Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

体力劳动和锻炼可降低老年人认知障碍的风险:一项基于人群的纵向研究

卷 18, 期 8, 2021

发表于: 17 November, 2021

页: [638 - 645] 页: 8

弟呕挨: 10.2174/1567205018666211118100451

价格: $65

conference banner
摘要

背景:体力劳动对生活在农村地区的中国老年人认知障碍风险的独立影响仍有待阐明。 目的:我们旨在确定体力劳动和体育锻炼是否可以降低认知障碍的风险。 方法:我们在 2 年的随访期内收集了 7,000 名无认知障碍(年龄≥60 岁)的永久居民的数据。我们使用中文版的简易精神状态检查(MMSE)来评估认知功能。我们进行了多变量 Cox 回归分析,以计算调整后的风险比 (HR) 和 95% 置信区间 (%95 CI),作为衡量体力工作/锻炼与认知障碍之间关联的指标,同时控制潜在的混杂因素。 结果:在 1.93 年的中位随访期内,7,000 名参与者中有 1,224 名(17.5%)出现认知障碍,总发病率为 97.69/1000 人年。在对潜在的混杂因素进行调整后,参加体育锻炼(HR:0.51;95% CI:0.43-0.60)或体育锻炼(HR:0.53;95% CI:0.44-0.65)与认知障碍风险降低相关。分层分析表明体力工作和锻炼之间的相加和相乘的相互作用。农业工作(HR:0.46;95% CI:0.38-0.55)、步行/太极拳(HR:0.54;95% CI:0.44-0.67)和快走/秧歌(HR:0.57;95% CI:0.33- 0.97)对认知障碍有显着的保护作用。 结论:体力劳动和锻炼都可以降低老年人认知障碍的风险。建议进行合理类型和适当强度的体力活动,以预防或延缓认知障碍的进展。

关键词: 身体活动、认知障碍、纵向研究、风险比、老年人、衰老。

[1]
World Population Prospects: The 2017 Revision 2017. Available from: https://www.un.org/development/desa/publications/worldpopulation-prospects-the-2017-revision.html
[2]
Prince M, Ali GC, Guerchet M, Prina AM, Albanese E, Wu YT. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 2016; 8(1): 23.
[http://dx.doi.org/10.1186/s13195-016-0188-8] [PMID: 27473681]
[3]
Wu YT, Ali GC, Guerchet M, et al. Prevalence of dementia in mainland China, Hong Kong and Taiwan: An updated systematic review and meta-analysis. Int J Epidemiol 2018; 47(3): 709-19.
[http://dx.doi.org/10.1093/ije/dyy007] [PMID: 29444280]
[4]
Wimo A, Guerchet M, Ali GC, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017; 13(1): 1-7.
[http://dx.doi.org/10.1016/j.jalz.2016.07.150] [PMID: 27583652]
[5]
Parra MA, Baez S, Allegri R, et al. Dementia in Latin America: Assessing the present and envisioning the future. Neurology 2018; 90(5): 222-31.
[http://dx.doi.org/10.1212/WNL.0000000000004897] [PMID: 29305437]
[6]
Zhang Y, Gu Y, Zhang Y, et al. Effect of sociodemographic and physical activity on cognitive function in older adults: A nationwide cross-sectional survey. Int J Geriatr Psychiatry 2019; 34(2): 243-8.
[http://dx.doi.org/10.1002/gps.4932] [PMID: 29984420]
[7]
Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health 2014; 14: 510.
[http://dx.doi.org/10.1186/1471-2458-14-510] [PMID: 24885250]
[8]
Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 2014; 14: 643.
[http://dx.doi.org/10.1186/1471-2458-14-643] [PMID: 24962204]
[9]
Grande G, Vanacore N, Maggiore L, et al. Physical activity reduces the risk of dementia in mild cognitive impairment subjects: A cohort study. J Alzheimers Dis 2014; 39(4): 833-9.
[http://dx.doi.org/10.3233/JAD-131808] [PMID: 24296815]
[10]
Lee J. The relationship between physical activity and dementia: A systematic review and meta-analysis of prospective cohort studies. J Gerontol Nurs 2018; 44(10): 22-9.
[http://dx.doi.org/10.3928/00989134-20180814-01] [PMID: 30257021]
[11]
Voss MW, Vivar C, Kramer AF, van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 2013; 17(10): 525-44.
[http://dx.doi.org/10.1016/j.tics.2013.08.001] [PMID: 24029446]
[12]
Wang Z, van Praag H. Exercise and the brain: Neurogenesis, synaptic plasticity, spine density, and angiogenesis. In: Boecker H, Hillman C, Scheef L, Strüder H, Eds. Functional neuroimaging in exercise and sport sciences. New York: Springer 2012; pp. 3-24.
[http://dx.doi.org/10.1007/978-1-4614-3293-7_1]
[13]
World Health Organization. Noncommunicable diseases and their risk factors Available from: http://www.who.int/ncds/prevention/physical-activity/introduction/en/ [Accessed 28 Feb 2019].
[14]
China's 13th five-year plan for the development of national aging undertakings and the construction of the aging care system Available from: http://www.cncaprc.gov.cn/contents/2/179240.html
[15]
Sheng Y, He F, Lin JF, Shen W, Qiu YW. Tea and risk of age-related cataracts: A cross-sectional study in zhejiang province, China. J Epidemiol 2016; 26(11): 587-92.
[http://dx.doi.org/10.2188/jea.JE20150223] [PMID: 27180932]
[16]
Li FD, He F, Chen TR, et al. Reproductive history and risk of cognitive impairment in elderly women: A cross-sectional study in eastern China. J Alzheimers Dis 2016; 49(1): 139-47.
[http://dx.doi.org/10.3233/JAD-150444] [PMID: 26444784]
[17]
Wang Y, Ed. The rating scales for neurology. Beijing: China Friendship Publishing Company 2005.
[18]
Wang T, Xiao S, Chen K, et al. Prevalence, incidence, risk and protective factors of amnestic mild cognitive impairment in the elderly in shanghai. Curr Alzheimer Res 2017; 14(4): 460-6.
[http://dx.doi.org/10.2174/1567205013666161122094208] [PMID: 27875948]
[19]
Ravaglia G, Forti P, Montesi F, et al. Mild cognitive impairment: epidemiology and dementia risk in an elderly Italian population. J Am Geriatr Soc 2008; 56(1): 51-8.
[http://dx.doi.org/10.1111/j.1532-5415.2007.01503.x] [PMID: 18028343]
[20]
Bae JB, Kim YJ, Han JW, et al. Incidence of and risk factors for Alzheimer’s disease and mild cognitive impairment in Korean elderly. Dement Geriatr Cogn Disord 2015; 39(1-2): 105-15.
[http://dx.doi.org/10.1159/000366555] [PMID: 25401488]
[21]
Chaves ML, Camozzato AL, Godinho C, Piazenski I, Kaye J. Incidence of mild cognitive impairment and Alzheimer disease in Southern Brazil. J Geriatr Psychiatry Neurol 2009; 22(3): 181-7.
[http://dx.doi.org/10.1177/0891988709332942] [PMID: 19307320]
[22]
Caracciolo B, Palmer K, Monastero R, Winblad B, Bäckman L, Fratiglioni L. Occurrence of cognitive impairment and dementia in the community: A 9-year-long prospective study. Neurology 2008; 70(19 Pt 2): 1778-85.
[http://dx.doi.org/10.1212/01.wnl.0000288180.21984.cb] [PMID: 18184916]
[23]
Manly JJ, Tang MX, Schupf N, Stern Y, Vonsattel JP, Mayeux R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol 2008; 63(4): 494-506.
[http://dx.doi.org/10.1002/ana.21326] [PMID: 18300306]
[24]
World Health Organization. Global Strategy on Diet, Physical Activity and Health Available from: https://www.who.int/dietphysicalactivity/pa/en/
[25]
Ma F, Wang T, Yin J, et al. A case-control study on the influencing factors to mild cognitive impairment among the community-based elderly population. Zhonghua Liu Xing Bing Xue Za Zhi 2008; 29(9): 873-7.
[PMID: 19173847]
[26]
Zhu YP, Chen MF, Shen BH. A prevalence study on mild cognitive impairment among elderly populations in Zhejiang province. Zhonghua Liu Xing Bing Xue Za Zhi 2013; 34(5): 475-7.
[PMID: 24016438]
[27]
Solfrizzi V, Capurso C, D’Introno A, et al. Lifestyle-related factors in predementia and dementia syndromes. Expert Rev Neurother 2008; 8(1): 133-58.
[http://dx.doi.org/10.1586/14737175.8.1.133] [PMID: 18088206]
[28]
Wang S, Lv W, Zhang H, et al. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. Geroscience 2020; 42(5): 1387-410.
[http://dx.doi.org/10.1007/s11357-020-00233-w] [PMID: 32696219]
[29]
Farias Quipildor GE, Mao K, Hu Z, et al. Central IGF-1 protects against features of cognitive and sensorimotor decline with aging in male mice. Geroscience 2019; 41(2): 185-208.
[http://dx.doi.org/10.1007/s11357-019-00065-3] [PMID: 31076997]
[30]
Pallàs M, Pizarro JG, Gutierrez-Cuesta J, et al. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 2008; 154(4): 1388-97.
[http://dx.doi.org/10.1016/j.neuroscience.2008.04.065] [PMID: 18538940]
[31]
Kiss T, Balasubramanian P, Valcarcel-Ares MN, et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: A potential mechanism for the prevention of vascular cognitive impairment. Geroscience 2019; 41(5): 619-30.
[http://dx.doi.org/10.1007/s11357-019-00074-2] [PMID: 31144244]
[32]
Tarantini S, Yabluchanskiy A, Csipo T, et al. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. Geroscience 2019; 41(5): 533-42.
[http://dx.doi.org/10.1007/s11357-019-00101-2] [PMID: 31679124]
[33]
Abbott RD, White LR, Ross GW, Masaki KH, Curb JD, Petrovitch H. Walking and dementia in physically capable elderly men. JAMA 2004; 292(12): 1447-53.
[http://dx.doi.org/10.1001/jama.292.12.1447] [PMID: 15383515]
[34]
Weuve J, Kang JH, Manson JE, Breteler MM, Ware JH, Grodstein F. Physical activity, including walking, and cognitive function in older women. JAMA 2004; 292(12): 1454-61.
[http://dx.doi.org/10.1001/jama.292.12.1454] [PMID: 15383516]
[35]
Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 2001; 58(3): 498-504.
[http://dx.doi.org/10.1001/archneur.58.3.498] [PMID: 11255456]
[36]
Schlosser Covell GE, Hoffman-Snyder CR, Wellik KE, et al. Physical activity level and future risk of mild cognitive impairment or dementia: A critically appraised topic. Neurologist 2015; 19(3): 89-91.
[http://dx.doi.org/10.1097/NRL.0000000000000013] [PMID: 25692517]
[37]
Krell-Roesch J, Feder NT, Roberts RO, et al. Leisure-time physical activity and the risk of incident dementia: The mayo clinic study of aging. J Alzheimers Dis 2018; 63(1): 149-55.
[http://dx.doi.org/10.3233/JAD-171141] [PMID: 29614667]
[38]
Lam FM, Huang MZ, Liao LR, Chung RC, Kwok TC, Pang MY. Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: A systematic review. J Physiother 2018; 64(1): 4-15.
[http://dx.doi.org/10.1016/j.jphys.2017.12.001] [PMID: 29289581]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy