Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Use of Textiles in the Wound Healing: A Review

Author(s): Janaína Ribeiro Oliveira, Victor Hugo Dantas Guimarães, Ulisses Alves Pereira, Fernando Ribeiro Oliveira and Sérgio Henrique Sousa Santos*

Volume 22, Issue 10, 2022

Published on: 17 January, 2022

Page: [1438 - 1449] Pages: 12

DOI: 10.2174/1389557521666211124142553

Price: $65

conference banner
Abstract

The present article reviews the effects of the textile in the wound healing process, as well as the availability of these products in the market. A brief description of applications is given based on the literature obtained from searching the scientific databases, besides the data obtained from secondary sources, like books and congress proceedings. The historical context of the textiles used in wounds, their general characteristics, particularities in the healing process, and incorporation of new technologies are discussed. It was evidenced that the textiles and associated technologies might influence directly or indirectly the stimulation of collagen, cell migration, angiogenesis, and reduction of pro-inflammatory factors and fibroblasts. However, the mechanisms by which the textiles act in the healing process are not well established in the literature. The interaction among textile engineering, biotechnology, medicine, and pharmacology is essential for the improvement and development of new products with better efficiency and accessibility.

Keywords: Textile, medical textile, wound healing, medicine, technology, textile substrates.

Graphical Abstract

[1]
Costa, E.M.; Silva, S.; Veiga, M.; Tavaria, F.K.; Pintado, M.M. Chitosan’s biological activity upon skin-related microorganisms and its potential textile applications. World J. Microbiol. Biotechnol., 2018, 34(7), 93.
[http://dx.doi.org/10.1007/s11274-018-2471-2] [PMID: 29900482]
[2]
Metcalfe, A.D.; Ferguson, M.W. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface, 2007, 4(14), 413-437.
[http://dx.doi.org/10.1098/rsif.2006.0179] [PMID: 17251138]
[3]
Boucard, N.; Viton, C.; Agay, D.; Mari, E.; Roger, T.; Chancerelle, Y.; Domard, A. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials, 2007, 28(24), 3478-3488.
[http://dx.doi.org/10.1016/j.biomaterials.2007.04.021] [PMID: 17482258]
[4]
Andrade, C.C.D.; Pereira, W.E.; Alemão, M.M.; Brandão, C.M.R.; Borges, E.L. Custos do tratamento tópico de pacientes com úlcera por pressão. Rev. Esc. Enferm. USP, 2016, 50(2), 295-301.
[http://dx.doi.org/10.1590/S0080-623420160000200016] [PMID: 27384210]
[5]
Shah, A.; Amini-Nik, S. The Role of Phytochemicals in the Inflammatory Phase of Wound Healing. Int. J. Mol. Sci., 2017, 18(5), E1068.
[http://dx.doi.org/10.3390/ijms18051068] [PMID: 28509885]
[6]
Robbins, S.L.; Cotran, R.S.; Kumar, V.; Abbas, A.K.; Fausto, N. Patologia [de] Robbins e Cotran: bases patológicas das doenças, 7th ed; Elsevier, 2005, 23, pp. (5)482-483.
[7]
Abbas, A.K.; Fausto, N.; Mitchell, R.N.; Kumar, V. Robbins Patologia Básica; pathology, 8th ed; Elsevier: Brasil, 2008, p. 946.
[8]
Scott, D.W.; Miller, W.H., Jr; Griffin, C.E. Muller & Kirk, dermatologia de pequenos animais., 1996.
[9]
Kinmond, K.; McGee, P.; Gough, S.; Ashford, R. ‘Loss of self’: A psychosocial study of the quality of life of adults with diabetic foot ulceration. J. Tissue Viability, 2003, 13(1), 6-8, 10, 12 passim.
[http://dx.doi.org/10.1016/S0965-206X(03)80025-6] [PMID: 12599984]
[10]
Guyatt, G.H.; Feeny, D.H.; Patrick, D.L. Measuring health-related quality of life. Ann. Intern. Med., 1993, 118(8), 622-629.
[http://dx.doi.org/10.7326/0003-4819-118-8-199304150-00009] [PMID: 8452328]
[11]
Frykberg, R.G.; Banks, J. Challenges in the treatment of chronic wounds. Adv. Wound Care (New Rochelle), 2015, 4(9), 560-582.
[http://dx.doi.org/10.1089/wound.2015.0635] [PMID: 26339534]
[12]
Phillips, C.J.; Humphreys, I.; Fletcher, J.; Harding, K.; Chamberlain, G.; Macey, S. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int. Wound J., 2016, 13(6), 1193-1197.
[http://dx.doi.org/10.1111/iwj.12443] [PMID: 25818405]
[13]
Rajendran, S.; Anand, S. Developments in medical textiles. Textile progress, 2002, 32(4), 1-42.
[14]
Fonder, M.A.; Lazarus, G.S.; Cowan, D.A.; Aronson-Cook, B.; Kohli, A.R.; Mamelak, A.J. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J. Am. Acad. Dermatol., 2008, 58(2), 185-206.
[http://dx.doi.org/10.1016/j.jaad.2007.08.048] [PMID: 18222318]
[15]
Kujath, P.; Michelsen, A. Wounds - from physiology to wound dressing. Dtsch. Arztebl. Int., 2008, 105(13), 239-248.
[PMID: 19629204]
[16]
King, M.W. Overview of opportunities in medical textiles. Canadian Text. J., 2001, 118(4), 34-36.
[17]
Chu, C-C.; Von Fraunhofer, J.A.; Greisler, H.P., Eds.; Wound closure biomaterials and devices; CRC Press, 1997, p. 416.
[18]
Heywood, D. Textile finishing; Society of Dyers and Colourists: Bradford, 2003.
[19]
Bellini, P.; Bonetti, F.; Franzetti, E.; Rosace, G.; Vago, S. Reference books of Textile Technologies-Finishing; ACIMIT: Italy, 2001, pp. 1-202.
[20]
Chu, C.C. Classification and general characteristics of suture materials In: Wound Closure Biomaterials and Devices, 1st Ed; , 1997; p. 25.
[21]
Gupta, B.; Agarwal, R.; Alam, M. Textile-based smart wound dressings. Indian J. Fibre Textile Res., 2010, 35(2), 174-187.
[22]
Gosselin, R.A.; Kuppers, B. Open versus closed management of burn wounds in a low-income developing country. Burns: J. Intl. Soc. Burn Injur., 2008, 34(5), 644-647.
[23]
Sun, L.; Gao, W.; Fu, X.; Shi, M.; Xie, W.; Zhang, W.; Zhao, F.; Chen, X. Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater. Sci., 2018, 6(2), 340-349.
[http://dx.doi.org/10.1039/C7BM00545H] [PMID: 29265119]
[24]
Czemplik, M.; Boba, A.; Kostyn, K.; Kulma, A.; Mituła, A.; Sztajnert, M.; Wróbel-Kwiatkowska, M.; Żuk, M.; Szopa, J.; Skórkowska-Telichowska, K. Flax engineering for biomedical application. In: Biomedical engineering, trends, research and technologies; InTech Open; , 2011.
[http://dx.doi.org/10.5772/13570]
[25]
Abou-Okeil, A.; Sheta, A.M.; Amr, A.; Ali, M.A. Wound dressing based on nonwoven viscose fabrics. Carbohydr. Polym., 2012, 90(1), 658-666.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.093] [PMID: 24751090]
[26]
Wang, C.C.; Su, C.H.; Chen, C.C. Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. J. Biomed. Mater. Res. A, 2008, 84(4), 1006-1017.
[http://dx.doi.org/10.1002/jbm.a.31482] [PMID: 17647243]
[27]
Lee, W.Y.; Um, I.C.; Kim, M.K.; Kwon, K.J.; Kim, S.G.; Park, Y.W. Effectiveness of woven silk dressing materials on full-skin thickness burn wounds in rat model. Maxillofac. Plast. Reconstr. Surg., 2014, 36(6), 280-284.
[http://dx.doi.org/10.14402/jkamprs.2014.36.6.280] [PMID: 27489847]
[28]
Peng, S.; Jin, G.; Li, L.; Li, K.; Srinivasan, M.; Ramakrishna, S.; Chen, J. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem. Soc. Rev., 2016, 45(5), 1225-1241.
[http://dx.doi.org/10.1039/C5CS00777A] [PMID: 26727278]
[29]
MacNeil, S. Biomaterials for tissue engineering of skin. Mater. Today, 2008, 11(5), 26-35.
[http://dx.doi.org/10.1016/S1369-7021(08)70087-7]
[30]
Revathi, G.; Puri, J.; Jain, B.K. Bacteriology of burns. Burns: J. Intl. Soc. Burn Injur., 1998, 24(4), 347-349.
[31]
Hutmacher, D.W.; Schantz, T.; Zein, I.; Ng, K.W.; Teoh, S.H.; Tan, K.C. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res., 2001, 55(2), 203-216.
[http://dx.doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7] [PMID: 11255172]
[32]
Vindenes, H.; Bjerknes, R. Microbial colonization of large wounds. Burns: J. Intl. Soc. Burn Injur., 1995, 21(8), 575-579.
[33]
Lloyd, L.; Kennedy, J.; Methacanon, P.; Paterson, M.; Knill, C. Carbohydrate polymers as wound management aids. Carbohydr. Polym., 1998, 37(3), 315-322.
[http://dx.doi.org/10.1016/S0144-8617(98)00077-0]
[34]
Fletcher, J.; Moore, Z.; Anderson, I.; Matsuzaki, K. Pressure ulcers and Hydrocolloids. Made Easy. Wounds Intl., 2011, 2(4)
[35]
Colenci, R. Biomembrana de celulose versus curativo com colagenase no tratamento de úlceras venosas crônicas: Ensaio clínico randomizado, aberto e controlado Repositorio Institucional UNSEP 2017, 24(2)
[36]
Segal, H.C.; Hunt, B.J.; Gilding, K. The effects of alginate and non-alginate wound dressings on blood coagulation and platelet activation. J. Biomater. Appl., 1998, 12(3), 249-257.
[http://dx.doi.org/10.1177/088532829801200305] [PMID: 9493071]
[37]
Córtes, S.M.d.S. Avaliação da cicatrização estimulada por aceleradores, em pacientes adultos com hanseníase, portadores de úlceras plantares. 2008.. 171 f. Dissertação (Mestrado em Ciências da Saúde)-Universidade de Brasília, Brasília, 2008.
[38]
Pott, F.S.; Meier, M.J.; Stocco, J.G.D.; Crozeta, K.; Ribas, J.D. La efectividad del hidrocoloide versus otros apósitos en la cicatrización de úlceras por presión en adultos y ancianos: revisión sistemática y metanálisis1. Rev. Lat. Am. Enfermagem, 2014, 22(3), 511-520.
[http://dx.doi.org/10.1590/0104-1169.3480.2445] [PMID: 25029065]
[39]
Mandelbaum, S.H.; Di Santis, É.P.; Mandelbaum, M.H.S.A. Cicatrização: conceitos atuais e recursos auxiliares-Parte II Cicatrization: Current concepts and auxiliary resources-Part II. An. Bras. Dermatol., 2003, 78(5), 525-542.
[http://dx.doi.org/10.1590/S0365-05962003000500002]
[40]
Shahidi, F.; Abuzaytoun, R. Chitin, chitosan, and co-products: Chemistry, production, applications, and health effects. Adv. Food Nutr. Res., 2005, 49, 93-135.
[http://dx.doi.org/10.1016/S1043-4526(05)49003-8] [PMID: 15797344]
[41]
Zhu, X.; Chian, K.S.; Chan-Park, M.B.; Lee, S.T. Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J. Biomed. Mater. Res. A, 2005, 73(3), 264-274.
[http://dx.doi.org/10.1002/jbm.a.30211] [PMID: 15789411]
[42]
Qin, Y. FIBRES-Novel Antimicrobial Fibres. Textiles Magazine., 2004, 31(2), 14-17.
[43]
Shi, C.; Zhu, Y.; Ran, X.; Wang, M.; Su, Y.; Cheng, T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J. Surg. Res., 2006, 133(2), 185-192.
[http://dx.doi.org/10.1016/j.jss.2005.12.013] [PMID: 16458923]
[44]
Balassa, L.; Prudden, J. Proceedings of the first international conference on chitin/chitosan In: Applications of chitin and chitosan in wound-healing acceleration; National Technical Information: Springfield, VA, 1978; pp. 296-305.
[45]
Yoshikawa, M.; Midorikawa, T.; Otsuki, T.; Terashi, T. Process for producing articles of regenerated chitin-chitosan containing material and the resulting articles. Google Patents, EP0794223B1, 1998.
[46]
Rajendran, S. Advanced textiles for wound care, 2nd ed; Woodhead Publishing, 2018.
[47]
Russell, A.D.; Hugo, W.B. Antimicrobial activity and action of silver. Prog. Med. Chem., 1994, 31, 351-370.
[http://dx.doi.org/10.1016/S0079-6468(08)70024-9] [PMID: 8029478]
[48]
Leite, F.A.E. Curativos de prata: Projeto de otimização do uso. Rev. Bras. Cir. Plást., 2011, 26(3), 10.
[49]
Shahidi, S.; Wiener, J. Antibacterial agents in textile industry. In: Antimicrobial agents; Bobbarala, V., Ed.; IntechOpen: Iran, 2012.
[http://dx.doi.org/10.5772/46246]
[50]
Loomba, L.; Scarabelli, T. Metallic nanoparticles and their medicinal potential. Part II: Aluminosilicates, nanobiomagnets, quantum dots and cochleates. Ther. Deliv., 2013, 4(9), 1179-1196.
[http://dx.doi.org/10.4155/tde.13.74] [PMID: 24024515]
[51]
Ziv-Polat, O.; Topaz, M.; Brosh, T.; Margel, S. Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials, 2010, 31(4), 741-747.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.093] [PMID: 19850336]
[52]
Trickler, W.J.; Lantz, S.M.; Schrand, A.M.; Robinson, B.L.; Newport, G.D.; Schlager, J.J.; Paule, M.G.; Slikker, W.; Biris, A.S.; Hussain, S.M.; Ali, S.F. Effects of copper nanoparticles on rat cerebral microvessel endothelial cells. Nanomedicine (Lond.), 2012, 7(6), 835-846.
[http://dx.doi.org/10.2217/nnm.11.154] [PMID: 22339089]
[53]
Borkow, G.; Gabbay, J.; Dardik, R.; Eidelman, A.I.; Lavie, Y.; Grunfeld, Y.; Ikher, S.; Huszar, M.; Zatcoff, R.C.; Marikovsky, M. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen., 2010, 18(2), 266-275.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00573.x] [PMID: 20409151]
[54]
Nethi, S.K.; Mukherjee, S.; Veeriah, V.; Barui, A.K.; Chatterjee, S.; Patra, C.R. Bioconjugated gold nanoparticles accelerate the growth of new blood vessels through redox signaling. Chem. Commun. (Camb.), 2014, 50(92), 14367-14370.
[http://dx.doi.org/10.1039/C4CC06996J] [PMID: 25298204]
[55]
Huang, Y-H.; Chen, C-Y.; Chen, P-J.; Tan, S-W.; Chen, C-N.; Chen, H-M.; Tu, C-S.; Liang, Y-J. Gas-injection of gold nanoparticles and anti-oxidants promotes diabetic wound healing. Royal Soc. Chem. Adv., 2014, 4(9), 4656-4662.
[http://dx.doi.org/10.1039/C3RA44359K]
[56]
Baranoski, S.; Ayello, E.A. Wound care essentials: Practice principles, 2nd Ed; Lippincott Williams & Wilkins, 2008.
[57]
Ovington, L.G. Hanging wet-to-dry dressings out to dry. Home Health. Nurse, 2001, 19(8), 477-483.
[PMID: 11982183]
[58]
Lansdown, A.B.G.; Silver, I. Silver. I: Its antibacterial properties and mechanism of action. J. Wound Care, 2002, 11(4), 125-130.
[http://dx.doi.org/10.12968/jowc.2002.11.4.26389] [PMID: 11998592]
[59]
Blaker, J.J.; Nazhat, S.N.; Boccaccini, A.R. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials, 2004, 25(7-8), 1319-1329.
[http://dx.doi.org/10.1016/j.biomaterials.2003.08.007] [PMID: 14643606]
[60]
Pranut Potiyaraj, P.K.; Stephan, T. Dubas, Synthesis of silver chloride nanocrystal on silk fibers. Mater. Lett., 2007, 61(11–12), 2464-2466.
[http://dx.doi.org/10.1016/j.matlet.2006.09.039]
[61]
Xu, B. M.N.; Liqiao Wei, Wensheng Hou; Xuguang, Liu The structural analysis of biomacromolecule wool fiber with Ag-loading SiO2 nano-antibacterial agent by UV radiation. J. Photochem. Photobiol. Chem., 2007, 188(1), 98-105.
[http://dx.doi.org/10.1016/j.jphotochem.2006.11.025]
[62]
Chuh-Yean Chen, C-L.C. Preparation of cotton fibers with antibacterial silver nanoparticles. Mater. Lett., 2008, 62(21-22), 3607-3609.
[http://dx.doi.org/10.1016/j.matlet.2008.04.008]
[63]
Montazer, M.; Alimohammadi, F.; Shamei, A.; Rahimi, M.K. In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr. Polym., 2012, 87(2), 1706-1712.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.079]
[64]
Ibrahim, N.; Eid, B.; El-Batal, H. A novel approach for adding smart functionalities to cellulosic fabrics. Carbohydr. Polym., 2012, 87(1), 744-751.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.054]
[65]
Ristić, T.; Zemljič, L.F.; Novak, M.; Kunčič, M.K.; Sonjak, S.; Cimerman, N.G.; Strnad, S. Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles. Sci. Against Micro. Pathog.: Comms. Curr. Res. Tech. Adv., 2011, 6, 36-51.
[66]
Gao, Y.; Cranston, R. Recent advances in antimicrobial treatments of textiles. Text. Res. J., 2008, 78(1), 60-72.
[http://dx.doi.org/10.1177/0040517507082332]
[67]
Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces, 2010, 79(1), 5-18.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.029] [PMID: 20417070]
[68]
Joshi, M.; Ali, S.W.; Purwar, R.; Rajendran, S. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J. Fibre Textile Res., 2009, 34(3), 295-304.
[69]
Singh, R.; Jain, A.; Panwar, S.; Gupta, D.; Khare, S. Antimicrobial activity of some natural dyes. Dyes Pigments, 2005, 66(2), 99-102.
[http://dx.doi.org/10.1016/j.dyepig.2004.09.005]
[70]
Han, S.; Yang, Y. Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments, 2005, 64(2), 157-161.
[http://dx.doi.org/10.1016/j.dyepig.2004.05.008]
[71]
Calis, A.; Çelik, G.Y.; Katircioglu, H. Antimicrobial effect of natural dyes on some pathogenic bacteria. Afr. J. Biotechnol., 2010, 8(2)
[72]
Comlekcioglu, N.; Aygan, A.; Kutlu, M.; Kocabas, Y.Z. Antimicrobial activities of some natural dyes and dyed wool yarn. Iran. J. Chem. Chem. Eng. Research Note Vol., 2017, 36(4), 137-144.
[73]
Thilagavathi, G.; Kannaian, T. Combined antimicrobial and aroma finishing treatment for cotton, using micro encapsulated geranium (Pelargonium graveolens L’Herit. Ex Ait.) leaves extract. Indian J. Nat. Prod. Res., 2010, 1(3), 348-352.
[74]
Sathianarayanan, M.; Chaudhari, B.; Bhat, N. Development of durable antibacterial agent from ban-ajwain seed (Thymus serpyllum) for cotton fabric. Indian J. Fibre Textile Res., 2011, 36(3)
[75]
Thilagavathi, G.; Rajendrakumar, K.; Rajendran, R. Development of ecofriendly antimicrobial textile finishes using herbs. Indian J. Fibre Textile Res., 2005, 30(4), 431-436.
[76]
Sathianarayanan, M.; Bhat, N.; Kokate, S.; Walunj, V. Antibacterial finish for cotton fabric from herbal products. Indian J. Fibre Textile Res., 2010, 35(1), 50-58.
[77]
Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric. Appl. Surf. Sci., 2008, 254(8), 2472-2478.
[http://dx.doi.org/10.1016/j.apsusc.2007.09.088]
[78]
Walentowska, J.; Foksowicz-Flaczyk, J. Thyme essential oil for antimicrobial protection of natural textiles. Int. Biodeterior. Biodegrad., 2013, 84, 407-411.
[http://dx.doi.org/10.1016/j.ibiod.2012.06.028]
[79]
Simoncic, B.; Tomsic, B. Structures of novel antimicrobial agents for textiles-a review. Text. Res. J., 2010, 80(16), 1721-1737.
[http://dx.doi.org/10.1177/0040517510363193]
[80]
Saraswathi, R.; Krishnan, P.N.; Dilip, C. Antimicrobial activity of cotton and silk fabric with herbal extract by micro encapsulation. Asian Pac. J. Trop. Med., 2010, 3(2), 128-132.
[http://dx.doi.org/10.1016/S1995-7645(10)60051-X]
[81]
Ramachandran, T.; Kumar, R.; Rajendran, R. Antimicrobial textiles - An overview. J. Inst. Eng. (India): C., 2004, 84, 42-47.
[82]
Wei, Q.; Xu, Q.; Cai, Y.; Wang, Y. Evaluation of the interfacial bonding between fibrous substrate and sputter coated copper. Surf. Coat. Tech., 2008, 202(19), 4673-4680.
[http://dx.doi.org/10.1016/j.surfcoat.2008.03.037]
[83]
Gorenšek, M.; Gorjanc, M.; Bukošek, V.; Kovač, J.; Jovančić, P.; Mihailović, D. Functionalization of PET fabrics by corona and nano silver. Text. Res. J., 2009, 80(3), 253-262.
[http://dx.doi.org/10.1177/0040517509105275]
[84]
Mouro, C.F.D. Péptidos antimicrobianos: uma nova estratégia na funcionalização bioativa de fibras de lã e poliamida., 2013.
[85]
Valencia, G.; Mendes, L. Nanocompósitos poliméricos e a perspectiva de aplicação na indústria têxtil., 2017.
[86]
Zille, A.; Almeida, L.; Amorim, T.; Carneiro, N.; Esteves, M.F.; Silva, C.J.; Souto, A.P. Application of nanotechnology in antimicrobial finishing of biomedical textiles. Mater. Res. Express, 2014, 1(3), 032003.
[http://dx.doi.org/10.1088/2053-1591/1/3/032003]
[87]
Bar, G.; Biswas, D.; Pati, S.; Chaudhary, K.; Bar, M. Antiviral finishing on textiles-an overview. Text. Leather Rev., 2021, 4(1), 5-22.
[http://dx.doi.org/10.31881/TLR.2020.17]
[88]
Shahidi, S.; Ghoranneviss, M.; Moazzenchi, B.; Rashidi, A.; Mirjalili, M. Investigation of antibacterial activity on cotton fabrics with cold plasma in the presence of a magnetic field. Plasma Process. Polym., 2007, 4(S1), S1098-S1103.
[http://dx.doi.org/10.1002/ppap.200732412]
[89]
Periolatto, M.; Ferrero, F.; Vineis, C.; Varesano, A.; Gozzelino, G. Novel Antimicrobial Agents and Processes for Textile Applications; Anti-bacterial Agents, 2017, p. 17.
[http://dx.doi.org/10.5772/intechopen.68423]
[90]
Gulrajani, M.; Deepti, G. Emerging techniques for functional finishing of textiles. Indian J. Fibre Textile Res., 2011, 36(4)
[91]
Iyigundogdu, Z.U.; Demir, O.; Asutay, A.B.; Sahin, F. Developing novel antimicrobial and antiviral textile products. Appl. Biochem. Biotechnol., 2017, 181(3), 1155-1166.
[http://dx.doi.org/10.1007/s12010-016-2275-5] [PMID: 27734286]
[92]
Paulson, D.S. Handbook of topical antimicrobials: Industrial applications in consumer products and pharmaceuticals, 1st Ed; CRC Press, 2002.
[http://dx.doi.org/10.1201/9780203909256]
[93]
Warnes, S.L.; Little, Z.R.; Keevil, C.W. Human coronavirus 229E remains infectious on common touch surface materials. MBio, 2015, 6(6), e01697-e15.
[http://dx.doi.org/10.1128/mBio.01697-15] [PMID: 26556276]
[94]
Jamee, R.; Siddique, R. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. Eur. J. Microbiol. Immunol. (Bp.), 2019, 9(4), 114-118.
[http://dx.doi.org/10.1556/1886.2019.00018] [PMID: 31934362]
[95]
Kunz, A.; Peralta-Zamora, P.; Moraes, S.G.d.; Durán, N. New tendencies on textile effluent treatment. Quim. Nova, 2002, 25(1), 78-82.
[http://dx.doi.org/10.1590/S0100-40422002000100014]
[96]
Hassaan, M.A.; El Nemr, A.; Hassaan, A. Health and environmental impacts of dyes: Mini review. AJESE, 2017, 1(3), 64-67.
[97]
de Souza, C.R.L.; Peralta-Zamora, P. Degradation of reactive dyes by the metallic iron/hydrogen peroxide system. Quim. Nova, 2005, 28(2), 226-228.
[98]
Chequer, F.D.; De Oliveira, G.R.; Ferraz, E.A.; Cardoso, J.C.; Zanoni, M.B.; de Oliveira, D.P. Textile dyes: dyeing process and environmental impact In: Eco-friendly textile dyeing and finishing; InTech Open; , 2013; 6, pp. 151-176.
[99]
Zanoni, M.V.B.; Carneiro, P.A. O descarte dos corantes têxteis. Ciência hoje, 2001, 29(174), 61-64.
[100]
Bessant, J.; Tidd, J. Inovação e empreendedorismo; Bookman Editora, 2009.
[101]
Cegarra, J. The state of the art in textile biotechnology. J. Soc. Dyers Colour., 1996, 112(11), 326-329.
[http://dx.doi.org/10.1111/j.1478-4408.1996.tb01767.x]
[102]
Cunha, R. PEREIRA JR, N.; ANDRADE, C., Aplicação de enzimas em processos industriais têxteis. Monografia de Pós-Graduação;; EQ/UFRJ: Rio de Janeiro, 1999.
[103]
Saratale, R.G.; Saratale, G.D.; Chang, J.S.; Govindwar, S.P. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng., 2011, 42(1), 138-157.
[http://dx.doi.org/10.1016/j.jtice.2010.06.006]
[104]
Singh, S.N. Microbial degradation of synthetic dyes in wastewaters; Springer, 2014.
[105]
Jafari, N.; Soudi, M.R.; Kasra-Kermanshahi, R. Biodegradation perspectives of azo dyes by yeasts. Microbiology, 2014, 83(5), 484-497.
[http://dx.doi.org/10.1134/S0026261714050130]
[106]
Sugasini, A.; Rajagopal, K.; Banu, N. A study on biosorption potential of Aspergillus sp. of tannery effluent. Adv. Biosci. Biotechnol., 2014, 5(10), 853.
[http://dx.doi.org/10.4236/abb.2014.510100]
[107]
Wuhrmann, K.; Mechsner, K.; Kappeler, T. Investigation on rate-Determining factors in the microbial reduction of azo dyes. Eur. J. Appl. Microbiol., 1980, 9(4), 325-338.
[108]
Chang, J-S.; Chou, C.; Lin, Y-C.; Lin, P-J.; Ho, J-Y.; Hu, T.L. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res., 2001, 35(12), 2841-2850.
[http://dx.doi.org/10.1016/S0043-1354(00)00581-9] [PMID: 11471684]
[109]
Chen, K-C.; Huang, W-T.; Wu, J-Y.; Houng, J-Y. Microbial decolorization of azo dyes by Proteus mirabilis. J. Ind. Microbiol. Biotechnol., 1999, 23(1), 686-690.
[http://dx.doi.org/10.1038/sj.jim.2900689] [PMID: 10455502]
[110]
Kalyani, D.C.; Telke, A.A.; Dhanve, R.S.; Jadhav, J.P. Ecofriendly biodegradation and detoxification of reactive red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J. Hazard. Mater., 2009, 163(2-3), 735-742.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.020] [PMID: 18718713]
[111]
Lin, J.; Zhang, X.; Li, Z.; Lei, L. Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour. Technol., 2010, 101(1), 34-40.
[http://dx.doi.org/10.1016/j.biortech.2009.07.037] [PMID: 19713103]
[112]
Chandra, R. Environmental waste management; CRC Press, 2016.
[http://dx.doi.org/10.1201/b19243]
[113]
CHAVAN, R. In: Fibras ecológicas e têxteis ambientalmente corretos; II Simpósio Internacional de Engenharia Têxtil e XXI Congresso Nacional dos Técnicos Têxteis, Natal–RN , 2004.
[114]
Muchinski, C.H.; Graduando, P.; Vieira-Sena, T.; Teixeira, C.; Perotoni, T.; Graduanda, P.; Costa, A.I. Fibras têxteis sustentáveis: Algodão colorido e orgânico, fibras de bambu, soja e milho; Iniciação-Revista de Iniciação Científica, Tecnológica e Artista, 2015, p. 1.
[115]
Wu, M.; Ma, B.; Pan, T.; Chen, S.; Sun, J. Silver‐nanoparticle‐colored cotton fabrics with tunable colors and durable antibacterial and self‐healing superhydrophobic properties. Adv. Funct. Mater., 2016, 26(4), 569-576.
[http://dx.doi.org/10.1002/adfm.201504197]
[116]
Vreeland, M. The revival of colored cotton. Sci. Am., 1999, 280(4), 112-118.
[http://dx.doi.org/10.1038/scientificamerican0499-112]
[117]
Jafari-Kiyan, A.; Karimi, L.; Davodiroknabadi, A. Producing colored cotton fabrics with functional properties by combining silver nano-particles with nano titanium dioxide. Cellulose, 2017, 24(7), 3083-3094.
[http://dx.doi.org/10.1007/s10570-017-1308-8]
[118]
Mishra, R.; Behera, B.; Pada Pal, B. Novelty of bamboo fabric. J. Textil. Inst., 2012, 103(3), 320-329.
[119]
Li-Wei, Z.; Li-Min, S.; Jian-Xin, J.; Zhong-Kai, Y.; Ping, C. Studies on antibacterial properties of the natural bamboo fabric based on FZ/T 73023-2006. J. Donghua Univ., 2008, 4, 401-404.
[120]
Afrin, T.; Tsuzuki, T.; Kanwar, R.; Wang, X. The origin of the antibacterial property of bamboo. J. Textil. Inst., 2012, 103(8), 844-849.
[http://dx.doi.org/10.1080/00405000.2011.614742]
[121]
Rijavec, T.; Zupin, Ž. Soybean Protein Fibres (SPF); INTECH Open Access Publisher, 2011.
[http://dx.doi.org/10.5772/19614]
[122]
Kurian, J.V. A new polymer platform for the future-Sorona® from corn derived 1, 3-propanediol. J. Polym. Environ., 2005, 13(2), 159-167.
[http://dx.doi.org/10.1007/s10924-005-2947-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy