Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Research Article

The Association between Parameters of Erythrocytes Morphology and Thrombophilia-related Mutations

Author(s): Ozlem Oz* and Ataman Gonel

Volume 17, Issue 1, 2022

Published on: 21 January, 2022

Page: [40 - 45] Pages: 6

DOI: 10.2174/1574887116666211123092603

Price: $65

Abstract

Background: Alterations in erythrocyte morphology parameters have been identified and associated with hematological disorders and other chronic and cardiovascular diseases. Erythrocytes are abundant in thrombus content. Their hemoglobin density and differences in the ratio of macrocytic and microcytic cells may be associated with hypercoagulopathy in those with a history of thrombosis.

Objective: This cross-sectional study aimed to investigate the relationship between hemogram parameters and thrombophilia genetic parameters.

Methods: A total of 55 patients whose thrombophilia panel was reviewed due to the diagnosis of thrombosis were included in the study. % MIC, % MAC, % HPO, % HPR and all hemogram parameters were measured using Abbott Alinity HQ. Prothrombin G20210A, MTHFR C677T, MTHFR A1298C, Factor V Leiden G169A and PAI-1 4G/5G mutations were studied using Real Time- PCR.

Results: The MTHFR C677T mutation was detected in 58.2% of the patients. The Factor V Leiden mutation was detected in 5.5% of the patients. The MTHFR A1298C mutation was detected in 58.2%, The PAI mutation was detected in 74.5%, and the Factor 13 mutation was detected in 29% of the patients. Prothrombin G20210A mutation was not detected in any of the patients. Red blood cell (RBC) and hematocrit (Hct) values were higher in Factor 13 mutant group; the Hgb and Htc values were higher in the MTHFR C677T mutant group. The plateletcrit (PCT) and platelet (PLT) values were lower in MTHFR C677T mutant group.

Conclusion: The MTHFR C677T and Factor 13 mutations may be associated with high Hct and Hgb, RBC, Hgb, and Htc values, respectively and coagulation tendency in patients with a history of thrombosis.

Keywords: MTHFR C677T, factor 13, erythrocyte morphology, thrombophilia, mutation, arterial thrombosis, venous thromboembolism.

Graphical Abstract

[1]
Faes C, Ilich A, Sotiaux A, et al. Red blood cells modulate structure and dynamics of venous clot formation in sickle cell disease. Blood 2019; 133(23): 2529-41.
[http://dx.doi.org/10.1182/blood.2019000424] [PMID: 30952675]
[2]
Schilling RF. Risks and benefits of splenectomy versus no splenectomy for hereditary spherocytosis- a personal view. Br J Haematol 2009; 145(6): 728-32.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07694.x] [PMID: 19388926]
[3]
Cappellini MD, Robbiolo L, Bottasso BM, Coppola R, Fiorelli G, Mannucci AP. Venous thromboembolism and hypercoagulability in splenectomized patients with thalassaemia intermedia. Br J Haematol 2000; 111(2): 467-73.
[http://dx.doi.org/10.1046/j.1365-2141.2000.02376.x] [PMID: 11122086]
[4]
Meppiel E, Crassard I, Latour RP, et al. Cerebral venous thrombosis in paroxysmal nocturnal hemoglobinuria: a series of 15 cases and review of the literature. Medicine (Baltimore) 2015; 94(1): e362.
[http://dx.doi.org/10.1097/MD.0000000000000362] [PMID: 25569655]
[5]
Cauthen CA, Tong W, Jain A, Tang WH. Progressive rise in red cell distribution width is associated with disease progression in ambulatory patients with chronic heart failure. J Card Fail 2012; 18(2): 146-52.
[http://dx.doi.org/10.1016/j.cardfail.2011.10.013] [PMID: 22300783]
[6]
Hu Z, Sun Y, Wang Q, et al. Red blood cell distribution width is a potential prognostic index for liver disease. Clin Chem Lab Med 2013; 51(7): 1403-8.
[http://dx.doi.org/10.1515/cclm-2012-0704] [PMID: 23314558]
[7]
Lippi G, Plebani M. Red blood cell distribution width (RDW) and human pathology. One size fits all. Clin Chem Lab Med 2014; 52(9): 1247-9.
[http://dx.doi.org/10.1515/cclm-2014-0585] [PMID: 24945432]
[8]
Montagnana M, Cervellin G, Meschi T, Lippi G. The role of red blood cell distribution width in cardiovascular and thrombotic disorders. Clin Chem Lab Med 2011; 50(4): 635-41.
[http://dx.doi.org/10.1515/cclm.2011.831] [PMID: 22505527]
[9]
Parizadeh SM, Jafarzadeh-Esfehani R, Bahreyni A, et al. The diagnostic and prognostic value of red cell distribution width in cardiovascular disease; current status and prospective. Biofactors 2019; 45(4): 507-16.
[http://dx.doi.org/10.1002/biof.1518] [PMID: 31145514]
[10]
Kachel V. Sizing of cells by the electrical resistance pulse technique. In: Cell analysis. Catsimpoolas N. Boston: Springer 1982; pp. 195-331.
[http://dx.doi.org/10.1007/978-1-4684-4097-3_7]
[11]
Tatsumi N, Tsuda I, Furota A, Takubo T, Hayashi M, Matsumoto H. Principle of blood cell counter-development of electric impedance method. Sysmex J Int 1999; 9(1; SEAS SUM): 8-20.
[12]
Burch GE, Depasquale NP. The hematocrit in patients with myocardial infarction. JAMA 1962; 180(1): 62-3.
[http://dx.doi.org/10.1001/jama.1962.03050140065017b] [PMID: 13874710]
[13]
Sorlie PD, Garcia-Palmieri MR, Costas R Jr, Havlik RJ. Hematocrit and risk of coronary heart disease: the Puerto Rico Health Program. Am Heart J 1981; 101(4): 456-61.
[http://dx.doi.org/10.1016/0002-8703(81)90136-8] [PMID: 7211675]
[14]
Erikssen G, Thaulow E, Sandvik L, Stormorken H, Erikssen J. Haematocrit: A predictor of cardiovascular mortality? Surv Anesthesiol 1994; 38(5): 275.
[15]
Wannamethee G, Shaper AG, Whincup PH. Ischaemic heart disease: association with haematocrit in the British Regional Heart Study. J Epidemiol Community Health 1994; 48(2): 112-8.
[http://dx.doi.org/10.1136/jech.48.2.112] [PMID: 8189162]
[16]
Toss F, Nordström A, Nordström P. Association between hematocrit in late adolescence and subsequent myocardial infarction in Swedish men. Int J Cardiol 2013; 168(4): 3588-93.
[http://dx.doi.org/10.1016/j.ijcard.2013.05.065] [PMID: 23735337]
[17]
Sabatine MS, Morrow DA, Giugliano RP, et al. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation 2005; 111(16): 2042-9.
[http://dx.doi.org/10.1161/01.CIR.0000162477.70955.5F] [PMID: 15824203]
[18]
Gagnon DR, Zhang T-J, Brand FN, Kannel WB. Hematocrit and the risk of cardiovascular disease-the Framingham study: a 34-year follow-up. Am Heart J 1994; 127(3): 674-82.
[http://dx.doi.org/10.1016/0002-8703(94)90679-3] [PMID: 8122618]
[19]
Danesh J, Collins R, Peto R, Lowe GD. Haematocrit, viscosity, erythrocyte sedimentation rate: meta-analyses of prospective studies of coronary heart disease. Eur Heart J 2000; 21(7): 515-20.
[http://dx.doi.org/10.1053/euhj.1999.1699] [PMID: 10775006]
[20]
Brækkan SK, Mathiesen EB, Njølstad I, Wilsgaard T, Hansen J-B. Hematocrit and risk of venous thromboembolism in a general population. The Tromsø study. Haematologica 2010; 95(2): 270-5.
[21]
Byrnes JR, Wolberg AS. Red blood cells in thrombosis. Blood 2017; 130(16): 1795-9.
[http://dx.doi.org/10.1182/blood-2017-03-745349] [PMID: 28811305]
[22]
Spivak JL. Polycythemia vera: Myths, mechanisms, and management. Blood 2002; 100(13): 4272-90.
[http://dx.doi.org/10.1182/blood-2001-12-0349] [PMID: 12393615]
[23]
Policitemia GIS. Polycythemia vera: The natural history of 1213 patients followed for 20 years. Gruppo Italiano Studio Poli- citemia. Ann Intern Med 1995; 123(9): 656-64.
[http://dx.doi.org/10.7326/0003-4819-123-9-199511010-00003] [PMID: 7574220]
[24]
Pearson TC, Wetherley-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet 1978; 2(8102): 1219-22.
[http://dx.doi.org/10.1016/S0140-6736(78)92098-6] [PMID: 82733]
[25]
Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 2013; 368(1): 22-33.
[http://dx.doi.org/10.1056/NEJMoa1208500] [PMID: 23216616]
[26]
Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood 1998; 91(1): 288-94.
[PMID: 9414296]
[27]
Verduzco LA, Nathan DG. Sickle cell disease and stroke. Blood 2009; 114(25): 5117-25.
[http://dx.doi.org/10.1182/blood-2009-05-220921] [PMID: 19797523]
[28]
Devine DV, Kinney TR, Thomas PF, Rosse WF, Greenberg CS. Fragment D-dimer levels: an objective marker of vaso-occlusive crisis and other complications of sickle cell disease. Blood 1986; 68(1): 317-9.
[PMID: 3719103] [http://dx.doi.org/10.1182/blood.V68.1.317.bloodjournal681317]
[29]
Stein PD, Beemath A, Meyers FA, Skaf E, Olson RE. Deep venous thrombosis and pulmonary embolism in hospitalized patients with sickle cell disease Am J Med 2006; 119(10): e897-e7.11.
[http://dx.doi.org/10.1016/j.amjmed.2006.08.015] [PMID: 17000225]
[30]
Novelli EM, Huynh C, Gladwin MT, Moore CG, Ragni MV. Pulmonary embolism in sickle cell disease: a case-control study. J Thromb Haemost 2012; 10(5): 760-6.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04697.x] [PMID: 22417249]
[31]
Austin H, Key NS, Benson JM, et al. Sickle cell trait and the risk of venous thromboembolism among blacks. Blood 2007; 110(3): 908-12.
[http://dx.doi.org/10.1182/blood-2006-11-057604] [PMID: 17409269]
[32]
Folsom AR, Tang W, Roetker NS, et al. Prospective study of sickle cell trait and venous thromboembolism incidence. J Thromb Haemost 2015; 13(1): 2-9.
[http://dx.doi.org/10.1111/jth.12787] [PMID: 25393788]
[33]
Manci EA, Culberson DE, Yang YM, et al. Causes of death in sickle cell disease: an autopsy study. Br J Haematol 2003; 123(2): 359-65.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04594.x] [PMID: 14531921]
[34]
Fontes A, Fernandes HP, Barjas-Castro ML, et al. Imaging, manipulation, and analysis of biomolecules, cells, and tissues IV. farkas DL, tárnok A, leary JF eds. proceeding of the international society for optics and photonics; 2019 february 4-6; San francisco, california, united states 2006; Vol. 6088: p. 608811.
[35]
Stratton F, Rawlinson VI, Gunson H, Phillips P. The role of zeta potential in Rh agglutination. Vox Sang 1973; 24(3): 273-9.
[http://dx.doi.org/10.1111/j.1423-0410.1973.tb02641.x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy