Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Cloning, Prokaryotic Expression, and Purification of Acetyl-CoA C-Acetyltransferase from Atractylodes lancea

Author(s): Junxian Wu, Weiwei Liu, Jimei Lu , Rui Xu , Jin Xie * and Liangping Zha *

Volume 29, Issue 2, 2022

Published on: 14 February, 2022

Page: [156 - 165] Pages: 10

DOI: 10.2174/0929866528666211126162838

Price: $65

Abstract

Background: Cangzhu (Atractylodes lancea), a valuable and common traditional Chinese medicinal herb, is primarily used as an effective medicine with various health-promoting effects. The main pharmacological bioactive ingredients in the rhizome of A. lancea are terpenoids. Acetyl-CoA C-acetyltransferase (AACT) is the first enzyme in the terpenoid synthesis pathway and catalyzes two units of acetyl-CoA into acetoacetyl-CoA.

Objective: The objective of the present work was to clone and identify function of AlAACT from Atractylodes lancea.

Methods: A full-length cDNA clone of AlAACT was isolated using PCR and expressed in Escherichia coli. The expressed protein was purified using Ni-NTA agarose column using standard protocols. AlAACT was transiently expressed in N. benthamiana leaves to determine their subcellular location. The difference in growth between recombinant bacteria and control bacteria under different stresses was observed using the droplet plate experiment.

Results: In this study, a full-length cDNA of AACT (AlAACT) was cloned from A. lancea, which contains a 1,227 bp open reading frame and encodes a protein with 409 amino acids. Bioinformatic and phylogenetic analysis clearly suggested that AlAACT shared high similarity with AACTs from other plants. The recombinant protein pET32a(+)/AlAACT was successfully expressed in Escherichia coli BL21 (DE3) cells induced with 0.4 mM IPTG at 30°C as the optimized condition. The recombinant enzyme pET-32a-AlAACT was purified using the Ni-NTA column based on the His-tag, and the molecular weight was determined to be 62 kDa through SDS-PAGE and Western Blot analysis. The recombinant protein was eluted with 100, 300, and 500 mM imidazole; most of the protein was eluted with 300 mM imidazole. Under mannitol stress, the recombinant pET-32a- AlAACT protein showed a substantial advantage in terms of growth rates compared to the control. However, this phenomenon was directly opposite under NaCl abiotic stress. Subcellular localization showed that AlAACT localizes to the nucleus and cytoplasm.

Conclusion: The expression and purification of recombinant enzyme pET-32a-AlAACT were successful, and the recombinant strain pET-32a-AlAACT in showed better growth in a drought stress. The expression of AlAACT-EGFP fusion protein revealed its localization in both nuclear and cytoplasm compartments. This study provides an important foundation for further research into the effects of terpenoid biosynthesis in A. lancea.

Keywords: Acetyl-CoA C-acetyltransferase, Atractylodes lancea, prokaryotic expression, abiotic stress, clone, purification.

Graphical Abstract

[1]
He, S.A.; He, H.S.; Lv, Y.; Okeda, M.; Takeda, O.; Miki, E. The conservation and utilization of Atractylodes lancea. Zhiwu Ziyuan Yu Huanjing, 1993, 2(1), 1-6.
[2]
Hu, S.L. The textual research of materia medica on rhizome atractylodis. Chin. J. Tradit. Chin. Med. Pharm, 2001, 16(1), 11-13.
[3]
Shimato, Y.; Ota, M.; Asai, K.; Atsumi, T.; Tabuchi, Y.; Makino, T. Comparison of byakujutsu (Atractylodes rhizome) and sojutsu (Atractylodes lancea rhizome) on anti-inflammatory and immunostimulative effects in vitro. J. Nat. Med., 2018, 72(1), 192-201.
[http://dx.doi.org/10.1007/s11418-017-1131-4] [PMID: 28983786]
[4]
Chae, H.S.; Kim, Y.M.; Chin, Y.W. Atractylodin inhibits interleukin-6 by blocking NPM-ALK activation and MAPKs in HMC-1. Molecules, 2016, 21(9), 1169.
[http://dx.doi.org/10.3390/molecules21091169] [PMID: 27598116]
[5]
Xu, K.; Yang, Y.N.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Six new compounds from Atractylodes lancea and their hepatoprotective activities. Bioorg. Med. Chem. Lett., 2016, 26(21), 5187-5192.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.069] [PMID: 27717545]
[6]
Mahavorasirikul, W.; Viyanant, V.; Chaijaroenkul, W.; Itharat, A.; Na-Bangchang, K. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complement. Altern. Med., 2010, 10, 55.
[http://dx.doi.org/10.1186/1472-6882-10-55] [PMID: 20920194]
[7]
Hossen, M.J.; Amin, A.; Fu, X.Q.; Chou, J.Y.; Wu, J.Y.; Wang, X.Q.; Chen, Y.J.; Wu, Y.; Li, J.; Yin, C.L.; Liang, C.; Chou, G.X.; Yu, Z.L. The anti-inflammatory effects of an ethanolic extract of the rhizome of Atractylodes lancea, involves Akt/NF-κB signaling pathway inhibition. J. Ethnopharmacol., 2021, 277, 114183.
[http://dx.doi.org/10.1016/j.jep.2021.114183] [PMID: 33991638]
[8]
Na-Bangchang, K.; Plengsuriyakarn, T.; Karbwang, J. Research and development of Atractylodes lancea (Thunb) DC. as a promising candidate for cholangiocarcinoma chemotherapeutics. Evid. Based Complement. Alternat. Med., 2017, 2017, 5929234.
[http://dx.doi.org/10.1155/2017/5929234] [PMID: 29348769]
[9]
Cheng, Y.; Mai, J.Y.; Hou, T.L.; Ping, J.; Chen, J.J. Antiviral activities of atractylon from Atractylodis rhizoma. Mol. Med. Rep., 2016, 14(4), 3704-3710.
[http://dx.doi.org/10.3892/mmr.2016.5713] [PMID: 27600871]
[10]
Yu, D.Q.; Han, X.J.; Shan, T.Y.; Xu, R.; Hu, J.; Cheng, W.X.; Zha, L.P.; Peng, H.S. Microscopic characteristic and chemical composition analysis of three medicinal plants and surface frosts. Molecules, 2019, 24(24), 4548.
[http://dx.doi.org/10.3390/molecules24244548] [PMID: 31842368]
[11]
Xu, K.; Jiang, J.S.; Feng, Z.M.; Yang, Y.N.; Li, L.; Zang, C.X.; Zhang, P.C. Bioactive sesquiterpenoid and polyacetylene Glycosides from Atractylodes lancea. J. Nat. Prod., 2016, 79(6), 1567-1575.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00066] [PMID: 27228227]
[12]
Chen, Q.; Li, P.; Yang, H.; Li, X.; Zhu, J.; Chen, F. Identification of volatile compounds of Atractylode lancea rhizoma using supercritical fluid extraction and GC-MS. J. Sep. Sci., 2009, 32(18), 3152-3156.
[http://dx.doi.org/10.1002/jssc.200900210] [PMID: 19697312]
[13]
Deng, A.P.; Li, Y.; Wu, Z.T.; Liu, T.; Kang, L.P.; Nan, T.G.; Zhan, Z.L.; Guo, L.P. [Advances in studies on chemical compositions of Atractylodes lancea and their biological activities]. Zhongguo Zhongyao Zazhi, 2016, 41(21), 3904-3913.
[http://dx.doi.org/10.4268/cjcmm20162104] [PMID: 28929673]
[14]
Liu, Q.; Zhang, S.; Yang, X.; Wang, R.; Guo, W.; Kong, W.; Yang, M. Differentiation of essential oils in Atractylodes lancea and Atractylodes koreana by gas chromatography with mass spectrometry. J. Sep. Sci., 2016, 39(24), 4773-4780.
[http://dx.doi.org/10.1002/jssc.201600574] [PMID: 27790838]
[15]
Chappell, J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46(1), 521-547.
[http://dx.doi.org/10.1146/annurev.pp.46.060195.002513]
[16]
Rohmer, M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep., 1999, 16(5), 565-574.
[http://dx.doi.org/10.1039/a709175c] [PMID: 10584331]
[17]
Chen, Q.; Yan, J.; Meng, X.; Xu, F.; Zhang, W.; Liao, Y.; Qu, J. Molecular cloning, characterization, and functional analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase genes involved in terpene trilactone biosynthesis from Ginkgo biloba. Molecules, 2017, 22(1), 74.
[http://dx.doi.org/10.3390/molecules22010074] [PMID: 28045448]
[18]
Stim-Herndon, K.P.; Petersen, D.J.; Bennett, G.N. Characterization of an acetyl-CoA C-acetyltransferase (thiolase) gene from Clostridium acetobutylicum ATCC 824. Gene, 1995, 154(1), 81-85.
[http://dx.doi.org/10.1016/0378-1119(94)00838-J] [PMID: 7867955]
[19]
Dyer, J.H.; Maina, A.; Gomez, I.D.; Cadet, M.; Oeljeklaus, S.; Schiedel, A.C. Cloning, expression and purification of an acetoacetyl CoA thiolase from sunflower cotyledon. Int. J. Biol. Sci., 2009, 5(7), 736-744.
[http://dx.doi.org/10.7150/ijbs.5.736] [PMID: 20011134]
[20]
Jin, H.; Song, Z.; Nikolau, B.J. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development. Plant J., 2012, 70(6), 1015-1032.
[http://dx.doi.org/10.1111/j.1365-313X.2012.04942.x] [PMID: 22332816]
[21]
Peretó, J.; López-García, P.; Moreira, D. Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins. J. Mol. Evol., 2005, 61(1), 65-74.
[http://dx.doi.org/10.1007/s00239-004-0280-8] [PMID: 15980957]
[22]
Liu, J.; Xu, Y.H.; Yang, Y.; Liang, L.; Han, X.M.; Gao, Z.H.; Zhang, Z. Yang, Y.; Wei, J.H. Cloning and Expression Analysis of AsAACT Gene from Aquilaria sinensis. China J. Chin. Mater. Med., 2014, 39(6), 972-980.
[http://dx.doi.org/10.4268/cjcmm20140605]
[23]
Zhao, L.; Ma, L.G.; Yang, Z.A.; Fen, W.S.; Kuang, H.X.; Zheng, X.K. Cloning, sequence analysis and prokaryotic expression of LaAACT gene from leaves of lepidium apetalum seedlings. Chin. J. Exp. Tradi. Med. Formulae, 2017, 23(11), 34-39.
[http://dx.doi.org/10.13422/j.cnki.syfjx.2017110034]
[24]
Cui, G.H.; Wang, X.Y.; Feng, H.; Zhao, J.X.; Huang, L.Q. Molecular cloning and SNP analysis of a acetyl-CoA C-acetyltransferase gene (SmAACT) from Salvia miltiorrhiza. Yao Xue Xue Bao, 2010, 45(6), 785-790.
[http://dx.doi.org/10.16438/j.0513-4870.2010.06.006] [PMID: 20939191]
[25]
Liu, Y.L.; Zhu, Y.H.; Sheng, Z.W.; Cheng, J.Y.; Feng, W.S.; Zheng, X.K.; Zhao, L. Cloning and expression analysis of PaAACT Gene from Phytolacca americana. Chin. J. Exp. Traditi. Med. Formulae, 2019, 25(21), 124-131.
[http://dx.doi.org/10.13422/j.cnki.syfjx.20192113]
[26]
Zhang, X.D.; Li, C.X.; Wang, L.C.; Wang, Y.Z. Cloning and expression analysis of GrAACT gene from Gentiana rigescens. Jiangsu Agr. Sci., 2016, 44(6), 94-98.
[http://dx.doi.org/10.15889/j.issn.1002-1302.2019.17.018]
[27]
Zhao, Y.J.; Zhang, M.; Liu, Y.J.; Su, P.; Hu, T.Y.; Chen, X.; Gao, W.; Huang, L.Q.; Huang, L.Q. Cloning and expression analysis of a acetyl-CoA U-acetyltransferase gene (TwAACT) from Tripterygium wilfordii. Zhongguo Zhongyao Zazhi, 2015, 40(5), 847-852.
[http://dx.doi.org/10.4268/cjcmm20150513] [PMID: 26087544]
[28]
Niu, M.; Yan, H.; Xiong, Y.; Zhang, Y.; Zhang, X.; Li, Y.; da Silva, J.A.T.; Ma, G. Cloning, characterization, and functional analysis of acetyl-CoA C-acetyltransferase and 3-hydroxy-3-methylglutaryl-CoA synthase genes in Santalum album. Sci. Rep., 2021, 11(1), 1082.
[http://dx.doi.org/10.1038/s41598-020-80268-3] [PMID: 33441887]
[29]
Shan, T.; Wu, J.; Yu, D.; Xie, J.; Fang, Q.; Zha, L.; Peng, H. Genome survey sequencing of Atractylodes lancea and identification of its SSR markers. Biosci. Rep., 2020, 40(10), 2709.
[http://dx.doi.org/10.1042/BSR20202709] [PMID: 33026067]
[30]
Xu, R.; Shan, T.Y.; Wu, J.X.; Liu, M.L.; Yu, H.W.; Zha, L.P.; Peng, H.S. Cloning and prokaryotic expression of 3-ketoacyl-CoA thiolase gene AlKAT from Atractylodes lancea. China J. Chin. Mater. Med., 2021, 46(19), 375-383.
[31]
Zha, L.; Liu, S.; Su, P.; Yuan, Y.; Huang, L. Cloning, prokaryotic expression and functional analysis of squalene synthase (SQS) in Magnolia officinalis. Protein Expr. Purif., 2016, 120, 28-34.
[http://dx.doi.org/10.1016/j.pep.2015.12.008] [PMID: 26696600]
[32]
Lange, B.M.; Ghassemian, M. Genome organization in Arabidopsis thaliana: A survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol. Biol., 2003, 51(6), 925-948.
[http://dx.doi.org/10.1023/A:1023005504702] [PMID: 12777052]
[33]
Heath, R.J.; Rock, C.O. The Claisen condensation in biology. Nat. Prod. Rep., 2002, 19(5), 581-596.
[http://dx.doi.org/10.1039/b110221b] [PMID: 12430724]
[34]
Vishwakarma, R.K. Ruby, Singh, S.; Sonawane, P.D.; Srivastava, S.; Kumari, U.; Santosh Kumar, R.J; Khan, B.M. Molecular cloning, biochemical characterization, and differential expression of an Acetyl-CoA C-Acetyltransferase gene (AACT) of Brahmi (Bacopa monniera). Plant Mol. Biol. Report., 2013, 31(3), 547-557.
[http://dx.doi.org/10.1007/s11105-012-0523-6]
[35]
Cui, G.; Huang, L.; Tang, X.; Zhao, J. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol. Biol. Rep., 2011, 38(4), 2471-2478.
[http://dx.doi.org/10.1007/s11033-010-0383-9] [PMID: 21082262]
[36]
Zhu, Y.H.; Su, X.H.; Dong, C.M.; Chen, S.Q.; Shao, Y.Y.; Zhang, F.B. Cloning and Expression Analysis of Acetyl-CoA C-acetyltransferase Gene in Isodon rubescens.. Zhong Yao Cai, 2016, 39(1), 37-41.
[http://dx.doi.org/10.13863/j.issn1001-4454.2016.01.009] [PMID: 30079699]
[37]
Wang, X.; Wang, S.; Xu, X.; Sun, J.; Ma, Y.; Liu, Z.; Sun, T.; Zou, L. Molecular cloning, characterization, and heterologous expression of an acetyl-CoA acetyl transferase gene from Sanghuangporus baumii. Protein Expr. Purif., 2020, 170, 105592.
[http://dx.doi.org/10.1016/j.pep.2020.105592] [PMID: 32032770]
[38]
Zheng, Y.J. Essential oil extraction of Osmathus fragrans and the cloning technology of its regulation Gene-AACT. PhD Thesis, Hunan: Central South University of Forestry and Technology.PhD. Chinese, 2015.
[http://dx.doi.org/10.7666/d.Y2892839]
[39]
Soto, G.; Stritzler, M.; Lisi, C.; Alleva, K.; Pagano, M.E.; Ardila, F.; Mozzicafreddo, M.; Cuccioloni, M.; Angeletti, M.; Ayub, N.D. Acetoacetyl-CoA thiolase regulates the mevalonate pathway during abiotic stress adaptation. J. Exp. Bot., 2011, 62(15), 5699-5711.
[http://dx.doi.org/10.1093/jxb/err287] [PMID: 21908473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy