H.; Abbas, Q.; Hassan, M.; Seo, S.Y. An expedient synthesis of N-(1-(5-mercapto-4-((substituted benzylidene)amino)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)benzamides as jack bean urease inhibitors and free radical scavengers: Kinetic mechanism and molecular docking studies. Chem. Biol. Drug Des., 2017, 90(5), 764-777.
[http://dx.doi.org/10.1111/cbdd.12998] [PMID: 28388008]
[100]
Wajiha, K.; Muhammad, A.A.; Aziz-ur, R.; Sabahat, Z.S.; Majid, N.; Syed, A.A.S.; Hussain, R.; Mubashir, H.; Muhammad, S.; Seo, S.Y. Convergent synthesis, free radical scavenging, Lineweaver-Burk plot exploration, hemolysis and in silico study of novel indole-phenyltriazole hybrid bearing acetamides as potent urease inhibitors. J. Heterocycl. Chem., 2020, 57, 2955-2968.
[http://dx.doi.org/10.1002/jhet.4006]
[101]
Naheed, R.; Muhammad, I.; Muhammad, S.; Aziz, U.R.; Ishtiaq, A.; Muhammad, A.; Shahnawaz, J.R.; Mariya, A.R. A novel method for the synthesis of 1,2,4-triazole-derived heterocyclic compounds: enzyme inhibition and molecular docking studies. J. Iran. Chem. Soc., 2020, 17, 1183-1200.
[http://dx.doi.org/10.1007/s13738-019-01848-3]
[102]
Rauf, A.; Alhumaydhi, F.A.; Rashid, U.; Aljohani, A.S.M.; Al-Awthan, Y.S.M.; Bahattab, O.S.; Saleem, M. Naphthoquinones from Diospyros lotus as potential urease inhibitors: in vitro and in silico studies. South African J. Botany., 2020, 143, 301-305.
[http://dx.doi.org/10.1016/j.sajb.2020.11.021]
[103]
Naheed, N.; Maher, S.; Saleem, F.; Khan, A.; Wadood, A.; Rasheed, S.; Choudhary, M.I.; Froeyen, M.; Abdullah, I.; Mirza, M.U.; Trant, J.F.; Ahmad, S. New isolate from Salvinia molesta with antioxidant and urease inhibitory activity. Drug Dev. Res., 2021, 82(8), 1169-1181.
[http://dx.doi.org/10.1002/ddr.21831] [PMID: 33983647]
[104]
Fatima, S.S.; Kumar, R.; Choudhary, M.I.; Yousuf, S. Crystal engineering of exemestane to obtain a co-crystal with enhanced urease inhibition activity. IUCrJ, 2020, 7(Pt 1), 105-112.
[http://dx.doi.org/10.1107/S2052252519016142] [PMID: 31949910]
[105]
Khan, I.; Khan, A.; Ahsan Halim, S.; Saeed, A.; Mehsud, S.; Csuk, R.; Al-Harrasi, A.; Ibrar, A. Exploring biological efficacy of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach. Int. J. Biol. Macromol., 2020, 142, 345-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.105] [PMID: 31593727]
[106]
Lu, Q.; Li, C.; Wu, G. Insight into the inhibitory effects of Zanthoxylum nitidum against Helicobacter pylori urease and jack bean urease: Kinetics and mechanism. J. Ethnopharmacol., 2020, 249, 112419.
[http://dx.doi.org/10.1016/j.jep.2019.112419] [PMID: 31759110]
[107]
Alain, W.N.; Alexis, S.W.M.; Gervais, M.H.; Marius, M.; Ostend, K.T.; Muhammad, S.A.M.L.; Jean Claude, T.; Siméon, F.K. Natural products from the medicinal plant Duguetia staudtii (Annonaceae). Biochem. Syst. Ecol., 2019, 83, 22-25.
[http://dx.doi.org/10.1016/j.bse.2018.12.015]
[108]
Rehman, N.U.; Khan, A.; Al-Harrasi, A.; Khiat, M.; Hussain, H.; Wadood, A.; Riaz, M. Natural urease inhibitors from Aloe vera resin and Lycium shawii and their structural-activity relationship and molecular docking study. Bioorg. Chem., 2019, 88, 102955.
[http://dx.doi.org/10.1016/j.bioorg.2019.102955] [PMID: 31054431]
[109]
Abu-Izneid, T.; Rauf, A.; Saleem, M.; Mansour, N.; Abdelhady, M.I.S.; Ibrahim, M.M.; Patel, S. Urease inhibitory potential of extracts and active phytochemicals of Hypochaeris radicata (Asteraceae). Nat. Prod. Res., 2020, 34(4), 553-557.
[http://dx.doi.org/10.1080/14786419.2018.1489387] [PMID: 30317858]
[110]
Akinwumi, I.A.; Sonibare, M.A.; Yeye, E.O.; Khan, M. Bioassay-guided isolation and identification of anti-ulcer ecdysteroids from the seeds of Sphenocentrum jollyanum Pierre (Menispermaceae). Steroids, 2020, 159, 108636.
[http://dx.doi.org/10.1016/j.steroids.2020.108636] [PMID: 32165210]
[111]
Alomari, M.; Taha, M.; Imran, S.; Jamil, W.; Selvaraj, M.; Uddin, N.; Rahim, F. Design, synthesis, in vitro evaluation, molecular docking and ADME properties studies of hybrid bis-coumarin with thiadiazole as a new inhibitor of Urease. Bioorg. Chem., 2019, 92, 103235.
[http://dx.doi.org/10.1016/j.bioorg.2019.103235] [PMID: 31494327]
[112]
Saeed, A.; Mahesar, P.A.; Channar, P.A.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Seo, S.Y. Hybrid pharmacophoric approach in the design and synthesis of coumarin linked pyrazolinyl as urease inhibitors, kinetic mechanism and molecular docking. Chem. Biodivers., 2017, 14(8), e1700035.
[http://dx.doi.org/10.1002/cbdv.201700035] [PMID: 28574649]
[113]
Abdul Fattah, T.; Saeed, A.; Channar, P.A.; Ashraf, Z.; Abbas, Q.; Hassan, M.; Larik, F.A. Synthesis, enzyme inhibitory kinetics, and computational studies of novel 1-(2-(4-isobutylphenyl) propanoyl)-3-arylthioureas as Jack bean urease inhibitors. Chem. Biol. Drug Des., 2018, 91(2), 434-447.
[http://dx.doi.org/10.1111/cbdd.13090] [PMID: 28834266]
[114]
Pagoni, A.; Daliani, T.; Macegoniuk, K.; Vassiliou, S.; Berlicki, Ł. Catechol-based inhibitors of bacterial urease. Bioorg. Med. Chem. Lett., 2019, 29(9), 1085-1089.
[http://dx.doi.org/10.1016/j.bmcl.2019.02.032] [PMID: 30850166]
[115]
Woo, H.J.; Yang, J.Y.; Lee, P.; Kim, J.B.; Kim, S.H. Zerumbone inhibits Helicobacter pylori urease activity. Molecules, 2021, 26(9), 2663.
[http://dx.doi.org/10.3390/molecules26092663] [PMID: 34062878]
[116]
Macegoniuk, K.; Kowalczyk, R.; Rudzińska, A.; Psurski, M.; Wietrzyk, J.; Berlicki, Ł. Potent covalent inhibitors of bacterial urease identified by activity-reactivity profiling. Bioorg. Med. Chem. Lett., 2017, 27(6), 1346-1350.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.022] [PMID: 28236590]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy