Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Effects of Bacterial Metabolites on the Immune System: Enemies and Friends

Author(s): Zaaima Al-Jabri, Iman Al-Reesi, Nawal Al-Shizawi, Mohammed S. Al-Balushi, Ali A. Al-Jabri and Elias A. Said*

Volume 22, Issue 12, 2022

Published on: 15 February, 2022

Page: [1167 - 1177] Pages: 11

DOI: 10.2174/1871530321666211119150231

Price: $65

Abstract

Metabolites produced by bacteria can influence the immune system. These metabolites are produced by pathogenic bacteria as well as the friendly microbiota. This review sheds light on the major bacterial metabolites and their structures. It also describes the capacity of these molecules to stimulate and inhibit the immune responses in a way that affects their capacity to control different diseases.

Keywords: Metabolites, bacteria, microbiota, pathogenic, immune, disease.

Graphical Abstract

[1]
Armstrong, H.; Mander, I.; Zhang, Z.; Armstrong, D.; Wine, E. Not all fibers are born equal; variable response to dietary fiber subtypes in IBD. Front Pediatr., 2021, 8, 620189.
[http://dx.doi.org/10.3389/fped.2020.620189] [PMID: 33520902]
[2]
Hehemann, J.H.; Correc, G.; Barbeyron, T.; Helbert, W.; Czjzek, M.; Michel, G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 2010, 464(7290), 908-912.
[http://dx.doi.org/10.1038/nature08937] [PMID: 20376150]
[3]
Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 2003, 62(1), 67-72.
[http://dx.doi.org/10.1079/PNS2002207] [PMID: 12740060]
[4]
Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr., 2018, 57(1), 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[5]
Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int., 2012, 95(1), 50-60.
[http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane] [PMID: 22468341]
[6]
Yadav, M.; Verma, M.K.; Chauhan, N.S. A review of metabolic potential of human gut microbiome in human nutrition. Arch. Microbiol., 2018, 200(2), 203-217.
[http://dx.doi.org/10.1007/s00203-017-1459-x] [PMID: 29188341]
[7]
Harris, H.C.; Morrison, D.J.; Edwards, C.A. Impact of the source of fermentable carbohydrate on SCFA production by human gut microbiota in vitro - a systematic scoping review and secondary analysis. Crit. Rev. Food Sci. Nutr., 2021, 61(22), 3892-3903.
[http://dx.doi.org/10.1080/10408398.2020.1809991] [PMID: 32865002]
[8]
Aa, L.X.; Fei, F.; Qi, Q.; Sun, R.B.; Gu, S.H.; Di, Z.Z.; Aa, J.Y.; Wang, G.J.; Liu, C.X. Rebalancing of the gut flora and microbial metabolism is responsible for the anti-arthritis effect of kaempferol. Acta Pharmacol. Sin., 2020, 41(1), 73-81.
[http://dx.doi.org/10.1038/s41401-019-0279-8] [PMID: 31427695]
[9]
Liu, X.M.; Liu, Y.J.; Huang, Y.; Yu, H.J.; Yuan, S.; Tang, B.W.; Wang, P.G.; He, Q.Q. Dietary total flavonoids intake and risk of mortality from all causes and cardiovascular disease in the general population: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res., 2017, 61(6), 1601003.
[http://dx.doi.org/10.1002/mnfr.201601003] [PMID: 28054441]
[10]
Kim, C.H. Immune regulation by microbiome metabolites. Immunology, 2018, 154(2), 220-229.
[http://dx.doi.org/10.1111/imm.12930] [PMID: 29569377]
[11]
Kim, C.H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell. Mol. Immunol., 2021, 18(5), 1161-1171.
[http://dx.doi.org/10.1038/s41423-020-00625-0] [PMID: 33850311]
[12]
Zhang, T.; Yang, Y.; Liang, Y.; Jiao, X.; Zhao, C. Beneficial effect of intestinal fermentation of natural polysaccharides. Nutrients, 2018, 10(8), 1055.
[http://dx.doi.org/10.3390/nu10081055] [PMID: 30096921]
[13]
Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 2012, 3(4), 289-306.
[http://dx.doi.org/10.4161/gmic.19897] [PMID: 22572875]
[14]
Nijland, JG; Driessen, AJM Engineering of pentose transport in saccharomyces cerevisiae for biotechnological applications. Front. Bioeng. Biotechnol., 2020, 7, 464.
[http://dx.doi.org/10.3389/fbioe.2019.00464]
[15]
Yao, C.K.; Muir, J.G.; Gibson, P.R. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharmacol. Ther., 2016, 43(2), 181-196.
[http://dx.doi.org/10.1111/apt.13456] [PMID: 26527169]
[16]
Zeng, M.; Cao, H. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1083, 137-145.
[http://dx.doi.org/10.1016/j.jchromb.2018.02.040] [PMID: 29547803]
[17]
Shastry, R.P.; Rekha, P.D. Bacterial cross talk with gut microbiome and its implications: a short review. Folia Microbiol. (Praha), 2021, 66(1), 15-24.
[http://dx.doi.org/10.1007/s12223-020-00821-5] [PMID: 32949007]
[18]
Sánchez-Andrea, I.; Guedes, I.A.; Hornung, B.; Boeren, S.; Lawson, C.E.; Sousa, D.Z.; Bar-Even, A.; Claassens, N.J.; Stams, A.J.M. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat. Commun., 2020, 11(1), 5090.
[http://dx.doi.org/10.1038/s41467-020-18906-7] [PMID: 33037220]
[19]
Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6), 1332-1345.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[20]
Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; van Tol, R.; Vaughan, E.E.; Verbeke, K. Short chain fatty acids in human gut and metabolic health. Benef. Microbes, 2020, 11(5), 411-455.
[http://dx.doi.org/10.3920/BM2020.0057] [PMID: 32865024]
[21]
Kumar, J.; Rani, K.; Datt, C. Molecular link between dietary fibre, gut microbiota and health. Mol. Biol. Rep., 2020, 47(8), 6229-6237.
[http://dx.doi.org/10.1007/s11033-020-05611-3] [PMID: 32623619]
[22]
Tsukuda, N.; Yahagi, K.; Hara, T.; Watanabe, Y.; Matsumoto, H.; Mori, H.; Higashi, K.; Tsuji, H.; Matsumoto, S.; Kurokawa, K.; Matsuki, T. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life. ISME J., 2021, 15(9), 2574-2590.
[http://dx.doi.org/10.1038/s41396-021-00937-7] [PMID: 33723382]
[23]
Koliarakis, I.; Psaroulaki, A.; Nikolouzakis, T.K.; Kokkinakis, M.; Sgantzos, M.N.; Goulielmos, G. Intestinal microbiota and colorectal cancer: a new aspect of research. J. BUON, 2018, 23(5), 1216-1234.
[24]
Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc., 2021, 80(1), 37-49.
[http://dx.doi.org/10.1017/S0029665120006916] [PMID: 32238208]
[25]
Yang, Q.; Guo, S.; Lu, Q.; Tao, Y.; Zheng, D.; Zhou, Q.; Liu, J. Butyryl/Caproyl-CoA:Acetate CoA-transferase: cloning, expression and characterization of the key enzyme involved in medium-chain fatty acid biosynthesis. Biosci. Rep., 2021, 41(8), BSR20211135.
[http://dx.doi.org/10.1042/BSR20211135] [PMID: 34338280]
[26]
Shinohara, R.; Sasaki, K.; Inoue, J.; Hoshi, N.; Fukuda, I.; Sasaki, D.; Kondo, A.; Osawa, R. Butyryl-CoA:acetate CoA-transferase gene associated with the genus Roseburia is decreased in the gut microbiota of Japanese patients with ulcerative colitis. Biosci. Microbiota Food Health, 2019, 38(4), 159-163.
[http://dx.doi.org/10.12938/bmfh.18-029] [PMID: 31763119]
[27]
Peled, S.; Livney, Y.D. The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocoll., 2021, 120, 106911.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106911]
[28]
Sivaprakasam, S.; Bhutia, Y.D.; Yang, S.; Ganapathy, V. Short-chain fatty acid transporters: role in colonic homeostasis. Compr. Physiol., 2017, 8(1), 299-314.
[http://dx.doi.org/10.1002/cphy.c170014] [PMID: 29357130]
[29]
Wang, R.X.; Lee, J.S.; Campbell, E.L.; Colgan, S.P. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11648-11657.
[http://dx.doi.org/10.1073/pnas.1917597117] [PMID: 32398370]
[30]
Koh, A.; Bäckhed, F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol. Cell, 2020, 78(4), 584-596.
[http://dx.doi.org/10.1016/j.molcel.2020.03.005] [PMID: 32234490]
[31]
Macfarlane, G.T.; Cummings, J.H.; Allison, C. Protein degradation by human intestinal bacteria. J. Gen. Microbiol., 1986, 132(6), 1647-1656.
[PMID: 3543210]
[32]
Lin, R.; Liu, W.; Piao, M.; Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids, 2017, 49(12), 2083-2090.
[http://dx.doi.org/10.1007/s00726-017-2493-3] [PMID: 28932911]
[33]
Ma, N.; Ma, X. Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf., 2019, 18(1), 221-242.
[http://dx.doi.org/10.1111/1541-4337.12401] [PMID: 33337014]
[34]
Zhao, J.; Zhang, X.; Liu, H.; Brown, M.A.; Qiao, S. Dietary Protein and Gut Microbiota Composition and Function. Curr. Protein Pept. Sci., 2019, 20(2), 145-154.
[http://dx.doi.org/10.2174/1389203719666180514145437] [PMID: 29756574]
[35]
Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome, 2019, 7(1), 91.
[http://dx.doi.org/10.1186/s40168-019-0704-8] [PMID: 31196177]
[36]
Aguirre, M.; Eck, A.; Koenen, M.E.; Savelkoul, P.H.; Budding, A.E.; Venema, K. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res. Microbiol., 2016, 167(2), 114-125.
[http://dx.doi.org/10.1016/j.resmic.2015.09.006] [PMID: 26499094]
[37]
Diether, N.E.; Willing, B.P. Microbial fermentation of dietary protein: an important factor in diet⁻microbe⁻host interaction. Microorganisms, 2019, 7(1), E19.
[http://dx.doi.org/10.3390/microorganisms7010019] [PMID: 30642098]
[38]
Neis, E.P.; Dejong, C.H.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients, 2015, 7(4), 2930-2946.
[http://dx.doi.org/10.3390/nu7042930] [PMID: 25894657]
[39]
Roager, H.M.; Dragsted, L.O. Diet-derived microbial metabolites in health and disease. Nutr. Bull., 2019, 44(3), 216-227.
[http://dx.doi.org/10.1111/nbu.12396]
[40]
Rose, S.; Strombom, A. Colorectal cancer prevention with a plant-based diet. Cancer Ther. Oncol. Int. J., 2019, 15(2)
[http://dx.doi.org/10.19080/CTOIJ.2019.15.555906]
[41]
Miller-Fleming, L.; Olin-Sandoval, V.; Campbell, K.; Ralser, M. remaining mysteries of molecular biology: the role of polyamines in the cell. J. Mol. Biol., 2015, 427(21), 3389-3406.
[http://dx.doi.org/10.1016/j.jmb.2015.06.020] [PMID: 26156863]
[42]
Barbieri, F.; Montanari, C.; Gardini, F.; Tabanelli, G. biogenic amine production by lactic acid bacteria: a review. Foods, 2019, 8(1), 17.
[http://dx.doi.org/10.3390/foods8010017] [PMID: 30621071]
[43]
Sánchez-Jiménez, F.; Ruiz-Pérez, M.V.; Urdiales, J.L.; Medina, M.A. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br. J. Pharmacol., 2013, 170(1), 4-16.
[http://dx.doi.org/10.1111/bph.12109] [PMID: 23347064]
[44]
Schäpe, S.S.; Krause, J.L.; Engelmann, B.; Fritz-Wallace, K.; Schattenberg, F.; Liu, Z. The Simplified Human Intestinal Microbiota (SIHUMIx) shows high structural and functional resistance against changing transit times in in vitro bioreactors., 2019, 7(12), 641.
[45]
Amin, M.; Tang, S.; Shalamanova, L.; Taylor, R.L.; Wylie, S.; Abdullah, B.M. Polyamine biomarkers as indicators of human disease. Biomarkers, 2021, 26(2), 77-94.
[46]
Dehhaghi, M.; Kazemi Shariat Panahi, H.; Heng, B.; Guillemin, G.J. The gut microbiota, kynurenine pathway, and immune system interaction in the development of brain cancer. Front. Cell Dev. Biol., 2020, 8, 562812.
[http://dx.doi.org/10.3389/fcell.2020.562812] [PMID: 33330446]
[47]
Forte, A.; Balistreri, C.R.; De Feo, M.; Della Corte, A.; Hellstrand, P.; Persson, L.; Nilsson, B.O. Polyamines and microbiota in bicuspid and tricuspid aortic valve aortopathy. J. Mol. Cell. Cardiol., 2019, 129, 179-187.
[http://dx.doi.org/10.1016/j.yjmcc.2019.02.014] [PMID: 30825483]
[48]
Hosseinkhani, F.; Heinken, A.; Thiele, I.; Lindenburg, P.W.; Harms, A.C.; Hankemeier, T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes, 2021, 13(1), 1-22.
[http://dx.doi.org/10.1080/19490976.2021.1882927] [PMID: 33590776]
[49]
Mikó, E.; Kovács, T.; Sebő, É.; Tóth, J.; Csonka, T.; Ujlaki, G.; Sipos, A.; Szabó, J.; Méhes, G.; Bai, P. Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored. Cells, 2019, 8(4), 293.
[http://dx.doi.org/10.3390/cells8040293] [PMID: 30934972]
[50]
Ramos-Molina, B.; Queipo-Ortuño, M.I.; Lambertos, A.; Tinahones, F.J.; Peñafiel, R. Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front. Nutr., 2019, 6, 24.
[http://dx.doi.org/10.3389/fnut.2019.00024] [PMID: 30923709]
[51]
Rossi, T.; Vergara, D.; Fanini, F.; Maffia, M.; Bravaccini, S.; Pirini, F. Microbiota-derived metabolites in tumor progression and metastasis. Int. J. Mol. Sci., 2020, 21(16), E5786.
[http://dx.doi.org/10.3390/ijms21165786] [PMID: 32806665]
[52]
Tsvetikova, S.A.; Koshel, E.I. Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. Int. J. Med. Microbiol., 2020, 310(4), 151425.
[http://dx.doi.org/10.1016/j.ijmm.2020.151425] [PMID: 32423739]
[53]
Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol., 2018, 8, 13.
[http://dx.doi.org/10.3389/fcimb.2018.00013] [http://dx.doi.org/10.3389/fcimb.2018.00013]
[54]
Kim, C.H.; Park, J.; Kim, M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune Netw., 2014, 14(6), 277-288.
[http://dx.doi.org/10.4110/in.2014.14.6.277] [PMID: 25550694]
[55]
Li, G.; Young, K.D. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology, 2013, 159(Pt 2), 402-410.
[http://dx.doi.org/10.1099/mic.0.064139-0] [PMID: 23397453]
[56]
Kahalehili, H.M.; Newman, N.K.; Pennington, J.M.; Kolluri, S.K.; Kerkvliet, N.I.; Shulzhenko, N.; Morgun, A.; Ehrlich, A.K. Dietary Indole-3-carbinol activates AhR in the gut, alters Th17-microbe interactions, and exacerbates insulitis in NOD Mice. Front. Immunol., 2021, 11, 606441.
[http://dx.doi.org/10.3389/fimmu.2020.606441] [PMID: 33552063]
[57]
Hermanussen, M.; Gonder, U.; Jakobs, C.; Stegemann, D.; Hoffmann, G. Patterns of free amino acids in German convenience food products: marked mismatch between label information and composition. Eur. J. Clin. Nutr., 2010, 64(1), 88-98.
[http://dx.doi.org/10.1038/ejcn.2009.116] [PMID: 19773804]
[58]
Karau, A.; Grayson, I. Amino acids in human and animal nutrition. Adv. Biochem. Eng. Biotechnol., 2014, 143, 189-228.
[http://dx.doi.org/10.1007/10_2014_269] [PMID: 24676880]
[59]
Aziz, T.; Sarwar, A.; Ud Din, J.; Al Dalali, S.; Khan, A.A.; Din, Z.U.; Yang, Z. Biotransformation of linoleic acid into different metabolites by food derived Lactobacillus plantarum 12-3 and in silico characterization of relevant reactions. Food Res. Int., 2021, 147, 110470.
[http://dx.doi.org/10.1016/j.foodres.2021.110470] [PMID: 34399468]
[60]
Kishino, S.; Takeuchi, M.; Park, S.B.; Hirata, A.; Kitamura, N.; Kunisawa, J.; Kiyono, H.; Iwamoto, R.; Isobe, Y.; Arita, M.; Arai, H.; Ueda, K.; Shima, J.; Takahashi, S.; Yokozeki, K.; Shimizu, S.; Ogawa, J. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc. Natl. Acad. Sci. USA, 2013, 110(44), 17808-17813.
[http://dx.doi.org/10.1073/pnas.1312937110] [PMID: 24127592]
[61]
Yang, B.; Chen, H.; Gao, H.; Ren, Q.; Zhang, H.; Chen, W. Genetic determinates for conjugated linolenic acid production in Lactobacillus plantarum ZS2058. J. Appl. Microbiol., 2020, 128(1), 191-201.
[http://dx.doi.org/10.1111/jam.14466] [PMID: 31561280]
[62]
Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y] [PMID: 28388917]
[63]
Wu, T.; Sun, M.; Liu, R.; Sui, W.; Zhang, J.; Yin, J.; Fang, S.; Zhu, J.; Zhang, M. Bifidobacterium longum subsp. longum Remodeled Roseburia and phosphatidylserine levels and ameliorated intestinal disorders and liver metabolic abnormalities induced by high-fat diet. J. Agric. Food Chem., 2020, 68(16), 4632-4640.
[http://dx.doi.org/10.1021/acs.jafc.0c00717] [PMID: 32237746]
[64]
Gérard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens, 2013, 3(1), 14-24.
[http://dx.doi.org/10.3390/pathogens3010014] [PMID: 25437605]
[65]
Kim, M.; Kim, C.H. Regulation of humoral immunity by gut microbial products. Gut Microbes, 2017, 8(4), 392-399.
[http://dx.doi.org/10.1080/19490976.2017.1299311] [PMID: 28332901]
[66]
Fennema, D.; Phillips, I.R.; Shephard, E.A. Trimethylamine and trimethylamine n-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos., 2016, 44(11), 1839-1850.
[http://dx.doi.org/10.1124/dmd.116.070615] [PMID: 27190056]
[67]
Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schauer, P.; Smith, J.D.; Allayee, H.; Tang, W.H.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472(7341), 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[68]
Kriaa, A.; Bourgin, M.; Potiron, A.; Mkaouar, H.; Jablaoui, A.; Gérard, P.; Maguin, E.; Rhimi, M. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J. Lipid Res., 2019, 60(2), 323-332.
[http://dx.doi.org/10.1194/jlr.R088989] [PMID: 30487175]
[69]
Urdaneta, V.; Casadesús, J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front. Med., 2017, 4, 163.
[http://dx.doi.org/10.3389/fmed.2017.00163]
[70]
Winston, J.A.; Theriot, C.M. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe, 2016, 41, 44-50.
[http://dx.doi.org/10.1016/j.anaerobe.2016.05.003] [PMID: 27163871]
[71]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: a mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[72]
Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[73]
Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy effects of plant polyphenols: molecular mechanisms. Int. J. Mol. Sci., 2020, 21(4), 1250.
[http://dx.doi.org/10.3390/ijms21041250] [PMID: 32070025]
[74]
Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; da Silva, G.J.; Pereira, L. Seaweed phenolics: from extraction to applications. Mar. Drugs, 2020, 18(8), E384.
[http://dx.doi.org/10.3390/md18080384] [PMID: 32722220]
[75]
Tomassini, L.; Ventrone, A.; Frezza, C.; Foddai, S.; Serafini, M. Iridoids and seco-iridoids from the leaves of Cephalanthus glabratus (Spreng.). K.Schum. Braz. J. Bot., 2020, 43(4), 685-688.
[http://dx.doi.org/10.1007/s40415-020-00667-8]
[76]
Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols-a non-systematic review. Nutrients, 2020, 12(5), E1401.
[http://dx.doi.org/10.3390/nu12051401] [PMID: 32414132]
[77]
Braune, A.; Blaut, M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes, 2016, 7(3), 216-234.
[http://dx.doi.org/10.1080/19490976.2016.1158395] [PMID: 26963713]
[78]
LeBlanc, J.G.; Milani, C.; de Giori, G.S.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol., 2013, 24(2), 160-168.
[http://dx.doi.org/10.1016/j.copbio.2012.08.005] [PMID: 22940212]
[79]
Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet., 2015, 6, 148.
[http://dx.doi.org/10.3389/fgene.2015.00148] [PMID: 25941533]
[80]
Yoshii, K; Hosomi, K; Sawane, K; Kunisawa, J Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr., 2019, 6, 48.
[http://dx.doi.org/10.3389/fnut.2019.00048] [http://dx.doi.org/10.3389/fnut.2019.00048]
[81]
Steinert, R.E.; Lee, Y.K.; Sybesma, W. Vitamins for the gut microbiome. Trends Mol. Med., 2020, 26(2), 137-140.
[http://dx.doi.org/10.1016/j.molmed.2019.11.005] [PMID: 31862244]
[82]
Singh, V.; Singh, A.K.; Bhargava, P.; Joshi, M.; Joshi, C.G. Engineering of microbial biosynthetic pathways., 2020.
[83]
Solopova, A.; Bottacini, F.; Venturi Degli Esposti, E.; Amaretti, A.; Raimondi, S.; Rossi, M.; van Sinderen, D. Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal Bifidobacterium longum subsp. infantis ATCC 15697. Front. Microbiol., 2020, 11, 573335.
[http://dx.doi.org/10.3389/fmicb.2020.573335] [PMID: 33042083]
[84]
Uebanso, T.; Shimohata, T.; Mawatari, K.; Takahashi, A. Functional roles of B-vitamins in the gut and gut microbiome. Mol. Nutr. Food Res., 2020, 64(18), 2000426.
[85]
Albano, C.; Silvetti, T.; Brasca, M. Screening of lactic acid bacteria producing folate and their potential use as adjunct cultures for cheese bio-enrichment. FEMS Microbiol. Lett., 2020, 367(9), fnaa059.
[http://dx.doi.org/10.1093/femsle/fnaa059] [PMID: 32275307]
[86]
Chen, L.; Gu, Q.; Li, P.; Chen, S.; Li, Y. Genomic analysis of Lactobacillus reuteri WHH1689 reveals its probiotic properties and stress resistance. Food Sci. Nutr., 2019, 7(2), 844-857.
[http://dx.doi.org/10.1002/fsn3.934] [PMID: 30847163]
[87]
Wong, C.B.; Odamaki, T.; Xiao, J.Z. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol. Rev., 2020, 44(3), 369-385.
[http://dx.doi.org/10.1093/femsre/fuaa010] [PMID: 32319522]
[88]
Crider, K.S.; Yang, T.P.; Berry, R.J.; Bailey, L.B. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv. Nutr., 2012, 3(1), 21-38.
[http://dx.doi.org/10.3945/an.111.000992] [PMID: 22332098]
[89]
Averianova, L.A.; Balabanova, L.A.; Son, O.M.; Podvolotskaya, A.B.; Tekutyeva, L.A. production of vitamin b2 (riboflavin) by microor-ganisms: an overview. Front. Bioeng. Biotechnol., 2020, 8, 570828.
[http://dx.doi.org/10.3389/fbioe.2020.570828] [PMID: 33304888]
[90]
Schwechheimer, S.K.; Park, E.Y.; Revuelta, J.L.; Becker, J.; Wittmann, C. Biotechnology of riboflavin. Appl. Microbiol. Biotechnol., 2016, 100(5), 2107-2119.
[http://dx.doi.org/10.1007/s00253-015-7256-z] [PMID: 26758294]
[91]
Calderón-Ospina, C.A.; Nava-Mesa, M.O.B. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci. Ther., 2020, 26(1), 5-13.
[http://dx.doi.org/10.1111/cns.13207] [PMID: 31490017]
[92]
Kennedy, D.O. B vitamins and the brain: mechanisms, dose and efficacy-A review. Nutrients, 2016, 8(2), 68.
[http://dx.doi.org/10.3390/nu8020068] [PMID: 26828517]
[93]
Jaghsi, S. Relation between vitamin K and osteoporosis, clinical implementation of bone regeneration and maintenance; IntechOpen, 2019.
[94]
Simes, D.C.; Viegas, C.S.B.; Araújo, N.; Marreiros, C. Vitamin K as a diet supplement with impact in human health: current evidence in age-related diseases. Nutrients, 2020, 12(1), 138.
[http://dx.doi.org/10.3390/nu12010138] [PMID: 31947821]
[95]
Fakhree, N.K.; Mhaibes, S.H.; Khalil, H.H. Review article-impact of vitamin K on human health. Iraqi J. Pharm Sci., 2021, 30(1), 1-13.
[http://dx.doi.org/10.31351/vol30iss1pp1-13]
[96]
Greppi, A.; Asare, P.T.; Schwab, C.; Zemp, N.; Stephan, R.; Lacroix, C. Isolation and comparative genomic analysis of reuterin-producing Lactobacillus reuteri from the chicken gastrointestinal tract. Front. Microbiol., 2020, 11, 1166.
[http://dx.doi.org/10.3389/fmicb.2020.01166] [PMID: 32670217]
[97]
He, M.; Tan, C.P.; Liu, Y.; Xu, Y-J. Foodomics: a new perspective on gut probiotics nutrition and health research. Curr. Opin. Food Sci., 2021, 41, 146-151.
[http://dx.doi.org/10.1016/j.cofs.2021.04.004]
[98]
Khatri, I.; Sharma, G.; Subramanian, S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol., 2019, 19(1), 307.
[http://dx.doi.org/10.1186/s12866-019-1680-7] [PMID: 31888501]
[99]
Le-Blanc, J.G.; Levit, R.; Savoy de Giori, G.; de Moreno de LeBlanc, A. Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Appl. Microbiol. Biotechnol., 2020, 104(8), 3331-3337.
[http://dx.doi.org/10.1007/s00253-020-10487-1] [PMID: 32112134]
[100]
Levit, R.; Savoy de Giori, G.; de Moreno de LeBlanc, A.; LeBlanc, J.G. Recent update on lactic acid bacteria producing riboflavin and folates: application for food fortification and treatment of intestinal inflammation., 2021, 130(5), 1412-1424.
[101]
Zhao, G.; Dong, F.; Lao, X.; Zheng, H. Strategies to increase the production of biosynthetic riboflavin. Mol. Biotechnol., 2021, 63(10), 909-918.
[http://dx.doi.org/10.1007/s12033-021-00318-7] [PMID: 34156642]
[102]
Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol., 2021, 19(2), 77-94.
[http://dx.doi.org/10.1038/s41579-020-0438-4] [PMID: 32968241]
[103]
Yang, N.J.; Chiu, I.M. Bacterial signaling to the nervous system through toxins and metabolites. J. Mol. Biol., 2017, 429(5), 587-605.
[http://dx.doi.org/10.1016/j.jmb.2016.12.023] [PMID: 28065740]
[104]
Dickson, K.; Lehmann, C. Inflammatory response to different toxins in experimental sepsis models. Int. J. Mol. Sci., 2019, 20(18), 4341.
[http://dx.doi.org/10.3390/ijms20184341] [PMID: 31491842]
[105]
Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. Dis. Primers, 2016, 2, 16020.
[http://dx.doi.org/10.1038/nrdp.2016.20] [PMID: 27158839]
[106]
Kieser, K.J.; Kagan, J.C. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol., 2017, 17(6), 376-390.
[http://dx.doi.org/10.1038/nri.2017.25] [PMID: 28461704]
[107]
Alberts, B. Molecular biology of the cell, Sixth edition; Garland Science, Taylor and Francis Group: New York, NY, 2015.
[108]
Emgård, J.; Bergsten, H.; McCormick, J.K.; Barrantes, I.; Skrede, S.; Sandberg, J.K.; Norrby-Teglund, A. MAIT cells are major contributors to the cytokine response in group a streptococcal toxic shock syndrome. Proc. Natl. Acad. Sci. USA, 2019, 116(51), 25923-25931.
[http://dx.doi.org/10.1073/pnas.1910883116] [PMID: 31772015]
[109]
Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Walter, J.; Menon, R.; Koecher, K.; Knights, D. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe, 2019, 25(6), 789-802.e5.
[http://dx.doi.org/10.1016/j.chom.2019.05.005] [PMID: 31194939]
[110]
Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol., 2017, 139, 82-93.
[http://dx.doi.org/10.1016/j.bcp.2017.04.033] [PMID: 28483461]
[111]
Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res., 2020, 30(6), 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[112]
Blacher, E.; Levy, M.; Tatirovsky, E.; Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol., 2017, 198(2), 572-580.
[http://dx.doi.org/10.4049/jimmunol.1601247] [PMID: 28069752]
[113]
Balmer, M.L.; Schürch, C.M.; Saito, Y.; Geuking, M.B.; Li, H.; Cuenca, M.; Kovtonyuk, L.V.; McCoy, K.D.; Hapfelmeier, S.; Ochsenbein, A.F.; Manz, M.G.; Slack, E.; Macpherson, A.J. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J. Immunol., 2014, 193(10), 5273-5283.
[http://dx.doi.org/10.4049/jimmunol.1400762] [PMID: 25305320]
[114]
Khosravi, A.; Yáñez, A.; Price, J.G.; Chow, A.; Merad, M.; Goodridge, H.S.; Mazmanian, S.K. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe, 2014, 15(3), 374-381.
[http://dx.doi.org/10.1016/j.chom.2014.02.006] [PMID: 24629343]
[115]
Cha, H.R.; Chang, S.Y.; Chang, J.H.; Kim, J.O.; Yang, J.Y.; Kim, C.H.; Kweon, M.N. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J. Immunol., 2010, 184(12), 6799-6806.
[http://dx.doi.org/10.4049/jimmunol.0902944] [PMID: 20488794]
[116]
Liu, L.; Li, L.; Min, J.; Wang, J.; Wu, H.; Zeng, Y.; Chen, S.; Chu, Z. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell. Immunol., 2012, 277(1-2), 66-73.
[http://dx.doi.org/10.1016/j.cellimm.2012.05.011] [PMID: 22698927]
[117]
Nastasi, C.; Fredholm, S.; Willerslev-Olsen, A.; Hansen, M.; Bonefeld, C.M.; Geisler, C.; Andersen, M.H.; Ødum, N.; Woetmann, A. Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Sci. Rep., 2017, 7(1), 14516.
[http://dx.doi.org/10.1038/s41598-017-15099-w] [PMID: 29109552]
[118]
Yip, W.; Hughes, M.R.; Li, Y.; Cait, A.; Hirst, M.; Mohn, W.W.; McNagny, K.M. Butyrate shapes immune cell fate and function in allergic asthma. Front. Immunol., 2021, 12, 628453.
[http://dx.doi.org/10.3389/fimmu.2021.628453] [PMID: 33659009]
[119]
Kim, M.; Qie, Y.; Park, J.; Kim, C.H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe, 2016, 20(2), 202-214.
[http://dx.doi.org/10.1016/j.chom.2016.07.001] [PMID: 27476413]
[120]
Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455.
[http://dx.doi.org/10.1038/nature12726] [PMID: 24226773]
[121]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[122]
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; Lee, J.R.; Offermanns, S.; Ganapathy, V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014, 40(1), 128-139.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[123]
Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, 341(6145), 569-573.
[http://dx.doi.org/10.1126/science.1241165] [PMID: 23828891]
[124]
Sun, M.; Wu, W.; Chen, L.; Yang, W.; Huang, X.; Ma, C.; Chen, F.; Xiao, Y.; Zhao, Y.; Ma, C.; Yao, S.; Carpio, V.H.; Dann, S.M.; Zhao, Q.; Liu, Z.; Cong, Y. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun., 2018, 9(1), 3555.
[http://dx.doi.org/10.1038/s41467-018-05901-2] [PMID: 30177845]
[125]
Xu, Y.; Zhu, Y.; Li, X.; Sun, B. Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism. Trends Food Sci. Technol., 2020, 100, 118-130.
[http://dx.doi.org/10.1016/j.tifs.2020.02.026]
[126]
Yang, W.; Yu, T.; Huang, X.; Bilotta, A.J.; Xu, L.; Lu, Y.; Sun, J.; Pan, F.; Zhou, J.; Zhang, W.; Yao, S.; Maynard, C.L.; Singh, N.; Dann, S.M.; Liu, Z.; Cong, Y. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun., 2020, 11(1), 4457.
[http://dx.doi.org/10.1038/s41467-020-18262-6] [PMID: 32901017]
[127]
Jia, M.; Zhang, Y.; Gao, Y.; Ma, X. Effects of medium chain fatty acids on intestinal health of monogastric animals. Curr. Protein Pept. Sci., 2020, 21(8), 777-784.
[http://dx.doi.org/10.2174/1389203721666191231145901] [PMID: 31889482]
[128]
Rial, S.A.; Karelis, A.D.; Bergeron, K-F.; Mounier, C. Gut microbiota and metabolic health: the potential beneficial effects of a medium chain triglyceride diet in obese individuals. Nutrients, 2016, 8(5), 281.
[http://dx.doi.org/10.3390/nu8050281] [PMID: 27187452]
[129]
Kiss, E.A.; Vonarbourg, C.; Kopfmann, S.; Hobeika, E.; Finke, D.; Esser, C.; Diefenbach, A. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science, 2011, 334(6062), 1561-1565.
[http://dx.doi.org/10.1126/science.1214914] [PMID: 22033518]
[130]
Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; Carvalho, A.; Puccetti, P.; Romani, L. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 2013, 39(2), 372-385.
[http://dx.doi.org/10.1016/j.immuni.2013.08.003] [PMID: 23973224]
[131]
Qiu, J.; Heller, J.J.; Guo, X.; Chen, Z.M.; Fish, K.; Fu, Y.X.; Zhou, L. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity, 2012, 36(1), 92-104.
[http://dx.doi.org/10.1016/j.immuni.2011.11.011] [PMID: 22177117]
[132]
Shi, Y.; Lai, X.; Ye, L.; Chen, K.; Cao, Z.; Gong, W.; Jin, L.; Wang, C.; Liu, M.; Liao, Y.; Wang, J.M.; Zhou, N. Activated niacin receptor HCA2 inhibits chemoattractant-mediated macrophage migration via Gβγ/PKC/ERK1/2 pathway and heterologous receptor desensitization. Sci. Rep., 2017, 7, 42279.
[http://dx.doi.org/10.1038/srep42279] [PMID: 28186140]
[133]
Sepahi, A.; Liu, Q.; Friesen, L.; Kim, C.H. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunol., 2021, 14(2), 317-330.
[http://dx.doi.org/10.1038/s41385-020-0312-8] [PMID: 32541842]
[134]
Sharma, V.; Rodionov, D.A.; Leyn, S.A.; Tran, D.; Iablokov, S.N.; Ding, H. B-vitamin sharing promotes stability of gut microbial communities. Front Microbiol., 2019, 10, 1485.
[http://dx.doi.org/10.3389/fmicb.2019.01485]
[135]
Soto-Martin, E.C.; Warnke, I.; Farquharson, F.M.; Christodoulou, M.; Horgan, G.; Derrien, M. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. ASM J., 2020, 11(4), e00886-e20.
[136]
Engevik, M.A.; Morra, C.N.; Röth, D.; Engevik, K.; Spinler, J.K.; Devaraj, S.; Crawford, S.E.; Estes, M.K.; Kalkum, M.; Versalovic, J. Microbial metabolic capacity for intestinal folate production and modulation of host folate receptors. Front. Microbiol., 2019, 10, 2305.
[http://dx.doi.org/10.3389/fmicb.2019.02305] [PMID: 31649646]
[137]
Kunisawa, J.; Hashimoto, E.; Ishikawa, I.; Kiyono, H. A pivotal role of vitamin B9 in the maintenance of regulatory T cells in vitro and in vivo. PLoS One, 2012, 7(2), e32094.
[http://dx.doi.org/10.1371/journal.pone.0032094] [PMID: 22363800]
[138]
Grizotte-Lake, M.; Zhong, G.; Duncan, K.; Kirkwood, J.; Iyer, N.; Smolenski, I.; Isoherranen, N.; Vaishnava, S. Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity, 2018, 49(6), 1103-1115.e6.
[http://dx.doi.org/10.1016/j.immuni.2018.11.018] [PMID: 30566883]
[139]
Kim, E.W.; De Leon, A.; Jiang, Z.; Radu, R.A.; Martineau, A.R.; Chan, E.D.; Bai, X.; Su, W.L.; Montoya, D.J.; Modlin, R.L.; Liu, P.T. Vitamin A metabolism by dendritic cells triggers an antimicrobial response against Mycobacterium tuberculosis. MSphere, 2019, 4(3), e00327-19.
[http://dx.doi.org/10.1128/mSphere.00327-19] [PMID: 31167948]
[140]
Hedblom, G.A.; Reiland, H.A.; Sylte, M.J.; Johnson, T.J.; Baumler, D.J. Segmented filamentous bacteria – metabolism meets immunity. Front Microbiol., 2018, 9, 1991.
[141]
Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of vitamin A in the immune system. J. Clin. Med., 2018, 7(9), 258.
[http://dx.doi.org/10.3390/jcm7090258] [PMID: 30200565]
[142]
McAleer, J.P.; Nguyen, N.L.H.; Chen, K.; Kumar, P.; Ricks, D.M.; Binnie, M. Pulmonary Th17 antifungal immunity is regulated by the gut microbiome. J. Immunol., 2016, 197(1), 97-107.
[http://dx.doi.org/10.4049/jimmunol.1502566]
[143]
Lycke, N.Y.; Bemark, M. The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunol., 2017, 10(6), 1361-1374.
[http://dx.doi.org/10.1038/mi.2017.62] [PMID: 28745325]
[144]
Oliveira, L.M.; Teixeira, F.M.E.; Sato, M.N. Impact of retinoic acid on immune cells and inflammatory diseases. Mediators Inflamm., 2018, 2018, 3067126.
[http://dx.doi.org/10.1155/2018/3067126] [PMID: 30158832]
[145]
Sanjabi, S.; Oh, S.A.; Li, M.O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol., 2017, 9(6), a022236.
[http://dx.doi.org/10.1101/cshperspect.a022236] [PMID: 28108486]
[146]
Bergstrom, K.S.; Kissoon-Singh, V.; Gibson, D.L.; Ma, C.; Montero, M.; Sham, H.P.; Ryz, N.; Huang, T.; Velcich, A.; Finlay, B.B.; Chadee, K.; Vallance, B.A. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog., 2010, 6(5), e1000902.
[http://dx.doi.org/10.1371/journal.ppat.1000902] [PMID: 20485566]
[147]
Mickael, M.E.; Bhaumik, S.; Basu, R. Retinoid-related orphan receptor RORγt in CD4+ T-cell-mediated intestinal homeostasis and inflammation. Am. J. Pathol., 2020, 190(10), 1984-1999.
[http://dx.doi.org/10.1016/j.ajpath.2020.07.010] [PMID: 32735890]
[148]
von Knethen, A.; Heinicke, U.; Weigert, A.; Zacharowski, K.; Brüne, B. Histone deacetylation inhibitors as modulators of regulatory T cells. Int. J. Mol. Sci., 2020, 21(7), E2356.
[http://dx.doi.org/10.3390/ijms21072356] [PMID: 32235291]
[149]
Negi, S.; Saini, S.; Tandel, N.; Sahu, K.; Mishra, R.P.N.; Tyagi, R.K. Translating Treg therapy for inflammatory bowel disease in humanized mice. Cells, 2021, 10(8), 1847.
[150]
Konieczna, P.; Ferstl, R.; Ziegler, M.; Frei, R.; Nehrbass, D.; Lauener, R.P.; Akdis, C.A.; O’Mahony, L. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms. PLoS One, 2013, 8(5), e62617.
[http://dx.doi.org/10.1371/journal.pone.0062617] [PMID: 23704880]
[151]
Russler-Germain, E.V.; Rengarajan, S.; Hsieh, C.S. Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunol., 2017, 10(6), 1375-1386.
[http://dx.doi.org/10.1038/mi.2017.65] [PMID: 28766556]
[152]
Levy, M.; Thaiss, C.A.; Katz, M.N.; Suez, J.; Elinav, E. Inflammasomes and the microbiota--partners in the preservation of mucosal homeostasis. Semin. Immunopathol., 2015, 37(1), 39-46.
[http://dx.doi.org/10.1007/s00281-014-0451-7] [PMID: 25315349]
[153]
Latour, Y.L.; Gobert, A.P.; Wilson, K.T. The role of polyamines in the regulation of macrophage polarization and function. Amino Acids, 2020, 52(2), 151-160.
[http://dx.doi.org/10.1007/s00726-019-02719-0] [PMID: 31016375]
[154]
Proietti, E.; Rossini, S.; Grohmann, U.; Mondanelli, G. Polyamines and kynurenines at the intersection of immune modulation. Trends Immunol., 2020, 41(11), 1037-1050.
[http://dx.doi.org/10.1016/j.it.2020.09.007] [PMID: 33055013]
[155]
Brestoff, JR Artis, DJNI Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol., 2013, 14, 676-684.
[http://dx.doi.org/10.1038/ni.2640]
[156]
Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile acids activated receptors regulate. Innate Immun., 1853, 2018, 9.
[157]
Keitel, V.; Häussinger, D. Role of TGR5 (GPBAR1) in Liver Disease. Semin. Liver Dis., 2018, 38(4), 333-339.
[http://dx.doi.org/10.1055/s-0038-1669940] [PMID: 30357770]
[158]
Keitel, V.; Stindt, J.; Häussinger, D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb. Exp. Pharmacol., 2019, 256, 19-49.
[http://dx.doi.org/10.1007/164_2019_230] [PMID: 31302759]
[159]
Atarashi, K.; Tanoue, T.; Ando, M.; Kamada, N.; Nagano, Y.; Narushima, S.; Suda, W.; Imaoka, A.; Setoyama, H.; Nagamori, T.; Ishikawa, E.; Shima, T.; Hara, T.; Kado, S.; Jinnohara, T.; Ohno, H.; Kondo, T.; Toyooka, K.; Watanabe, E.; Yokoyama, S.; Tokoro, S.; Mori, H.; Noguchi, Y.; Morita, H.; Ivanov, I.I.; Sugiyama, T.; Nuñez, G.; Camp, J.G.; Hattori, M.; Umesaki, Y.; Honda, K. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell, 2015, 163(2), 367-380.
[http://dx.doi.org/10.1016/j.cell.2015.08.058] [PMID: 26411289]
[160]
Hironaka, I.; Iwase, T.; Sugimoto, S.; Okuda, K.; Tajima, A.; Yanaga, K.; Mizunoe, Y. Glucose triggers ATP secretion from bacteria in a growth-phase-dependent manner. Appl. Environ. Microbiol., 2013, 79(7), 2328-2335.
[http://dx.doi.org/10.1128/AEM.03871-12] [PMID: 23354720]
[161]
Faas, M.M.; Sáez, T.; de Vos, P. Extracellular ATP and adenosine: The Yin and Yang in immune responses? Mol. Aspects Med., 2017, 55, 9-19.
[http://dx.doi.org/10.1016/j.mam.2017.01.002] [PMID: 28093236]
[162]
Postler, T.S.; Ghosh, S. Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab., 2017, 26(1), 110-130.
[http://dx.doi.org/10.1016/j.cmet.2017.05.008] [PMID: 28625867]
[163]
Zhou, H.; Wang, L.; Liu, F. Immunological impact of intestinal t cells on metabolic diseases. Front Immunol., 2021, 12, 639902.
[164]
Kusu, T.; Kayama, H.; Kinoshita, M.; Jeon, S.G.; Ueda, Y.; Goto, Y.; Okumura, R.; Saiga, H.; Kurakawa, T.; Ikeda, K.; Maeda, Y.; Nishimura, J.; Arima, Y.; Atarashi, K.; Honda, K.; Murakami, M.; Kunisawa, J.; Kiyono, H.; Okumura, M.; Yamamoto, M.; Takeda, K. Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J. Immunol., 2013, 190(2), 774-783.
[http://dx.doi.org/10.4049/jimmunol.1103067] [PMID: 23241884]
[165]
Dasgupta, S.; Erturk-Hasdemir, D.; Ochoa-Reparaz, J.; Reinecker, H.C.; Kasper, D.L. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe, 2014, 15(4), 413-423.
[http://dx.doi.org/10.1016/j.chom.2014.03.006] [PMID: 24721570]
[166]
Johnson, J.L.; Jones, M.B.; Cobb, B.A. Polysaccharide A from the capsule of Bacteroides fragilis induces clonal CD4+ T cell expansion. J. Biol. Chem., 2015, 290(8), 5007-5014.
[http://dx.doi.org/10.1074/jbc.M114.621771] [PMID: 25540199]
[167]
Ramakrishna, C.; Kujawski, M.; Chu, H.; Li, L.; Mazmanian, S.K.; Cantin, E.M. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat. Commun., 2019, 10(1), 2153.
[http://dx.doi.org/10.1038/s41467-019-09884-6] [PMID: 31089128]
[168]
Round, J.L.; Lee, S.M.; Li, J.; Tran, G.; Jabri, B.; Chatila, T.A.; Mazmanian, S.K. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 2011, 332(6032), 974-977.
[http://dx.doi.org/10.1126/science.1206095] [PMID: 21512004]
[169]
Jiang, F.; Meng, D.; Weng, M.; Zhu, W.; Wu, W.; Kasper, D.; Walker, W.A. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1β-induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLoS One, 2017, 12(3), e0172738.
[http://dx.doi.org/10.1371/journal.pone.0172738] [PMID: 28278201]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy