Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Urinary Ethyl Glucuronide for the Assessment of Alcohol Consumption During Pregnancy: Comparison between Biochemical Data and Screening Questionnaires

Author(s): Flavio Maria Ceci, Marco Fiore*, Enzo Agostinelli, Tomoaki Tahara, Antonio Greco, Massimo Ralli, Antonella Polimeni, Marco Lucarelli, Roberta Colletti, Antonio Angeloni, Paola Tirassa, Mauro Ceccanti, Marisa Patrizia Messina, Mario Vitali, Carla Petrella and Giampiero Ferraguti

Volume 29, Issue 17, 2022

Published on: 19 January, 2022

Page: [3125 - 3141] Pages: 17

DOI: 10.2174/0929867328666211125100329

Price: $65

Abstract

Background: Ethyl glucuronide (EtG) is a metabolite of ethanol used as a marker of alcohol drinking and is identified in urine. Gestational alcohol drinking harms the fetus, so disclosing any form of use and abuse of this substance during pregnancy is crucial. Many discovery methods have been planned to overcome this question, including using screening questionnaires as the AUDIT-C, T-ACE/TACER-3, and TWEAK.

Aim: The aim and novelties of this study were to compare biochemical data from urinary EtG assays (cut-off 100 ng/mL for risking drinking behavior) with the outcome of questionnaires and of a food diary routinely used in our hospital; moreover, for the first time, we analyzed in pregnant women the EtG values normalized by the amount of creatinine excreted according to methods previously established.

Methods: Random urine samples were collected from 309 pregnant women immediately after being interviewed. EtG was quantified using an enzyme immunoassay, and urinary creatinine was assessed using an enzymatic colorimetric method. Women who had not exhaustively answered one of the questionnaires or refused to provide urine samples were excluded. Finally, 309 women were considered for this study. Urine creatinine measurements were performed to determine if urine dilution might have resulted in false negatives in the challenge study. In order to accomplish this objective, as urinary creatinine concentrations are, on average, approximately 1 mg/mL, we used a normalized value of 100 ng EtG/mg Creatinine.

Results: Our data show that 20.4% of the pregnant women in the study were over the established normalized cut-off value. Poor to null concordance (unweighted k < 0.2) was found between EtG data and the screening interviews showed, on average, lower levels of alcohol consumption.

Conclusion: This study provides evidence that the assessment of maternal alcohol consumption during pregnancy, only indirectly estimated with questionnaires and food diary, can produce misleading results.

Keywords: Fetal alcohol spectrum disorders, gestation, ethanol, woman, prenatal, mental retardation.

« Previous
[1]
Jatlow, P.I.; Agro, A.; Wu, R.; Nadim, H.; Toll, B.A.; Ralevski, E.; Nogueira, C.; Shi, J.; Dziura, J.D.; Petrakis, I.L.; O’Malley, S.S. Ethyl glucuronide and ethyl sulfate assays in clinical trials, interpretation, and limitations: Results of a dose ranging alcohol challenge study and 2 clinical trials. Alcohol. Clin. Exp. Res., 2014, 38(7), 2056-2065.
[http://dx.doi.org/10.1111/acer.12407] [PMID: 24773137]
[2]
Ceci, F.M.; Ceccanti, M.; Petrella, C.; Vitali, M.; Messina, M.P.; Chaldakov, G.N.; Greco, A.; Ralli, M.; Lucarelli, M.; Angeloni, A.; Fiore, M.; Ferraguti, G. Alcohol drinking, Apolipoprotein polymorphisms and the risk of cardiovascular diseases. Curr. Neurovasc. Res., 2021, 18(1), 150-161.
[http://dx.doi.org/10.2174/1567202618666210406123503] [PMID: 33823779]
[3]
Ceccanti, M.; Inghilleri, M.; Attilia, M.L.; Raccah, R.; Fiore, M.; Zangen, A.; Ceccanti, M. Deep TMS on alcoholics: Effects on cortisolemia and dopamine pathway modulation. A pilot study. Can. J. Physiol. Pharmacol., 2015, 93(4), 283-290.
[http://dx.doi.org/10.1139/cjpp-2014-0188] [PMID: 25730614]
[4]
Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Ceccanti, M.; Fiore, M. Nerve growth factor in alcohol use disorders. Curr. Neuropharmacol., 2021, 19(1), 45-60.
[http://dx.doi.org/10.2174/1570159X18666200429003239] [PMID: 32348226]
[5]
Martellucci, S.; Ralli, M.; Attanasio, G.; Russo, F.Y.; Marcelli, V.; Greco, A.; Gallo, A.; Fiore, M.; Petrella, C.; Ferraguti, G.; Ceccanti, M.; de Vincentiis, M. Alcohol binge-drinking damage on the vestibulo-oculomotor reflex. Eur. Arch. Otorhinolaryngol., 2021, 278(1), 41-48.
[http://dx.doi.org/10.1007/s00405-020-06052-1] [PMID: 32449024]
[6]
Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317.
[http://dx.doi.org/10.2174/1570159X15666170825101308] [PMID: 28847297]
[7]
Roerecke, M.; Rehm, J. Cause-specific mortality risk in alcohol use disorder treatment patients: A systematic review and meta-analysis. Int. J. Epidemiol., 2014, 43(3), 906-919.
[http://dx.doi.org/10.1093/ije/dyu018] [PMID: 24513684]
[8]
Randall, C.L. Alcohol as a teratogen: A decade of research in review. Alcohol Alcohol. Suppl., 1987, 1(Suppl.), 125-132.
[PMID: 3322304]
[9]
Ceccanti, M.; Hamilton, D.; Coriale, G.; Carito, V.; Aloe, L.; Chaldakov, G.; Romeo, M.; Ceccanti, M.; Iannitelli, A.; Fiore, M. Spatial learning in men undergoing alcohol detoxification. Physiol. Behav., 2015, 149, 324-330.
[http://dx.doi.org/10.1016/j.physbeh.2015.06.034] [PMID: 26143187]
[10]
Ceccanti, M.; Coriale, G.; Hamilton, D.A.; Carito, V.; Coccurello, R.; Scalese, B.; Ciafrè, S.; Codazzo, C.; Messina, M.P.; Chaldakov, G.N.; Fiore, M. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can. J. Physiol. Pharmacol., 2018, 96(2), 128-136.
[http://dx.doi.org/10.1139/cjpp-2017-0013] [PMID: 28763626]
[11]
Coriale, G.; Battagliese, G.; Pisciotta, F.; Attilia, M.L.; Porrari, R.; De Rosa, F.; Vitali, M.; Carito, V.; Messina, M.P.; Greco, A.; Fiore, M.; Ceccanti, M. Behavioral responses in people affected by alcohol use disorder and psychiatric comorbidity: Correlations with addiction severity. Ann. Ist. Super. Sanita, 2019, 55(2), 131-142.
[http://dx.doi.org/10.4415/ANN_19_02_05] [PMID: 31264636]
[12]
Ferraguti, G.; Ciolli, P.; Carito, V.; Battagliese, G.; Mancinelli, R.; Ciafrè, S.; Tirassa, P.; Ciccarelli, R.; Cipriani, A.; Messina, M.P.; Fiore, M.; Ceccanti, M. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol. Lett., 2017, 275, 49-56.
[http://dx.doi.org/10.1016/j.toxlet.2017.04.016] [PMID: 28455000]
[13]
Ferraguti, G.; Merlino, L.; Battagliese, G.; Piccioni, M.G.; Barbaro, G.; Carito, V.; Messina, M.P.; Scalese, B.; Coriale, G.; Fiore, M.; Ceccanti, M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict. Biol., 2020, 25(3), e12724.
[http://dx.doi.org/10.1111/adb.12724] [PMID: 30811093]
[14]
Bearak, J.; Popinchalk, A.; Alkema, L.; Sedgh, G. Global, regional, and subregional trends in unintended pregnancy and its outcomes from 1990 to 2014: Estimates from a Bayesian hierarchical model. Lancet Glob. Health, 2018, 6(4), e380-e389.
[http://dx.doi.org/10.1016/S2214-109X(18)30029-9] [PMID: 29519649]
[15]
Kaufman, M.H. The teratogenic effects of alcohol following exposure during pregnancy, and its influence on the chromosome constitution of the pre-ovulatory egg. Alcohol Alcohol., 1997, 32(2), 113-128.
[http://dx.doi.org/10.1093/oxfordjournals.alcalc.a008245] [PMID: 9105505]
[16]
Burd, L.; Blair, J.; Dropps, K. Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J. Perinatol. Off. J. Calif. Perinat. Assoc., 2012, 32(9), 652-659.
[http://dx.doi.org/10.1038/jp.2012.57] [PMID: 22595965]
[17]
De Nicolò, S.; Carito, V.; Fiore, M.; Laviola, G. Aberrant behavioral and neurobiologic profiles in rodents exposed to ethanol or red wine early in development. Curr. Dev. Disord. Rep., 2014, 1(3), 173-180.
[http://dx.doi.org/10.1007/s40474-014-0023-5]
[18]
Ceccanti, M.; Mancinelli, R.; Tirassa, P.; Laviola, G.; Rossi, S.; Romeo, M.; Fiore, M. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol. Aging, 2012, 33(2), 359-367.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.005] [PMID: 20382450]
[19]
Ehrhart, F.; Roozen, S.; Verbeek, J.; Koek, G.; Kok, G.; van Kranen, H.; Evelo, C.T.; Curfs, L.M.G. Review and gap analysis: Molecular pathways leading to fetal alcohol spectrum disorders. Mol. Psychiatry, 2019, 24(1), 10-17.
[http://dx.doi.org/10.1038/s41380-018-0095-4] [PMID: 29892052]
[20]
Popova, S.; Lange, S.; Shield, K.; Mihic, A.; Chudley, A.E.; Mukherjee, R.A.S.; Bekmuradov, D.; Rehm, J. Comorbidity of fetal alcohol spectrum disorder: A systematic review and meta-analysis. Lancet, 2016, 387(10022), 978-987.
[http://dx.doi.org/10.1016/S0140-6736(15)01345-8] [PMID: 26777270]
[21]
Lipinski, R.J.; Hammond, P.; O’Leary-Moore, S.K.; Ament, J.J.; Pecevich, S.J.; Jiang, Y.; Budin, F.; Parnell, S.E.; Suttie, M.; Godin, E.A.; Everson, J.L.; Dehart, D.B.; Oguz, I.; Holloway, H.T.; Styner, M.A.; Johnson, G.A.; Sulik, K.K. Ethanol-induced face-brain dysmorphology patterns are correlative and exposure-stage dependent. PLoS One, 2012, 7(8), e43067.
[http://dx.doi.org/10.1371/journal.pone.0043067] [PMID: 22937012]
[22]
Wilhelm, C. J.; Guizzetti, M. Fetal alcohol spectrum disorders: An overview from the glia perspective. Front. Integr. Neurosci., 2016, 9
[http://dx.doi.org/10.3389/fnint.2015.00065]
[23]
Arzua, T.; Yan, Y.; Jiang, C.; Logan, S.; Allison, R.L.; Wells, C.; Kumar, S.N.; Schäfer, R.; Bai, X. Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Transl. Psychiatry, 2020, 10(1), 347.
[http://dx.doi.org/10.1038/s41398-020-01029-4] [PMID: 33051447]
[24]
Maya-Enero, S.; Ramis-Fernández, S.M.; Astals-Vizcaino, M.; García-Algar, Ó. Neurocognitive and behavioral profile of fetal alcohol spectrum disorder. An. Pediatr. (Barc.), 2021, 95(3), 208.e1-208.e9.
[http://dx.doi.org/10.1016/j.anpede.2020.12.012] [PMID: 34456169]
[25]
Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.G.N.; Fiore, M.; Ceccanti, M.; Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.G.N.; Fiore, M.; Ceccanti, M. How alcohol drinking affects our genes: An epigenetic point of view. Biochem. Cell Biol., 2019, 97(4), 345-356.
[http://dx.doi.org/10.1139/bcb-2018-0248] [PMID: 30412425]
[26]
Perkins, A.; Lehmann, C.; Lawrence, R.C.; Kelly, S.J. Alcohol exposure during development: Impact on the epigenome. Int. J. Dev. Neurosci., 2013, 31(6), 391-397.
[http://dx.doi.org/10.1016/j.ijdevneu.2013.03.010] [PMID: 23542005]
[27]
Ferraguti, G.; Pascale, E.; Lucarelli, M. Alcohol addiction: A molecular biology perspective. Curr. Med. Chem., 2015, 22(6), 670-684.
[http://dx.doi.org/10.2174/0929867321666141229103158] [PMID: 25544474]
[28]
Warren, K.R.; Li, T.K. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res. A Clin. Mol. Teratol., 2005, 73(4), 195-203.
[http://dx.doi.org/10.1002/bdra.20125] [PMID: 15786496]
[29]
Todd, D.; Bonthius, D.J., Jr; Sabalo, L.M.; Roghair, J.; Karacay, B.; Bousquet, S.L.; Bonthius, D.J. Regional patterns of alcohol-induced neuronal loss depend on genetics: Implications for fetal alcohol spectrum disorder. Alcohol. Clin. Exp. Res., 2018, 42(9), 1627-1639.
[http://dx.doi.org/10.1111/acer.13824] [PMID: 29957842]
[30]
Ciafrè, S.; Ferraguti, G.; Greco, A.; Polimeni, A.; Ralli, M.; Ceci, F.M.; Ceccanti, M.; Fiore, M. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci. Biobehav. Rev., 2020, 118, 654-668.
[http://dx.doi.org/10.1016/j.neubiorev.2020.08.018] [PMID: 32976915]
[31]
Laufer, B.I.; Chater-Diehl, E.J.; Kapalanga, J.; Singh, S.M. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders. Alcohol, 2017, 60, 67-75.
[http://dx.doi.org/10.1016/j.alcohol.2016.11.009] [PMID: 28187949]
[32]
Coriale, G.; Fiorentino, D.; Di Lauro, F.; Marchitelli, R.; Scalese, B.; Fiore, M.; Maviglia, M.; Ceccanti, M. Fetal Alcohol Spectrum Disorder (FASD): Neurobehavioral profile, indications for diagnosis and treatment. Riv. Psichiatr., 2013, 48(5), 359-369.
[http://dx.doi.org/10.1708/1356.15062] [PMID: 24326748]
[33]
Kodituwakku, P.W.; Kodituwakku, E.L. From research to practice: An integrative framework for the development of interventions for children with fetal alcohol spectrum disorders. Neuropsychol. Rev., 2011, 21(2), 204-223.
[http://dx.doi.org/10.1007/s11065-011-9170-1] [PMID: 21544706]
[34]
Chan, A.W.K.; Pristach, E.A.; Welte, J.W.; Russell, M. Use of the TWEAK test in screening for alcoholism/heavy drinking in three populations. Alcohol. Clin. Exp. Res., 1993, 17(6), 1188-1192.
[http://dx.doi.org/10.1111/j.1530-0277.1993.tb05226.x] [PMID: 8116829]
[35]
Bush, K.; Kivlahan, D.R.; McDonell, M.B.; Fihn, S.D.; Bradley, K.A. The AUDIT alcohol consumption questions (AUDIT-C): An effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Alcohol use disorders identification test. Arch. Intern. Med., 1998, 158(16), 1789-1795.
[http://dx.doi.org/10.1001/archinte.158.16.1789] [PMID: 9738608]
[36]
Saunders, J.B.; Aasland, O.G.; Babor, T.F.; de la Fuente, J.R.; Grant, M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on early detection of persons with harmful alcohol consumption-II. Addiction, 1993, 88(6), 791-804.
[http://dx.doi.org/10.1111/j.1360-0443.1993.tb02093.x] [PMID: 8329970]
[37]
Sokol, R.J.; Martier, S.S.; Ager, J.W. The T-ACE questions: Practical prenatal detection of risk-drinking. Am. J. Obstet. Gynecol., 1989, 160(4), 863-868.
[http://dx.doi.org/10.1016/0002-9378(89)90302-5] [PMID: 2712118]
[38]
Chiodo, L.M.; Delaney-Black, V.; Sokol, R.J.; Janisse, J.; Pardo, Y.; Hannigan, J.H. Increased cut-point of the TACER-3 screen reduces false positives without losing sensitivity in predicting risk alcohol drinking in pregnancy. Alcohol. Clin. Exp. Res., 2014, 38(5), 1401-1408.
[http://dx.doi.org/10.1111/acer.12368] [PMID: 24655071]
[39]
Chang, G. Alcohol-screening instruments for pregnant women. Alcohol Res. Health, 2001, 25(3), 204-209.
[PMID: 11810959]
[40]
Flegal, K.M. Agreement between two dietary methods in the measurement of alcohol consumption. J. Stud. Alcohol, 1990, 51(5), 408-414.
[http://dx.doi.org/10.15288/jsa.1990.51.408] [PMID: 2232793]
[41]
Bager, H.; Christensen, L.P.; Husby, S.; Bjerregaard, L. Biomarkers for the detection of prenatal alcohol exposure: A review. Alcohol. Clin. Exp. Res., 2017, 41(2), 251-261.
[http://dx.doi.org/10.1111/acer.13309] [PMID: 28098942]
[42]
Bianchi, V.; Ivaldi, A.; Raspagni, A.; Arfini, C.; Vidali, M. Pregnancy and variations of carbohydrate-deficient transferrin levels measured by the candidate reference HPLC method. Alcohol Alcohol., 2011, 46(2), 123-127.
[http://dx.doi.org/10.1093/alcalc/agq092] [PMID: 21216737]
[43]
Kenan, N.; Larsson, A.; Axelsson, O.; Helander, A. Changes in transferrin glycosylation during pregnancy may lead to false-positive carbohydrate-deficient transferrin (CDT) results in testing for riskful alcohol consumption. Clin. Chim. Acta, 2011, 412(1-2), 129-133.
[http://dx.doi.org/10.1016/j.cca.2010.09.022] [PMID: 20869959]
[44]
Andresen-Streichert, H.; Müller, A.; Glahn, A.; Skopp, G.; Sterneck, M. Übersichtsarbeit: Alkoholmarker Bei Klinischen Und Forensischen Fragestellungen. Dtsch. Arztebl. Int., 2018, 115(18), 309-315.
[http://dx.doi.org/10.3238/arztebl.2018.0309] [PMID: 29807559]
[45]
Thierauf, A.; Halter, C.C.; Rana, S.; Auwaerter, V.; Wohlfarth, A.; Wurst, F.M.; Weinmann, W. Urine tested positive for ethyl glucuronide after trace amounts of ethanol. Addiction, 2009, 104(12), 2007-2012.
[http://dx.doi.org/10.1111/j.1360-0443.2009.02722.x] [PMID: 19922567]
[46]
Sarkola, T.; Dahl, H.; Eriksson, C.J.P.; Helander, A. Urinary ethyl glucuronide and 5-hydroxytryptophol levels during repeated ethanol ingestion in healthy human subjects. Alcohol Alcohol., 2003, 38(4), 347-351.
[http://dx.doi.org/10.1093/alcalc/agg083] [PMID: 12814902]
[47]
Junghanns, K.; Graf, I.; Pflüger, J.; Wetterling, G.; Ziems, C.; Ehrenthal, D.; Zöllner, M.; Dibbelt, L.; Backhaus, J.; Weinmann, W.; Wurst, F.M. Urinary ethyl glucuronide (EtG) and ethyl sulphate (EtS) assessment: valuable tools to improve verification of abstention in alcohol-dependent patients during in-patient treatment and at follow-ups. Addiction, 2009, 104(6), 921-926.
[http://dx.doi.org/10.1111/j.1360-0443.2009.02566.x] [PMID: 19466918]
[48]
Bergström, J.; Helander, A.; Jones, A.W. Ethyl glucuronide concentrations in two successive urinary voids from drinking drivers: Relationship to creatinine content and blood and urine ethanol concentrations. Forensic Sci. Int., 2003, 133(1-2), 86-94.
[http://dx.doi.org/10.1016/S0379-0738(03)00053-7] [PMID: 12742693]
[49]
Armer, J.M.; Allcock, R.L. Urine ethyl glucuronide and ethyl sulphate using liquid chromatography-tandem mass spectrometry in a routine clinical laboratory. Ann. Clin. Biochem., 2017, 54(1), 60-68.
[http://dx.doi.org/10.1177/0004563216636648] [PMID: 27073030]
[50]
Dahl, H.; Stephanson, N.; Beck, O.; Helander, A. Comparison of urinary excretion characteristics of ethanol and ethyl glucuronide. J. Anal. Toxicol., 2002, 26(4), 201-204.
[http://dx.doi.org/10.1093/jat/26.4.201] [PMID: 12054359]
[51]
Wurst, F.M.; Skipper, G.E.; Weinmann, W. Ethyl glucuronide-the direct ethanol metabolite on the threshold from science to routine use. Addiction, 2003, 98(Suppl. 2), 51-61.
[http://dx.doi.org/10.1046/j.1359-6357.2003.00588.x] [PMID: 14984242]
[52]
Schmitt, G.; Aderjan, R.; Keller, T.; Wu, M. Ethyl glucuronide: An unusual ethanol metabolite in humans. Synthesis, analytical data, and determination in serum and urine. J. Anal. Toxicol., 1995, 19(2), 91-94.
[http://dx.doi.org/10.1093/jat/19.2.91] [PMID: 7769794]
[53]
Kissack, J.C.; Bishop, J.; Roper, A.L. Ethylglucuronide as a biomarker for ethanol detection. Pharmacotherapy, 2008, 28(6), 769-781.
[http://dx.doi.org/10.1592/phco.28.6.769] [PMID: 18503404]
[54]
Skipper, G.E.; Weinmann, W.; Thierauf, A.; Schaefer, P.; Wiesbeck, G.; Allen, J.P.; Miller, M.; Wurst, F.M. Ethyl glucuronide: A biomarker to identify alcohol use by health professionals recovering from substance use disorders. Alcohol Alcohol., 2004, 39(5), 445-449.
[http://dx.doi.org/10.1093/alcalc/agh078] [PMID: 15289206]
[55]
Goll, M.; Schmitt, G.; Ganssmann, B.; Aderjan, R.E. Excretion profiles of ethyl glucuronide in human urine after internal dilution. J. Anal. Toxicol., 2002, 26(5), 262-266.
[http://dx.doi.org/10.1093/jat/26.5.262] [PMID: 12166812]
[56]
Helander, A.; Beck, O. Ethyl sulfate: A metabolite of ethanol in humans and a potential biomarker of acute alcohol intake. J. Anal. Toxicol., 2005, 29(5), 270-274.
[http://dx.doi.org/10.1093/jat/29.5.270] [PMID: 16105250]
[57]
Helander, A.; Böttcher, M.; Fehr, C.; Dahmen, N.; Beck, O. Detection times for urinary ethyl glucuronide and ethyl sulfate in heavy drinkers during alcohol detoxification. Alcohol Alcohol., 2009, 44(1), 55-61.
[http://dx.doi.org/10.1093/alcalc/agn084] [PMID: 18971292]
[58]
Zheng, Y.; Helander, A. Solid-phase extraction procedure for ethyl glucuronide in urine. J. Anal. Toxicol., 2008, 32(9), 778-781.
[http://dx.doi.org/10.1093/jat/32.9.778] [PMID: 19021935]
[59]
Shah, R.; Lacourse, W.R. An improved method to detect ethyl glucuronide in urine using reversed-phase liquid chromatography and pulsed electrochemical detection. Anal. Chim. Acta, 2006, 576(2), 239-245.
[http://dx.doi.org/10.1016/j.aca.2006.06.017] [PMID: 17723638]
[60]
Zimmer, H.; Schmitt, G.; Aderjan, R. Preliminary immunochemical test for the determination of ethyl glucuronide in serum and urine: Comparison of screening method results with gas chromatography-mass spectrometry. J. Anal. Toxicol., 2002, 26(1), 11-16.
[http://dx.doi.org/10.1093/jat/26.1.11] [PMID: 11888011]
[61]
Helander, A.; Zheng, Y. Molecular species of the alcohol biomarker phosphatidylethanol in human blood measured by LC-MS. Clin. Chem., 2009, 55(7), 1395-1405.
[http://dx.doi.org/10.1373/clinchem.2008.120923] [PMID: 19423735]
[62]
Leickly, E.; McDonell, M.G.; Vilardaga, R.; Angelo, F.A.; Lowe, J.M.; McPherson, S.; Srebnik, D.; Roll, J.M.; Ries, R.K. High levels of agreement between clinic-based ethyl glucuronide (EtG) immunoassays and laboratory-based mass spectrometry. Am. J. Drug Alcohol Abuse, 2015, 41(3), 246-250.
[http://dx.doi.org/10.3109/00952990.2015.1011743] [PMID: 25695340]
[63]
Turfus, S.C.; Vo, T.; Niehaus, N.; Gerostamoulos, D.; Beyer, J. An evaluation of the DRI-ETG EIA method for the determination of ethyl glucuronide concentrations in clinical and post-mortem urine. Drug Test. Anal., 2013, 5(6), 439-445.
[http://dx.doi.org/10.1002/dta.414] [PMID: 22374825]
[64]
Dawson, D.A.; Grant, B.F.; Stinson, F.S.; Zhou, Y. Effectiveness of the derived Alcohol Use Disorders Identification Test (AUDIT-C) in screening for alcohol use disorders and risk drinking in the US general population. Alcohol. Clin. Exp. Res., 2005, 29(5), 844-854.
[http://dx.doi.org/10.1097/01.ALC.0000164374.32229.A2] [PMID: 15897730]
[65]
Russell, M. New assessment tools for risk drinking during pregnancy: T-ACE, TWEAK, and others. Alcohol Health Res. World, 1994, 18(1), 55-61.
[PMID: 31798157]
[66]
Chiodo, L.M.; Sokol, R.J.; Delaney-Black, V.; Janisse, J.; Hannigan, J.H. Validity of the T-ACE in pregnancy in predicting child outcome and risk drinking. Alcohol, 2010, 44(7-8), 595-603.
[http://dx.doi.org/10.1016/j.alcohol.2009.08.009] [PMID: 20053522]
[67]
Petrella, C.; Farioli-Vecchioli, S.; Cisale, G.Y.; Strimpakos, G.; Borg, J.J.; Ceccanti, M.; Fiore, M.; Monteleone, G.; Nisticò, R. A healthy gut for a healthy brain: Preclinical, clinical and regulatory aspects. Curr. Neuropharmacol., 2020, 19(5), 610-628.
[http://dx.doi.org/10.2174/1570159X18666200730111528] [PMID: 32744976]
[68]
Zizzo, N.; Di Pietro, N.; Green, C.; Reynolds, J.; Bell, E.; Racine, E. Comments and reflections on ethics in screening for biomarkers of prenatal alcohol exposure. Alcohol. Clin. Exp. Res., 2013, 37(9), 1451-1455.
[http://dx.doi.org/10.1111/acer.12115] [PMID: 23550996]
[69]
Nanau, R.M.; Neuman, M.G. Biomolecules and biomarkers used in diagnosis of alcohol drinking and in monitoring therapeutic interventions. Biomolecules, 2015, 5(3), 1339-1385.
[http://dx.doi.org/10.3390/biom5031339] [PMID: 26131978]
[70]
Høiseth, G.; Yttredal, B.; Karinen, R.; Gjerde, H.; Christophersen, A. Levels of ethyl glucuronide and ethyl sulfate in oral fluid, blood, and urine after use of mouthwash and ingestion of nonalcoholic wine. J. Anal. Toxicol., 2010, 34(2), 84-88.
[http://dx.doi.org/10.1093/jat/34.2.84] [PMID: 20223100]
[71]
Reisfield, G.M.; Goldberger, B.A.; Pesce, A.J.; Crews, B.O.; Wilson, G.R.; Teitelbaum, S.A.; Bertholf, R.L. Ethyl glucuronide, ethyl sulfate, and ethanol in urine after intensive exposure to high ethanol content mouthwash. J. Anal. Toxicol., 2011, 35(5), 264-268.
[http://dx.doi.org/10.1093/anatox/35.5.264] [PMID: 21619720]
[72]
Köhler, K.M.; Hammer, R.; Riedy, K.; Auwärter, V.; Neukamm, M.A. Evaluation of CEDIA and DRI drugs of abuse immunoassays for urine screening on a Thermo Indiko Plus analyzer. J. Clin. Lab. Anal., 2017, 31(1)
[http://dx.doi.org/10.1002/jcla.22021] [PMID: 27346579]
[73]
Manni, L.; Aloe, L.; Fiore, M. Changes in cognition induced by social isolation in the mouse are restored by electro-acupuncture. Physiol. Behav., 2009, 98(5), 537-542.
[http://dx.doi.org/10.1016/j.physbeh.2009.08.011] [PMID: 19733189]
[74]
Angelucci, F.; Piermaria, J.; Gelfo, F.; Shofany, J.; Tramontano, M.; Fiore, M.; Caltagirone, C.; Peppe, A. The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Can. J. Physiol. Pharmacol., 2016, 94(4), 455-461.
[http://dx.doi.org/10.1139/cjpp-2015-0322] [PMID: 26863448]
[75]
Smith, S.M.; Garic, A.; Flentke, G.R.; Berres, M.E. Neural crest development in fetal alcohol syndrome. Birth Defects Res. C Embryo Today, 2014, 102(3), 210-220.
[http://dx.doi.org/10.1002/bdrc.21078] [PMID: 25219761]
[76]
Treit, S.; Zhou, D.; Chudley, A.E.; Andrew, G.; Rasmussen, C.; Nikkel, S.M.; Samdup, D.; Hanlon-Dearman, A.; Loock, C.; Beaulieu, C. Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PLoS One, 2016, 11(2), e0150370.
[http://dx.doi.org/10.1371/journal.pone.0150370] [PMID: 26928125]
[77]
Ceccanti, M.; Iannitelli, A.; Fiore, M. Italian Guidelines for the treatment of alcohol dependence. Riv. Psichiatr., 2018, 53(3), 105-106.
[http://dx.doi.org/10.1708/2925.29410] [PMID: 29912210]
[78]
Ciafrè, S.; Carito, V.; Tirassa, P.; Ferraguti, G.; Attilia, M.L.; Ciolli, P.; Messina, M.P.; Ceccanti, M.; Fiore, M. Ethanol consumption and innate neuroimmunity. Biomed. Rev., 2017, 28, 49-61.
[http://dx.doi.org/10.14748/bmr.v28.4451]
[79]
Ceccanti, M.; Coccurello, R.; Carito, V.; Ciafrè, S.; Ferraguti, G.; Giacovazzo, G.; Mancinelli, R.; Tirassa, P.; Chaldakov, G.N.; Pascale, E.; Ceccanti, M.; Codazzo, C.; Fiore, M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict. Biol., 2016, 21(4), 776-787.
[http://dx.doi.org/10.1111/adb.12255] [PMID: 25940002]
[80]
Petrella, C.; Di Certo, M.G.; Gabanella, F.; Barbato, C.; Ceci, F.M.; Greco, A.; Ralli, M.; Polimeni, A.; Angeloni, A.; Severini, C.; Vitali, M.; Ferraguti, G.; Ceccanti, M.; Lucarelli, M.; Severi, C.; Fiore, M. Mediterranean diet, brain and muscle: Olive polyphenols and resveratrol protection in neurodegenerative and neuromuscular disorders. Curr. Med. Chem., 2021, 28(37), 7595-7613.
[http://dx.doi.org/10.2174/0929867328666210504113445] [PMID: 33949928]
[81]
De Nicoló, S.; Tarani, L.; Ceccanti, M.; Maldini, M.; Natella, F.; Vania, A.; Chaldakov, G.N.; Fiore, M. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition, 2013, 29(4), 681-687.
[http://dx.doi.org/10.1016/j.nut.2012.11.007] [PMID: 23466052]
[82]
Aloe, L.; Skaper, S.D.; Leon, A.; Levi-Montalcini, R. Nerve growth factor and autoimmune diseases. Autoimmunity, 1994, 19(2), 141-150.
[http://dx.doi.org/10.3109/08916939409009542] [PMID: 7772704]
[83]
De Luca, C.; Colangelo, A.M.; Alberghina, L.; Papa, M. Neuro-immune hemostasis: Homeostasis and diseases in the central nervous system. Front. Cell. Neurosci., 2018, 12, 459.
[http://dx.doi.org/10.3389/fncel.2018.00459] [PMID: 30534057]
[84]
Amendola, T.; Fiore, M.; Aloe, L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci. Lett., 2003, 345(1), 37-40.
[http://dx.doi.org/10.1016/S0304-3940(03)00491-9] [PMID: 12809983]
[85]
Fiore, M.; Aloe, L.; Westenbroek, C.; Amendola, T.; Antonelli, A.; Korf, J. Bromodeoxyuridine and methylazoxymethanol exposure during brain development affects behavior in rats: Consideration for a role of nerve growth factor and brain derived neurotrophic factor. Neurosci. Lett., 2001, 309(2), 113-116.
[http://dx.doi.org/10.1016/S0304-3940(01)02045-6] [PMID: 11502358]
[86]
Fiore, M.; Korf, J.; Angelucci, F.; Talamini, L.; Aloe, L. Prenatal exposure to methylazoxymethanol acetate in the rat alters neurotrophin levels and behavior: Considerations for neurodevelopmental diseases. Physiol. Behav., 2000, 71(1-2), 57-67.
[http://dx.doi.org/10.1016/S0031-9384(00)00310-3] [PMID: 11134686]
[87]
Fiore, M.; Talamini, L.; Angelucci, F.; Koch, T.; Aloe, L.; Korf, J. Prenatal methylazoxymethanol acetate alters behavior and brain NGF levels in young rats: A possible correlation with the development of schizophrenia-like deficits. Neuropharmacology, 1999, 38(6), 857-869.
[http://dx.doi.org/10.1016/S0028-3908(99)00007-6] [PMID: 10465689]
[88]
Di Fausto, V.; Fiore, M.; Aloe, L. Exposure in fetus of methylazoxymethanol in the rat alters brain neurotrophins’ levels and brain cells’ proliferation. Neurotoxicol. Teratol., 2007, 29(2), 273-281.
[http://dx.doi.org/10.1016/j.ntt.2006.10.007] [PMID: 17142008]
[89]
Fiore, M.; Korf, J.; Antonelli, A.; Talamini, L.; Aloe, L. Long-lasting effects of prenatal MAM treatment on water maze performance in rats: Associations with altered brain development and neurotrophin levels. Neurotoxicol. Teratol., 2002, 24(2), 179-191.
[http://dx.doi.org/10.1016/S0892-0362(01)00214-8] [PMID: 11943506]
[90]
Bruscolini, A.; Sacchetti, M.; La Cava, M.; Nebbioso, M.; Iannitelli, A.; Quartini, A.; Lambiase, A.; Ralli, M.; de Virgilio, A.; Greco, A. Quality of life and neuropsychiatric disorders in patients with Graves’ Orbitopathy: Current concepts. Autoimmun. Rev., 2018, 17(7), 639-643.
[http://dx.doi.org/10.1016/j.autrev.2017.12.012] [PMID: 29729448]
[91]
Quartini, A.; Pacitti, F.; Bersani, G.; Iannitelli, A. From adolescent neurogenesis to Schizophrenia: Opportunities, challenges and promising interventions. Biomed. Rev., 2017, 28, 66-73.
[http://dx.doi.org/10.14748/bmr.v28.4452]
[92]
Schulte-Herbrüggen, O.; Braun, A.; Rochlitzer, S.; Jockers-Scherübl, M.C.; Hellweg, R. Neurotrophic factors-a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr. Med. Chem., 2007, 14(22), 2318-2329.
[http://dx.doi.org/10.2174/092986707781745578] [PMID: 17896980]
[93]
Tirassa, P.; Rosso, P.; Iannitelli, A. Ocular Nerve Growth Factor (NGF) and NGF eye drop application as paradigms to investigate NGF neuroprotective and reparative actions. Methods Mol. Biol., 2018, 1727, 19-38.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_2] [PMID: 29222770]
[94]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Aloe, L. Neuroadipology: A novel component of neuroendocrinology. Cell Biol. Int., 2010, 34(10), 1051-1053.
[http://dx.doi.org/10.1042/CBI20100509] [PMID: 20825365]
[95]
Chaldakov, G.N.; Fiore, M.; Hristova, M.G.; Aloe, L. Metabotrophic potential of neurotrophins: Implication in obesity and related diseases? Med. Sci. Monit., 2003, 9(10), HY19-HY21.
[PMID: 14523335]
[96]
Chaldakov, G.N.; Fiore, M.; Ghenev, P.I.; Stankulov, I.S.; Aloe, L. Atherosclerotic lesions: Possible interactive involvement of intima, adventitia and associated adipose tissue. Int. Med. J., 2000, 7(1), 43-49.
[97]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Dimitrov, D.; Pancheva, R.; Rancic, G.; Aloe, L. Homo obesus: A metabotrophin-deficient species. Pharmacology and nutrition insight. Curr. Pharm. Des., 2007, 13(21), 2176-2179.
[http://dx.doi.org/10.2174/138161207781039616] [PMID: 17627549]
[98]
Budni, J.; Bellettini-Santos, T.; Mina, F.; Garcez, M.L.; Zugno, A.I. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis., 2015, 6(5), 331-341.
[http://dx.doi.org/10.14336/AD.2015.0825] [PMID: 26425388]
[99]
Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[100]
Aloe, L.; Alleva, E.; Fiore, M. Stress and nerve growth factor: Findings in animal models and humans. Pharmacol. Biochem. Behav., 2002, 73(1), 159-166.
[http://dx.doi.org/10.1016/S0091-3057(02)00757-8] [PMID: 12076735]
[101]
Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Vitali, M.; Ceccanti, M.; Chaldakov, G.N.; Versacci, P.; Fiore, M. Nerve growth factor, stress and diseases. Curr. Med. Chem., 2021, 28(15), 2943-2959.
[http://dx.doi.org/10.2174/0929867327999200818111654] [PMID: 32811396]
[102]
D’Angelo, A.; Ceccanti, M.; Petrella, C.; Greco, A.; Tirassa, P.; Rosso, P.; Ralli, M.; Ferraguti, G.; Fiore, M.; Messina, M.P.M.P. Role of neurotrophins in pregnancy, delivery and postpartum. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 247, 32-41.
[http://dx.doi.org/10.1016/j.ejogrb.2020.01.046] [PMID: 32058187]
[103]
Vega, S.R.; Kleinert, J.; Sulprizio, M.; Hollmann, W.; Bloch, W.; Strüder, H.K. Responses of serum neurotrophic factors to exercise in pregnant and postpartum women. Psychoneuroendocrinology, 2011, 36(2), 220-227.
[http://dx.doi.org/10.1016/j.psyneuen.2010.07.012] [PMID: 20692101]
[104]
Cabarcos, P.; Álvarez, I.; Tabernero, M.J.; Bermejo, A.M. Determination of direct alcohol markers: A review. Anal. Bioanal. Chem., 2015, 407(17), 4907-4925.
[http://dx.doi.org/10.1007/s00216-015-8701-7] [PMID: 25935676]
[105]
Fu, S. Adulterants in urine drug testing. Adv. Clin. Chem., 2016, 76, 123-163.
[http://dx.doi.org/10.1016/bs.acc.2016.05.003] [PMID: 27645818]
[106]
Price, H.R.; Collier, A.C.; Wright, T.E. Screening pregnant women and their neonates for illicit drug use: Consideration of the integrated technical, medical, ethical, legal, and social issues. Front. Pharmacol., 2018, 9, 961.
[http://dx.doi.org/10.3389/fphar.2018.00961] [PMID: 30210343]
[107]
Wurst, F.M.; Kelso, E.; Weinmann, W.; Pragst, F.; Yegles, M.; Sundström Poromaa, I. Measurement of direct ethanol metabolites suggests higher rate of alcohol use among pregnant women than found with the AUDIT-a pilot study in a population-based sample of Swedish women. Am. J. Obstet. Gynecol., 2008, 198(4), 407.e1-407.e5.
[http://dx.doi.org/10.1016/j.ajog.2007.10.801] [PMID: 18221928]
[108]
D’Angelo, A.; Ceccanti, M.; Fiore, M.; Petrella, C.; Greco, A.; Porrari, R.; Gencarelli, S.; Ralli, M.; Vitali, M.; Ferraguti, G.; Galeoto, G.; Valente, D.; Framarino Dei Malatesta, M.; Messina, M.P.; Messina, M.P. Pregnancy in women with physical and intellectual disability: Psychiatric implications. Riv. Psichiatr., 2020, 55(6), 331-336.
[http://dx.doi.org/10.1708/3503.34890] [PMID: 33349725]
[109]
D’Angelo, A.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Vitali, M.; Framarino Dei Malatesta, M.; Fiore, M.; Ceccanti, M.; Messina, M.P. Challenges for Midwives’ healthcare practice in the next decade: COVID-19 - global climate changes - aging and pregnancy - gestational alcohol abuse. Clin. Ter., 2021, 171(1), e30-e36.
[http://dx.doi.org/10.7417/CT.2021.2277] [PMID: 33346323]
[110]
Messina, M.P.; D’Angelo, A.; Battagliese, G.; Coriale, G.; Tarani, L.; Pichini, S.; Rasio, D.; Parlapiano, G.; Fiore, M.; Petrella, C.; Vitali, M.; Ferraguti, G.; Ceccanti, M.; Bertoli, D.; Canepa, M.; Cappadona, R.; D’Alessio, A.; Danza, M.; Morese, A.; Paolino, A.; Pileri, F.; Pinna, N.; Neri, I.; Razzano, R.; Ricchi, A.; Rizzi, M. Fetal alcohol spectrum disorders awareness in health professionals: Implications for psychiatry. Riv. Psichiatr., 2020, 55(2), 79-89.
[http://dx.doi.org/10.1708/3333.33022] [PMID: 32202545]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy