Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Applications of Genome Editing Tools in Stem Cells Towards Regenerative Medicine: An Update

Author(s): Wilfried A. Kues, Dharmendra Kumar , Naresh L. Selokar and Thirumala Rao Talluri*

Volume 17, Issue 3, 2022

Published on: 29 December, 2021

Page: [267 - 279] Pages: 13

DOI: 10.2174/1574888X16666211124095527

Price: $65

Abstract

Precise and site-specific genome editing through application of emerging and modern gene engineering techniques, namely zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/ Cas9) have swiftly progressed the application and use of the stem cell technology in the sphere of in-vitro disease modelling and regenerative medicine. Genome editing tools facilitate the manipulation of genes in various types of cells with target-specific nucleases. These tools aid in elucidating the genetics and etiology behind different diseases and have immense promise as novel therapeutics for correcting the genetic mutations, making alterations, and curing diseases permanently, which are not responding and resistant to traditional therapies. These genome engineering tools have evolved in the field of biomedical research and have also been shown to have a significant improvement in clinical trials. However, their widespread use in the research revealed potential safety issues, which need to be addressed before implementing such techniques for clinical purposes. Significant and valiant attempts need to be made in order to surpass those hurdles. The current review outlines the advancements of several genome engineering tools and describes suitable strategies for their application towards regenerative medicine.

Keywords: Designer nuclease, pluripotent stem cell, genome editing, CRISPR/Cas9, regenerative medicine, zinc finger nucleases (ZFNs).

[1]
Joung JK, Sander JD. TALENs: A widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14(1): 49-55.
[http://dx.doi.org/10.1038/nrm3486] [PMID: 23169466]
[2]
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11(9): 636-46.
[http://dx.doi.org/10.1038/nrg2842] [PMID: 20717154]
[3]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[4]
Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010; 79: 181-211.
[http://dx.doi.org/10.1146/annurev.biochem.052308.093131] [PMID: 20192759]
[5]
Yang H, Ren S, Yu S, et al. Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int J Mol Sci 2020; 21(18): 6461.
[http://dx.doi.org/10.3390/ijms21186461] [PMID: 32899704]
[6]
Su T, Liu F, Gu P, et al. CRISPR-Cas9 assisted non-homologous end-joining strategy for one-step engineering of bacterial genome. Sci Rep 2016; 6: 37895.
[http://dx.doi.org/10.1038/srep37895] [PMID: 27883076]
[7]
Rodgers K, McVey M. Error-prone repair of DNA double-strand breaks. J Cell Physiol 2016; 231(1): 15-24.
[http://dx.doi.org/10.1002/jcp.25053] [PMID: 26033759]
[8]
Heidenreich E, Novotny R, Kneidinger B, Holzmann V, Wintersberger U. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J 2003; 22(9): 2274-83.
[http://dx.doi.org/10.1093/emboj/cdg203] [PMID: 12727893]
[9]
Benabdellah K, Sánchez-Hernández S, Aguilar-González A, et al. Genome-edited adult stem cells: Next-generation advanced therapy medicinal products. Stem Cells Transl Med 2020; 9(6): 674-85.
[http://dx.doi.org/10.1002/sctm.19-0338] [PMID: 32141715]
[10]
Liu M, Rehman S, Tang X, et al. Methodologies for improving HDR efficiency. Front Genet 2019; 9: 691.
[http://dx.doi.org/10.3389/fgene.2018.00691] [PMID: 30687381]
[11]
Yeh CD, Richardson CD, Corn JE. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 2019; 21(12): 1468-78.
[http://dx.doi.org/10.1038/s41556-019-0425-z] [PMID: 31792376]
[12]
Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015; 21(2): 121-31.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[13]
Aslesh T, Erkut E, Yokota T. Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing. Expert Opin Biol Ther 2021; 21(8): 1049-61.
[http://dx.doi.org/10.1080/14712598.2021.1872539] [PMID: 33401973]
[14]
Qi Y. Genome editing is revolutionizing biology. Cell Biosci 2017; 7: 35.
[http://dx.doi.org/10.1186/s13578-017-0162-6]
[15]
Byrne SM, Mali P, Church GM. Genome editing in human stem cells. Methods Enzymol 2014; 546: 119-38.
[http://dx.doi.org/10.1016/B978-0-12-801185-0.00006-4] [PMID: 25398338]
[16]
Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim J-S, Schwarzbach E, Lee B. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther 2020; 209: 107501.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107501] [PMID: 32061705]
[17]
Talluri TR, Kumar D, Glage S, et al. Non-viral reprogramming of fibroblasts into induced pluripotent stem. Biochem Biophys Res Commun 2014; 450(1): 581-7.
[18]
Hoke NN, Salloum FN, Kass DA, Das A, Kukreja RC. Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells 2012; 30(2): 326-35.
[http://dx.doi.org/10.1002/stem.789] [PMID: 22102597]
[19]
Lee J, Bayarsaikhan D, Arivazhagan R, et al. CRISPR/Cas9 edited sRAGE-MSCs protect neuronal death in Parkinson’s disease model. Int J Stem Cells 2019; 12(1): 114-24.
[http://dx.doi.org/10.15283/ijsc18110] [PMID: 30836725]
[20]
Liu X, Wu Y, Li Z, et al. Targeting of the human coagulation factor IX gene at rDNA locus of human embryonic stem cells. PLoS One 2012; 7(5): e37071.
[http://dx.doi.org/10.1371/journal.pone.0037071] [PMID: 22615895]
[21]
Kuijk EW, Chuva de Sousa Lopes SM, Geijsen N, Macklon N, Roelen BA. The different shades of mammalian pluripotent stem cells. Hum Reprod Update 2011; 17(2): 254-71.
[http://dx.doi.org/10.1093/humupd/dmq035] [PMID: 20705693]
[22]
Wu J, Izpisua Belmonte JC. Stem cells: A designer’s guide to pluripotency. Nature 2014; 516(7530): 172-3.
[http://dx.doi.org/10.1038/516172a] [PMID: 25503227]
[23]
Leventhal A, Chen G, Negro A, Boehm M. The benefits and risks of stem cell technology. Oral Dis 2012; 18(3): 217-22.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01870.x] [PMID: 22093062]
[24]
Crisostomo PR, Wang M, Wairiuko GM, et al. High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock 2006; 26(6): 575-80.
[http://dx.doi.org/10.1097/01.shk.0000235087.45798.93] [PMID: 17117132]
[25]
Ismail A. Stem cell research and ethics: An update. Oman Med J 2015; 30(1): 1-2.
[http://dx.doi.org/10.5001/omj.2015.01] [PMID: 25829993]
[26]
Dvash T, Ben-Yosef D, Eiges R. Human embryonic stem cells as a powerful tool for studying human embryogenesis. Pediatr Res 2006; 60(2): 111-7.
[http://dx.doi.org/10.1203/01.pdr.0000228349.24676.17] [PMID: 16864688]
[27]
Eguizabal C, Aran B, Chuva de Sousa Lopes SM, et al. Two decades of embryonic stem cells: A historical overview. Hum Reprod Open 2019; 2019(1): hoy024.
[http://dx.doi.org/10.1093/hropen/hoy024] [PMID: 30895264]
[28]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[29]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 2006; 126: 663-76.
[30]
Narsinh KH, Sun N, Sanchez-Freire V, et al. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest 2011; 121(3): 1217-21.
[http://dx.doi.org/10.1172/JCI44635] [PMID: 21317531]
[31]
Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ 2018; 6: e4370.
[http://dx.doi.org/10.7717/peerj.4370] [PMID: 29770269]
[32]
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12(7): 527-44.
[http://dx.doi.org/10.4252/wjsc.v12.i7.527] [PMID: 32843912]
[33]
Hoban MD, Cost GJ, Mendel MC, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 2015; 125(17): 2597-604.
[http://dx.doi.org/10.1182/blood-2014-12-615948] [PMID: 25733580]
[34]
Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28(8): 839-47.
[http://dx.doi.org/10.1038/nbt.1663] [PMID: 20601939]
[35]
Mandal PK, Ferreira LM, Collins R, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 2014; 15(5): 643-52.
[http://dx.doi.org/10.1016/j.stem.2014.10.004] [PMID: 25517468]
[36]
Meng D, Han S, Jeong IS, Kim S-W. Interleukin 10-secreting MSCs via TALEN-mediated gene editing attenuates left ventricular remodeling after myocardial infarction. Cell Physiol Biochem 2019; 52(4): 728-41.
[http://dx.doi.org/10.33594/000000051] [PMID: 30921510]
[37]
Pavel-Dinu M, Wiebking V, Dejene BT, et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 2019; 10: 1-15.
[http://dx.doi.org/10.1038/s41467-019-13620-5]
[38]
Shim G, Kim D, Park GT, Jin H, Suh S-K, Oh Y-K. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 2017; 38(6): 738-53.
[http://dx.doi.org/10.1038/aps.2017.2] [PMID: 28392568]
[39]
Petersen B. Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 2017; 52(Suppl. 3): 4-13.
[http://dx.doi.org/10.1111/rda.13012] [PMID: 28815851]
[40]
Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH. Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther 2008; 16(4): 707-17.
[http://dx.doi.org/10.1038/mt.2008.20] [PMID: 18334988]
[41]
Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011; 188(4): 773-82.
[http://dx.doi.org/10.1534/genetics.111.131433] [PMID: 21828278]
[42]
Bao X, Palecek S. Genetic engineering in stem cell biomanufacturing. In: Stem Cell Manufacturing. Elsevier 2016; pp. 1-25.
[43]
Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-cas-mediated genome editing. Cells 2020; 9(7): 1608.
[http://dx.doi.org/10.3390/cells9071608] [PMID: 32630835]
[44]
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014; 124(10): 4154-61.
[http://dx.doi.org/10.1172/JCI72992] [PMID: 25271723]
[45]
Kim M-S, Kini AG. Engineering and application of zinc finger proteins and TALEs for biomedical research. Mol Cells 2017; 40(8): 533-41.
[http://dx.doi.org/10.14348/molcells.2017.0139] [PMID: 28835021]
[46]
Liu J, Gaj T, Wallen MC, Barbas CF III. Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mol Ther Nucleic Acids 2015; 4: e232.
[http://dx.doi.org/10.1038/mtna.2015.6] [PMID: 25756962]
[47]
Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25(7): 778-85.
[http://dx.doi.org/10.1038/nbt1319] [PMID: 17603475]
[48]
Lee HB, Sebo ZL, Peng Y, Guo Y. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster. Cell Logist 2015; 5(1): e1023423.
[http://dx.doi.org/10.1080/21592799.2015.1023423] [PMID: 26196022]
[49]
Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA. Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res 2011; 39(1): 381-92.
[http://dx.doi.org/10.1093/nar/gkq787] [PMID: 20843781]
[50]
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5(1): 1-23.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[51]
Baker M. Method of the Year 2011. Nat Methods 2012; 9: 1.
[52]
Boch J, Bonas U, Lahaye T. TAL effectors-pathogen strategies and plant resistance engineering. New Phytol 2014; 204(4): 823-32.
[http://dx.doi.org/10.1111/nph.13015] [PMID: 25539004]
[53]
Jia J, Jin Y, Bian T, et al. Bacterial delivery of TALEN proteins for human genome editing. PLoS One 2014; 9(3): e91547.
[http://dx.doi.org/10.1371/journal.pone.0091547] [PMID: 24618838]
[54]
Chandrasekaran AP, Song M, Ramakrishna S. Genome editing: A robust technology for human stem cells. Cell Mol Life Sci 2017; 74(18): 3335-46.
[http://dx.doi.org/10.1007/s00018-017-2522-0] [PMID: 28405721]
[55]
Mak AN-S, Bradley P, Bogdanove AJ, Stoddard BL. TAL effectors: function, structure, engineering and applications. Curr Opin Struct Biol 2013; 23(1): 93-9.
[http://dx.doi.org/10.1016/j.sbi.2012.11.001] [PMID: 23265998]
[56]
Nemudryi A, Valetdinova K, Medvedev S, Zakian S. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae (англоязычная версия) 2014; 6: 19-40.
[57]
Choi SM, Kim Y, Shim JS, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 2013; 57(6): 2458-68.
[http://dx.doi.org/10.1002/hep.26237] [PMID: 23325555]
[58]
Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011; 29(8): 731-4.
[http://dx.doi.org/10.1038/nbt.1927] [PMID: 21738127]
[59]
Kim Y, Kweon J, Kim J-S. TALENs and ZFNs are associated with different mutation signatures. Nat Methods 2013; 10(3): 185-5.
[http://dx.doi.org/10.1038/nmeth.2364] [PMID: 23396284]
[60]
Doyle EL, Booher NJ, Standage DS, et al. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: Tools for TAL effector design and target prediction. Nucleic Acids Res 2012; 40(Web Server issue): W117-22.
[http://dx.doi.org/10.1093/nar/gks608] [PMID: 22693217]
[61]
Suzuki K, Yu C, Qu J, et al. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones. Cell Stem Cell 2014; 15(1): 31-6.
[http://dx.doi.org/10.1016/j.stem.2014.06.016] [PMID: 24996168]
[62]
Wang X, Wang Y, Wu X, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 2015; 33(2): 175-8.
[http://dx.doi.org/10.1038/nbt.3127] [PMID: 25599175]
[63]
Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011; 29(2): 143-8.
[http://dx.doi.org/10.1038/nbt.1755] [PMID: 21179091]
[64]
Mahfouz MM, Li L, Piatek M, et al. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 2012; 78(3): 311-21.
[http://dx.doi.org/10.1007/s11103-011-9866-x] [PMID: 22167390]
[65]
Guha TK, Wai A, Hausner G. Programmable genome editing tools and their regulation for efficient genome engineering. Comput Struct Biotechnol J 2017; 15: 146-60.
[http://dx.doi.org/10.1016/j.csbj.2016.12.006] [PMID: 28179977]
[66]
Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15(5): 321-34.
[http://dx.doi.org/10.1038/nrg3686] [PMID: 24690881]
[67]
Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39(12): e82-2.
[http://dx.doi.org/10.1093/nar/gkr218] [PMID: 21493687]
[68]
Certo MT, Morgan RA. Salient features of endonuclease platforms for therapeutic genome editing. Mol Ther 2016; 24(3): 422-9.
[http://dx.doi.org/10.1038/mt.2016.21] [PMID: 26796671]
[69]
2017. National Academies of Sciences E, Medicine. Human genome editing: Science, Ethics, and Governance. 2017. Available from: www.rki-i.com/cell_reg2003/261623.pdf
[70]
Deshpande K, Vyas A, Balakrishnan A, Vyas D. Clustered regularly interspaced short palindromic repeats/Cas9 genetic engineering: robotic genetic surgery. Am J Robot Surg 2015; 2(1): 49-52.
[http://dx.doi.org/10.1166/ajrs.2015.1023] [PMID: 27453936]
[71]
Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 2015; 117: 119-28.
[http://dx.doi.org/10.1016/j.biochi.2015.03.025] [PMID: 25868999]
[72]
Kato-Inui T, Takahashi G, Hsu S, Miyaoka Y. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Res 2018; 46(9): 4677-88.
[http://dx.doi.org/10.1093/nar/gky264] [PMID: 29672770]
[73]
Zhen S, Hua L, Liu YH, et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 2015; 22(5): 404-12.
[http://dx.doi.org/10.1038/gt.2015.2] [PMID: 25652100]
[74]
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169(12): 5429-33.
[http://dx.doi.org/10.1128/jb.169.12.5429-5433.1987] [PMID: 3316184]
[75]
Mojica FJ, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 2000; 36(1): 244-6.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01838.x] [PMID: 10760181]
[76]
Jansen R, Embden JDV, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43(6): 1565-75.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[77]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[78]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-21.
[79]
Luo J. CRISPR/Cas9: From genome engineering to cancer drug discovery. Trends Cancer 2016; 2(6): 313-24.
[http://dx.doi.org/10.1016/j.trecan.2016.05.001] [PMID: 28603775]
[80]
Tschaharganeh DF, Lowe SW, Garippa RJ, Livshits G. Using CRISPR/Cas to study gene function and model disease in vivo. FEBS J 2016; 283(17): 3194-203.
[http://dx.doi.org/10.1111/febs.13750] [PMID: 27149548]
[81]
Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta 2016; 1863(9): 2333-44.
[http://dx.doi.org/10.1016/j.bbamcr.2016.06.009] [PMID: 27350235]
[82]
Andrey G, Spielmann M. CRISPR/Cas9 genome editing in embryonic stem cells. Enhancer RNAs 2017; 221-34.
[83]
Moon SB, Kim DY, Ko JH, Kim YS. Recent advances in the CRISPR genome editing tool set. Exp Mol Med 2019; 51(11): 1-11.
[http://dx.doi.org/10.1038/s12276-019-0339-7] [PMID: 31685795]
[84]
Zafar I, Singh S, Kumar J. Genome editing by programmable nucleases and their applications in livestock species. J Livestock Sci 2019; 10: 32-47.
[http://dx.doi.org/10.33259/JLivestSci.2019.32-47]
[85]
Garneau JE, Dupuis M-È, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320): 67-71.
[http://dx.doi.org/10.1038/nature09523] [PMID: 21048762]
[86]
Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 2014; 11(4): 399-402.
[http://dx.doi.org/10.1038/nmeth.2857] [PMID: 24584192]
[87]
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013; 31(9): 827-32.
[http://dx.doi.org/10.1038/nbt.2647] [PMID: 23873081]
[88]
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442-51.
[http://dx.doi.org/10.1016/j.cell.2013.06.044] [PMID: 23849981]
[89]
Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 2016; 7: 13274.
[http://dx.doi.org/10.1038/ncomms13274] [PMID: 27848933]
[90]
Kang X, He W, Huang Y, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 2016; 33(5): 581-8.
[http://dx.doi.org/10.1007/s10815-016-0710-8] [PMID: 27052831]
[91]
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964] [PMID: 29801422]
[92]
Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014; 32(6): 577-82.
[http://dx.doi.org/10.1038/nbt.2909] [PMID: 24770324]
[93]
Havlicek S, Shen Y, Alpagu Y, et al. Re-engineered RNA-guided FokI-nucleases for improved genome editing in human cells. Mol Ther 2017; 25(2): 342-55.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.007] [PMID: 28153087]
[94]
Saifaldeen M, Al-Ansari DE, Ramotar D, Aouida M. CRISPR FokI dead Cas9 system: Principles and applications in genome engineering. Cells 2020; 9(11): 2518.
[http://dx.doi.org/10.3390/cells9112518] [PMID: 33233344]
[95]
Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 2014; 32(6): 569-76.
[http://dx.doi.org/10.1038/nbt.2908] [PMID: 24770325]
[96]
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3): 279-84.
[http://dx.doi.org/10.1038/nbt.2808] [PMID: 24463574]
[97]
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016; 529(7587): 490-5.
[http://dx.doi.org/10.1038/nature16526] [PMID: 26735016]
[98]
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 351(6268): 84-8.
[http://dx.doi.org/10.1126/science.aad5227] [PMID: 26628643]
[99]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[100]
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163(3): 759-71.
[http://dx.doi.org/10.1016/j.cell.2015.09.038] [PMID: 26422227]
[101]
Li S-Y, Zhao G-P, Wang J. C-Brick: A new standard for assembly of biological parts using Cpf1. ACS Synth Biol 2016; 5(12): 1383-8.
[http://dx.doi.org/10.1021/acssynbio.6b00114] [PMID: 27294364]
[102]
Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016; 532(7600): 517-21.
[http://dx.doi.org/10.1038/nature17945] [PMID: 27096362]
[103]
Kim D, Kim J, Hur JK, Been KW, Yoon S-H, Kim J-S. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 2016; 34(8): 863-8.
[http://dx.doi.org/10.1038/nbt.3609] [PMID: 27272384]
[104]
Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91.
[http://dx.doi.org/10.1038/nature14299] [PMID: 25830891]
[105]
López-Manzaneda S, Fañanas-Baquero S, Nieto-Romero V, et al. Gene Editing in Adult Hematopoietic Stem Cells. In: Modern Tools for Genetic Engineering. Intechopen 2016; p. 97.
[http://dx.doi.org/10.5772/62383]
[106]
Ashmore-Harris C, Fruhwirth GO. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin Transl Med 2020; 9(1): 15.
[http://dx.doi.org/10.1186/s40169-020-0268-z] [PMID: 32034584]
[107]
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901-10.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[108]
Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol 2019; 9: 69.
[http://dx.doi.org/10.3389/fcimb.2019.00069] [PMID: 30968001]
[109]
Zou J, Mali P, Huang X, Dowey SN, Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 2011; 118(17): 4599-608.
[http://dx.doi.org/10.1182/blood-2011-02-335554] [PMID: 21881051]
[110]
Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009; 27(9): 851-7.
[http://dx.doi.org/10.1038/nbt.1562] [PMID: 19680244]
[111]
Yusa K, Rashid ST, Strick-Marchand H, et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 2011; 478(7369): 391-4.
[http://dx.doi.org/10.1038/nature10424] [PMID: 21993621]
[112]
Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids 2019; 16: 326-34.
[http://dx.doi.org/10.1016/j.omtn.2019.02.027] [PMID: 30965277]
[113]
Reddy P, Vilella F, Izpisua Belmonte JC, Simón C. Use of customizable nucleases for gene editing and other novel applications. Genes (Basel) 2020; 11(9): 976.
[http://dx.doi.org/10.3390/genes11090976] [PMID: 32842577]
[114]
Chen K-Y, Knoepfler PS. To CRISPR and beyond: The evolution of genome editing in stem cells. Regen Med 2016; 11(8): 801-16.
[http://dx.doi.org/10.2217/rme-2016-0107] [PMID: 27905217]
[115]
Ma N, Liao B, Zhang H, et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J Biol Chem 2013; 288(48): 34671-9.
[http://dx.doi.org/10.1074/jbc.M113.496174] [PMID: 24155235]
[116]
Maetzel D, Sarkar S, Wang H, et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports 2014; 2(6): 866-80.
[http://dx.doi.org/10.1016/j.stemcr.2014.03.014] [PMID: 24936472]
[117]
Lehmann J, Seebode C, Emmert S. Research on genodermatoses using novel genome-editing tools. JDDG. J Dtsch Dermatol Ges 2017; 15: 783-9.
[118]
Czerwińska P, Mazurek S, Kołodziejczak I, Wiznerowicz M. Gene delivery methods and genome editing of human pluripotent stem cells. Rep Pract Oncol Radiother 2019; 24(2): 180-7.
[http://dx.doi.org/10.1016/j.rpor.2019.01.007] [PMID: 30820192]
[119]
Yahata N, Matsumoto Y, Omi M, Yamamoto N, Hata R. TALEN- mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m.13513G>A mutation. Sci Rep 2017; 7(1): 15557.
[http://dx.doi.org/10.1038/s41598-017-15871-y] [PMID: 29138463]
[120]
Yang Y, Wu H, Kang X, et al. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell 2018; 9(3): 283-97.
[http://dx.doi.org/10.1007/s13238-017-0499-y] [PMID: 29318513]
[121]
Tucker BA, Park I-H, Qi SD, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 2011; 6(4): e18992.
[http://dx.doi.org/10.1371/journal.pone.0018992] [PMID: 21559507]
[122]
Cai Y, Crowther J, Pastor T, et al. Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism. Cancer Cell 2016; 29(5): 751-66.
[http://dx.doi.org/10.1016/j.ccell.2016.04.003] [PMID: 27165746]
[123]
Xiao L, Wang Y, Liang W, et al. LRH-1 drives hepatocellular carcinoma partially through induction of c-myc and cyclin E1, and suppression of p21. Cancer Manag Res 2018; 10: 2389-400.
[http://dx.doi.org/10.2147/CMAR.S162887] [PMID: 30122988]
[124]
Park C-Y, Kim J, Kweon J, et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci USA 2014; 111(25): 9253-8.
[http://dx.doi.org/10.1073/pnas.1323941111] [PMID: 24927536]
[125]
Wu Y, Hu Z, Li Z, et al. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Sci Rep 2016; 6: 18865.
[http://dx.doi.org/10.1038/srep18865] [PMID: 26743572]
[126]
Osborn MJ, Starker CG, McElroy AN, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther 2013; 21(6): 1151-9.
[http://dx.doi.org/10.1038/mt.2013.56] [PMID: 23546300]
[127]
Menon T, Firth AL, Scripture-Adams DD, et al. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell 2015; 16(4): 367-72.
[http://dx.doi.org/10.1016/j.stem.2015.02.005] [PMID: 25772073]
[128]
Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5): 363-72.
[http://dx.doi.org/10.1007/s13238-015-0153-5] [PMID: 25894090]
[129]
Dewitt MA, Magis W, Bray NL, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science translational medicine 2016; 8: 360ra134.
[130]
Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 2014; 32(9): 941-6.
[http://dx.doi.org/10.1038/nbt.2951] [PMID: 24952903]
[131]
Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 2014; 124(17): 2705-12.
[http://dx.doi.org/10.1182/blood-2014-06-582809] [PMID: 25224413]
[132]
Magis W, Dewitt MA, Wyman SK, et al. In vivo selection for corrected ß-globin alleles after CRISPR/Cas9 editing in human sickle hematopoietic stem cells enhances therapeutic potential. bioRxiv 2018; 2018: 432716.
[133]
Bak RO, Dever DP, Reinisch A, Cruz Hernandez D, Majeti R, Porteus MH. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. eLife 2017; 6: e27873.
[http://dx.doi.org/10.7554/eLife.27873] [PMID: 28956530]
[134]
Zhang Y, Yin C, Zhang T, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 2015; 5: 16277.
[http://dx.doi.org/10.1038/srep16277] [PMID: 26538064]
[135]
Schellenberg GD, Bird TD, Wijsman EM, et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 1992; 258(5082): 668-71.
[http://dx.doi.org/10.1126/science.1411576] [PMID: 1411576]
[136]
Saito A, Ooki A, Nakamura T, et al. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model. Stem Cell Res Ther 2018; 9(1): 12.
[http://dx.doi.org/10.1186/s13287-017-0754-4] [PMID: 29357927]
[137]
Wang G, McCain ML, Yang L, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 2014; 20(6): 616-23.
[http://dx.doi.org/10.1038/nm.3545] [PMID: 24813252]
[138]
Balboa D, Saarimäki-Vire J, Borshagovski D, et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. eLife 2018; 7: e38519.
[http://dx.doi.org/10.7554/eLife.38519] [PMID: 30412052]
[139]
Park C-Y, Kim DH, Son JS, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015; 17(2): 213-20.
[http://dx.doi.org/10.1016/j.stem.2015.07.001] [PMID: 26212079]
[140]
Luo Y, Xu X, An X, Sun X, Wang S, Zhu D. Targeted inhibition of the miR-199a/214 cluster by CRISPR interference augments the tumor tropism of human induced pluripotent stem cell-derived neural stem cells under hypoxic condition. Stem cells international 2016; 2016: 3598542.
[141]
Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR- Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 2016; 18(4): 533-40.
[http://dx.doi.org/10.1016/j.stem.2016.01.021] [PMID: 26877224]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy