Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Copper Complexes as Antitumor Agents: In vitro and In vivo Evidence

Author(s): Lucia M. Balsa, Enrique J. Baran and Ignacio E. León *

Volume 30, Issue 5, 2023

Published on: 14 January, 2022

Page: [510 - 557] Pages: 48

DOI: 10.2174/0929867328666211117094550

Price: $65

Abstract

Copper is an essential element for most aerobic organisms, with an important function as a structural and catalytic cofactor, and in consequence, it is implicated in several biological actions.

The relevant aspects of chemistry and biochemistry and the importance of copper compounds in medicine give us a comprehensive knowledge of the multifaceted applications of copper in physiology and physiopathology.

In this review, we present an outline of the chemistry, and the antitumor properties of copper complexes on breast, colon, and lung cancer cells focus on the role of copper in cancer, the relationship between structure-activity, molecular targets, and the study of the mechanism of action involved in its anticancer activity. This overview is expected to contribute to understanding the design, synthesis, and uses of copper complexes as antitumor agents in the most common cancers.

Keywords: Copper, cancer, mechanism of action, SAR, cisplatin, tumors.

[1]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[2]
Jung, Y.; Lippard, S.J. Direct cellular responses to platinum-induced DNA damage. Chem. Rev., 2007, 107(5), 1387-1407.
[http://dx.doi.org/10.1021/cr068207j] [PMID: 17455916]
[3]
Leon, I.E.; Cadavid-Vargas, J.F.; Di Virgilio, A.L.; Etcheverry, S.B. Vanadium, Ruthenium and Copper compounds: a new class of nonplatinum metallodrugs with anticancer activity. Curr. Med. Chem., 2017, 24(2), 112-148.
[http://dx.doi.org/10.2174/0929867323666160824162546] [PMID: 27554807]
[4]
Duncan, C.; White, A.R. Copper complexes as therapeutic agents. Metallomics, 2012, 4(2), 127-138.
[http://dx.doi.org/10.1039/C2MT00174H] [PMID: 22187112]
[5]
Wehbe, M.; Leung, A.W.Y.; Abrams, M.J.; Orvig, C.; Bally, M.B. A perspective - can copper complexes be developed as a novel class of therapeutics? Dalton Trans., 2017, 46(33), 10758-10773.
[http://dx.doi.org/10.1039/C7DT01955F] [PMID: 28702645]
[6]
Fraústo da Silva, J.J.R.; Williams, R.J.P. The Biological Chemistry of the Elements; Clarendon Press: Oxford, UK, 1991.
[7]
Krebs, B. Metals in biology: metalloenzymes and their biomimetic model compounds. Purple acid phosphatase and catechol oxidase. An. Acad. Nac. Cs. Ex. Fís. Nat., 2006, 58, 39-55.
[8]
Hay, R.W. Plant metalloenzymes. In: Plants Chem. Elem., M.E. Farago; Verlag Chemie: Weinheim, 1994; pp. 107-148.
[http://dx.doi.org/10.1002/9783527615919.ch5]
[9]
Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol., 2009, 12(3), 259-266.
[http://dx.doi.org/10.1016/j.pbi.2009.05.006] [PMID: 19524482]
[10]
Baran, E.J. Copper in plants: an essential and multifunctional element. In: Advances in Plant Physiology; Scientific Publishers: Jodhpur, 2014; pp. 373-397.
[12]
Baran, E.J. Metalofármacos: Una nueva perspectiva para la farmacología y la medicina. An. Acad. Nac. Cs. Ex. Fís. Nat., 2011, 63, 77-97.
[13]
Ruiz-Azuara, L.; Bravo-Gómez, M.E. Copper compounds in cancer chemotherapy. Curr. Med. Chem., 2010, 17(31), 3606-3615.
[http://dx.doi.org/10.2174/092986710793213751] [PMID: 20846116]
[14]
Baran, E.J. Química Bioinorgánica; McGraw-Hill Interamericana de España S.A.: Madrid, 1995.
[15]
Roat-Malone, R.M. Bioinorganic Chemistry. A Short Course; Wiley: Hoboken, NJ, 2002.
[http://dx.doi.org/10.1002/0471265330]
[16]
Porterfield, W.W. Inorganic Chemistry. A Unified Approach, 2nd ed; Academic Press: San Diego, 1993.
[17]
Baran, E.J. Phytochelatins: natural chelating agents involved in plant protection. Adv. Plant Physiol, 2012, 2012, 389-414.
[18]
Baran, E.J. Quelatoterapias: Avances Recientes y Perspectivas; Los Compuestos Metálicos En Med., EAE-LAP Lambert Academic Publishing GmbH & Co: Saarbrücken, 2012, pp. 383-445.
[19]
Williams, R.J.P.; Fraústo da Silva, J.J.R. The Natural Selection of the Chemical Elements; Clarendon Press: Oxford, 1996.
[20]
Williams, R.J.P.; Fraústo Da Silva, J.J.R. The distribution of elements in cells. Coord. Chem. Rev., 2000, 200-202, 247-348.
[http://dx.doi.org/10.1016/S0010-8545(00)00324-6]
[21]
Ochiai, E.L. Iron versus copper: II. Principles and applications in bioinorganic chemistry. J. Chem. Educ., 1986, 63, 942-944.
[http://dx.doi.org/10.1021/ed063p942]
[22]
Vila, A.J.; Fernández, C.O. Copper in electron-transfer proteins. In: Handbook on Metalloproteins; Bertini, M.D.I.; Sigel, A.; Sigel, H., Eds.; New York, 2001; pp. 813-856.
[23]
Ivo, S. Copper: effects of deficiency and overload. Met. Ions Life Sci., 2013, 13, 359-387.
[PMID: 24470097]
[24]
Sarkar, B. Copper.Handb.Toxic. Inorg. Compd; Seiler, M.D.H.J.; Sigel, H; Sigel, A., Ed.; New York, 1988, pp. 265-276.
[25]
Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 1996, 63(5), 797S-811S.
[http://dx.doi.org/10.1093/ajcn/63.5.797] [PMID: 8615367]
[26]
Bertini, A. Copper(II) as probe in substituted metalloproteins. In: Met.Ions Biol. Syst; Sigel, M.D.H., Ed.; New York, 1981; Vol. 12, pp. 31-74.
[27]
Solomon, E.I.; Lowery, M.D. Electronic structure contributions to function in bioinorganic chemistry. Science, 1993, 259, 1575-1581.
[http://dx.doi.org/10.1126/science.8384374]
[28]
Solomon, E.I.; Sundaram, U.M.; Machonkin, T.E. Multicopper oxidases and oxygenases. Chem. Rev., 1996, 96(7), 2563-2606.
[http://dx.doi.org/10.1021/cr950046o] [PMID: 11848837]
[29]
Halcrow, S.E.V.; Knowles, M.A.; Phillips, P.F. Copper proteins in the transport and activation of dioxygen, and the reduction of inorganic molecules. In: Handb. Met; Sigel, D., Ed.; New York, 2001; pp. 709-762.
[30]
Rosenzweig, A.C. Metallochaperones: bind and deliver. Chem. Biol., 2002, 9(6), 673-677.
[http://dx.doi.org/10.1016/S1074-5521(02)00156-4] [PMID: 12079778]
[31]
Li, Y. Copper homeostasis: emerging target for cancer treatment. IUBMB Life, 2020, 72(9), 1900-1908.
[http://dx.doi.org/10.1002/iub.2341] [PMID: 32599675]
[32]
Skrajnowska, D.; Bobrowska-Korczak, B.; Tokarz, A.; Bialek, S.; Jezierska, E.; Makowska, J. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis. Biol. Trace Elem. Res., 2013, 156(1-3), 271-278.
[http://dx.doi.org/10.1007/s12011-013-9854-x] [PMID: 24213724]
[33]
Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19507-19512.
[http://dx.doi.org/10.1073/pnas.1318431110] [PMID: 24218578]
[34]
Brady, D.C.; Crowe, M.S.; Turski, M.L.; Hobbs, G.A.; Yao, X.; Chaikuad, A.; Knapp, S.; Xiao, K.; Campbell, S.L.; Thiele, D.J.; Counter, C.M. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature, 2014, 509(7501), 492-496.
[http://dx.doi.org/10.1038/nature13180] [PMID: 24717435]
[35]
Zhang, X.; Yang, Q. Association between serum copper levels and lung cancer risk: a meta-analysis. J. Int. Med. Res., 2018, 46(12), 4863-4873.
[http://dx.doi.org/10.1177/0300060518798507] [PMID: 30296873]
[36]
Khadem-Ansari, M.H.; Asoudeh, M.; Gheshlaghi, H.F.K.; Nozari, S.; Zarringol, M.; Maroufi, N.F.; Faridvand, Y. Copper and zinc in stage I multiple myeloma: Relation with ceruloplasmin, lipid peroxidation, and superoxide dismutase activity. Horm. Mol. Biol. Clin. Investig., 2018, 37(3), 1-6.
[http://dx.doi.org/10.1515/hmbci-2018-0055] [PMID: 30367794]
[37]
Huang, Y.L.; Sheu, J.Y.; Lin, T.H. Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin. Biochem., 1999, 32(2), 131-136.
[http://dx.doi.org/10.1016/S0009-9120(98)00096-4] [PMID: 10211630]
[38]
Kuo, H.W.; Chen, S.F.; Wu, C.C.; Chen, D.R.; Lee, J.H. Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol. Trace Elem. Res., 2002, 89(1), 1-11.
[http://dx.doi.org/10.1385/BTER:89:1:1] [PMID: 12413046]
[39]
Akhgarjand, C.; Djafarian, K.; Rezvani, H.; Azargashb, E.; Vafa, M. Comparing serum levels of zinc, copper, certain antioxidant vitamins and dietary intakes in acute lymphoblastic leukemia (ALL) patients before and after chemotherapy. Am. J. Blood Res., 2018, 8(3), 21-28.
[PMID: 30498622]
[40]
Yaman, M.; Kaya, G.; Yekeler, H. Distribution of trace metal concentrations in paired cancerous and non-cancerous human stomach tissues. World J. Gastroenterol., 2007, 13(4), 612-618.
[http://dx.doi.org/10.3748/wjg.v13.i4.612] [PMID: 17278230]
[41]
Yaman, M.; Kaya, G.; Simsek, M. Comparison of trace element concentrations in cancerous and noncancerous human endometrial and ovary tissues. Int. J. Gynecol. Cancer, 2007, 17(1), 220-228.
[http://dx.doi.org/10.1111/j.1525-1438.2006.00742.x] [PMID: 17291257]
[42]
Turski, M.L.; Brady, D.C.; Kim, H.J.; Kim, B-E.; Nose, Y.; Counter, C.M.; Winge, D.R.; Thiele, D.J. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol. Cell. Biol., 2012, 32(7), 1284-1295.
[http://dx.doi.org/10.1128/MCB.05722-11] [PMID: 22290441]
[43]
Itoh, S.; Kim, H.W.; Nakagawa, O.; Ozumi, K.; Lessner, S.M.; Aoki, H.; Akram, K.; McKinney, R.D.; Ushio-Fukai, M.; Fukai, T. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J. Biol. Chem., 2008, 283(14), 9157-9167.
[http://dx.doi.org/10.1074/jbc.M709463200] [PMID: 18245776]
[44]
Zhao, Y.; Adjei, A.A. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist, 2015, 20(6), 660-673.
[http://dx.doi.org/10.1634/theoncologist.2014-0465] [PMID: 26001391]
[45]
Hu, G.F. Copper stimulates proliferation of human endothelial cells under culture. J. Cell. Biochem., 1998, 69(3), 326-335.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19980601)69:3<326:AID-JCB10>3.0.CO;2-A] [PMID: 9581871]
[46]
Mandinov, L.; Mandinova, A.; Kyurkchiev, S.; Kyurkchiev, D.; Kehayov, I.; Kolev, V.; Soldi, R.; Bagala, C.; de Muinck, E.D.; Lindner, V.; Post, M.J.; Simons, M.; Bellum, S.; Prudovsky, I.; Maciag, T. Copper chelation represses the vascular response to injury. Proc. Natl. Acad. Sci. USA, 2003, 100(11), 6700-6705.
[http://dx.doi.org/10.1073/pnas.1231994100] [PMID: 12754378]
[47]
Prudovsky, I.; Bagala, C.; Tarantini, F.; Mandinova, A.; Soldi, R.; Bellum, S.; Maciag, T. The intracellular translocation of the components of the fibroblast growth factor 1 release complex precedes their assembly prior to export. J. Cell Biol., 2002, 158(2), 201-208.
[http://dx.doi.org/10.1083/jcb.200203084] [PMID: 12135982]
[48]
Pan, Q.; Kleer, C.G.; van Golen, K.L.; Irani, J.; Bottema, K.M.; Bias, C.; De Carvalho, M.; Mesri, E.A.; Robins, D.M.; Dick, R.D.; Brewer, G.J.; Merajver, S.D. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res., 2002, 62(17), 4854-4859.
[PMID: 12208730]
[49]
Soncin, F.; Guitton, J.D.; Cartwright, T.; Badet, J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem. Biophys. Res. Commun., 1997, 236(3), 604-610.
[http://dx.doi.org/10.1006/bbrc.1997.7018] [PMID: 9245697]
[50]
Feng, W.; Ye, F.; Xue, W.; Zhou, Z.; Kang, Y.J. Copper regulation of hypoxia-inducible factor-1 activity. Mol. Pharmacol., 2009, 75(1), 174-182.
[http://dx.doi.org/10.1124/mol.108.051516] [PMID: 18842833]
[51]
Bhuvanasundar, R.; John, A.; Sulochana, K.N.; Coral, K.; Deepa, P.R.; Umashankar, V. A molecular model of human Lysyl Oxidase (LOX) with optimal copper orientation in the catalytic cavity for induced fit docking studies with potential modulators. Bioinformation, 2014, 10(7), 406-412.
[http://dx.doi.org/10.6026/97320630010406] [PMID: 25187679]
[52]
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[53]
El-Haibi, C.P.; Bell, G.W.; Zhang, J.; Collmann, A.Y.; Wood, D.; Scherber, C.M.; Csizmadia, E.; Mariani, O.; Zhu, C.; Campagne, A.; Toner, M.; Bhatia, S.N.; Irimia, D.; Vincent-Salomon, A.; Karnoub, A.E. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc. Natl. Acad. Sci. USA, 2012, 109(43), 17460-17465.
[http://dx.doi.org/10.1073/pnas.1206653109] [PMID: 23033492]
[54]
Okkelman, I.A.; Sukaeva, A.Z.; Kirukhina, E.V.; Korneenko, T.V.; Pestov, N.B. Nuclear translocation of lysyl oxidase is promoted by interaction with transcription repressor p66β. Cell Tissue Res., 2014, 358(2), 481-489.
[http://dx.doi.org/10.1007/s00441-014-1972-z] [PMID: 25118846]
[55]
MacDonald, G.; Nalvarte, I.; Smirnova, T.; Vecchi, M.; Aceto, N.; Dolemeyer, A.; Frei, A.; Lienhard, S.; Wyckoff, J.; Hess, D.; Seebacher, J.; Keusch, J.J.; Gut, H.; Salaun, D.; Mazzarol, G.; Disalvatore, D.; Bentires-Alj, M.; Di Fiore, P.P.; Badache, A.; Hynes, N.E. Memo is a copper-dependent redox protein with an essential role in migration and metastasis (Science Signaling 7, 329 (ra56)). Sci. Signal., 2014, 7, 1-13.
[http://dx.doi.org/10.1126/scisignal.2004870]
[56]
Sorokin, A.V.; Chen, J. MEMO1, a new IRS1-interacting protein, induces epithelial-mesenchymal transition in mammary epithelial cells. Oncogene, 2013, 32(26), 3130-3138.
[http://dx.doi.org/10.1038/onc.2012.327] [PMID: 22824790]
[57]
De Luca, A.; Barile, A.; Arciello, M.; Rossi, L. Copper homeostasis as target of both consolidated and innovative strategies of anti-tumor therapy. J. Trace Elem. Med. Biol., 2019, 55, 204-213.
[http://dx.doi.org/10.1016/j.jtemb.2019.06.008] [PMID: 31345360]
[58]
Eichhorn, G.L.; Shin, Y.A. The interaction of metal ions with polynucleotides and related compounds. VI. Effect of metal ions on the anion-exchange behavior of the nucleotides. Anal. Biochem., 1965, 11(3), 592-594.
[http://dx.doi.org/10.1016/0003-2697(65)90080-1]
[59]
Erxleben, A. Interactions of copper complexes with nucleic acids. Coord. Chem. Rev., 2018, 360, 92-121.
[http://dx.doi.org/10.1016/j.ccr.2018.01.008]
[60]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev., 2014, 114(1), 815-862.
[http://dx.doi.org/10.1021/cr400135x] [PMID: 24102434]
[61]
Jaividhya, P.; Dhivya, R.; Akbarsha, M.A.; Palaniandavar, M. Efficient DNA cleavage mediated by mononuclear mixed ligand copper(II) phenolate complexes: the role of co-ligand planarity on DNA binding and cleavage and anticancer activity. J. Inorg. Biochem., 2012, 114, 94-105.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.04.018] [PMID: 22841366]
[62]
Buchtík, R.; Trávníček, Z.; Vančo, J.; Herchel, R.; Dvořák, Z. Synthesis, characterization, DNA interaction and cleavage, and in vitro cytotoxicity of copper(II) mixed-ligand complexes with 2-phenyl-3-hydroxy-4(1H)-quinolinone. Dalton Trans., 2011, 40(37), 9404-9412.
[http://dx.doi.org/10.1039/c1dt10674k] [PMID: 21842058]
[63]
Chen, Q.Y.; Fu, H.J.; Zhu, W.H.; Qi, Y.; Ma, Z.P.; Zhao, K.D.; Gao, J. Interaction with DNA and different effect on the nucleus of cancer cells for copper(II) complexes of N-benzyl di(pyridylmethyl)amine. Dalton Trans., 2011, 40(17), 4414-4420.
[http://dx.doi.org/10.1039/c0dt01616k] [PMID: 21399811]
[64]
Li, X.W.; Zheng, Y.J.; Li, Y.T.; Wu, Z.Y.; Yan, C.W. Synthesis and structure of new bicopper(II) complexes bridged by N-(2- aminopropyl)-N′-(2-oxidophenyl)oxamide: the effects of terminal ligands on structures, anticancer activities and DNA-binding properties. Eur. J. Med. Chem., 2011, 46(9), 3851-3857.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.053] [PMID: 21669477]
[65]
Baraldi, P.G.; Bovero, A.; Fruttarolo, F.; Preti, D.; Tabrizi, M.A.; Pavani, M.G.; Romagnoli, R. DNA minor groove binders as potential antitumor and antimicrobial agents. Med. Res. Rev., 2004, 24(4), 475-528.
[http://dx.doi.org/10.1002/med.20000] [PMID: 15170593]
[66]
Komeda, S.; Moulaei, T.; Woods, K.K.; Chikuma, M.; Farrell, N.P.; Williams, L.D. A third mode of DNA binding: Phosphate clamps by a polynuclear Platinum complex. J. Am. Chem. Soc., 2006, 128(50), 16092-16103.
[67]
Buchtík, R.; Trávníček, Z.; Vančo, J. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes. J. Inorg. Biochem., 2012, 116, 163-171.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.07.009] [PMID: 23022693]
[68]
Koppenol, W.H. The Haber-Weiss cycle--70 years later. Redox Rep., 2001, 6(4), 229-234.
[http://dx.doi.org/10.1179/135100001101536373] [PMID: 11642713]
[69]
Fleming, A.M.; Muller, J.G.; Ji, I.; Burrows, C.J. Characterization of 2′-deoxyguanosine oxidation products observed in the Fenton-like system Cu(II)/H2O2/reductant in nucleoside and oligodeoxynucleotide contexts. Org. Biomol. Chem., 2011, 9(9), 3338-3348.
[http://dx.doi.org/10.1039/c1ob05112a] [PMID: 21445431]
[70]
García-Giménez, J.L.; González-Alvarez, M.; Liu-González, M.; Macías, B.; Borrás, J.; Alzuet, G. Toward the development of metal-based synthetic nucleases: DNA binding and oxidative DNA cleavage of a mixed copper(II) complex with N-(9H-purin-6-yl)benzenesulfonamide and 1,10-phenantroline. Antitumor activity in human Caco-2 cells and Jurkat T lymphocytes. Evaluation of p53 and Bcl-2 proteins in the apoptotic mechanism. J. Inorg. Biochem., 2009, 103(6), 923-934.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.04.003] [PMID: 19428113]
[71]
Lu, C.; Eskandari, A.; Cressey, P.B.; Suntharalingam, K. Cancer stem cell and bulk cancer cell active Copper(II) complexes with Vanillin schiff base derivatives and Naproxen. Chemistry, 2017, 23(47), 11366-11374.
[http://dx.doi.org/10.1002/chem.201701939] [PMID: 28658520]
[72]
Ceramella, J.; Mariconda, A.; Iacopetta, D.; Saturnino, C.; Barbarossa, A.; Caruso, A.; Rosano, C.; Sinicropi, M.S.; Longo, P. From coins to cancer therapy: gold, silver and copper complexes targeting human topoisomerases. Bioorg. Med. Chem. Lett., 2020, 30(3), 126905.
[http://dx.doi.org/10.1016/j.bmcl.2019.126905] [PMID: 31874823]
[73]
Keck, J.M.; Conner, J.D.; Wilson, J.T.; Jiang, X.; Lisic, E.C.; Deweese, J.E. Clarifying the mechanism of Copper(II) α-(N)-heterocyclic Thiosemicarbazone complexes on DNA topoisomerase IIα and IIβ. Chem. Res. Toxicol., 2019, 32(10), 2135-2143.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00311] [PMID: 31512855]
[74]
Deweese, J.E.; Osheroff, N. The DNA cleavage reaction of topoisomerase II: Wolf in sheep’s clothing. Nucleic Acids Res., 2009, 37(3), 738-748.
[http://dx.doi.org/10.1093/nar/gkn937] [PMID: 19042970]
[75]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[76]
Conner, J.D.; Medawala, W.; Stephens, M.T.; Morris, W.H.; Deweese, J.E.; Kent, P.L.; Rice, J.J.; Jiang, X.; Lisic, E.C. Cu(II) Benzoylpyridine Thiosemicarbazone complexes: inhibition of human Topoisomerase II and activity against breast cancer cells. Open J. Inorg. Chem., 2016, 06, 146-154.
[http://dx.doi.org/10.4236/ojic.2016.62010]
[77]
Lisic, E.C.; Rand, V.G.; Ngo, L.; Kent, P.; Rice, J.; Gerlach, D.; Papish, E.T.; Jiang, X. Cu(II) Propionyl-Thiazole Thiosemicarbazone complexes: crystal structure, inhibition of human Topoisomerase IIα, and activity against breast cancer cells. Open J. Med. Chem., 2018, 08, 30-46.
[http://dx.doi.org/10.4236/ojmc.2018.82004]
[78]
Duff, B.; Thangella, V.R.; Creaven, B.S.; Walsh, M.; Egan, D.A. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells. Eur. J. Pharmacol., 2012, 689(1-3), 45-55.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.004] [PMID: 22705894]
[79]
Seng, H.L.; Wang, W.S.; Kong, S.M.; Alan Ong, H.K.; Win, Y.F.; Raja Abd Rahman, R.N.; Chikira, M.; Leong, W.K.; Ahmad, M.; Khoo, A.S.B.; Ng, C.H. Biological and cytoselective anticancer properties of copper(II)-polypyridyl complexes modulated by auxiliary methylated glycine ligand. Biometals, 2012, 25(5), 1061-1081.
[http://dx.doi.org/10.1007/s10534-012-9572-4] [PMID: 22836829]
[80]
Katkar, P.; Coletta, A.; Castelli, S.; Sabino, G.L.; Couto, R.A.A.; Ferreira, A.M.; Desideri, A. Effect of oxindolimine copper(II) and zinc(II) complexes on human topoisomerase I activity. Metallomics, 2014, 6(1), 117-125.
[http://dx.doi.org/10.1039/C3MT00099K] [PMID: 24172750]
[81]
Borissenko, L.; Groll, M. 20S proteasome and its inhibitors: Crystallographic knowledge for drug development. Chem. Rev., 2007, 107(3), 687-717.
[http://dx.doi.org/10.1021/cr0502504] [PMID: 17316053]
[82]
Almond, J.B.; Cohen, G.M. The proteasome: a novel target for cancer chemotherapy. Leukemia, 2002, 16(4), 433-443.
[http://dx.doi.org/10.1038/sj.leu.2402417] [PMID: 11960320]
[83]
Navon, A.; Ciechanover, A. The 26 S proteasome: from basic mechanisms to drug targeting. J. Biol. Chem., 2009, 284(49), 33713-33718.
[http://dx.doi.org/10.1074/jbc.R109.018481] [PMID: 19812037]
[84]
Drexler, H.C.A. Activation of the cell death program by inhibition of proteasome function. Proc. Natl. Acad. Sci. USA, 1997, 94(3), 855-860.
[http://dx.doi.org/10.1073/pnas.94.3.855] [PMID: 9023346]
[85]
Zhang, Z.; Wang, H.; Yan, M.; Wang, H.; Zhang, C. Novel copper complexes as potential proteasome inhibitors for cancer treatment (Review). Mol. Med. Rep., 2017, 15(1), 3-11.
[http://dx.doi.org/10.3892/mmr.2016.6022] [PMID: 27959411]
[86]
Santoro, A.M.; Monaco, I.; Attanasio, F.; Lanza, V.; Pappalardo, G.; Tomasello, M.F.; Cunsolo, A.; Rizzarelli, E.; De Luigi, A.; Salmona, M.; Milardi, D. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study. Sci. Rep., 2016, 6, 33444.
[http://dx.doi.org/10.1038/srep33444] [PMID: 27633879]
[87]
Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; Dandona, L.; Fleming, T.; Forouzanfar, M.H.; Hancock, J.; Hay, R.J.; Hunter-Merrill, R.; Huynh, C.; Hosgood, H.D.; Johnson, C.O.; Jonas, J.B.; Khubchandani, J.; Kumar, G.A.; Kutz, M.; Lan, Q.; Larson, H.J.; Liang, X.; Lim, S.S.; Lopez, A.D.; MacIntyre, M.F.; Marczak, L.; Marquez, N.; Mokdad, A.H.; Pinho, C.; Pourmalek, F.; Salomon, J.A.; Sanabria, J.R.; Sandar, L.; Sartorius, B.; Schwartz, S.M.; Shackelford, K.A.; Shibuya, K.; Stanaway, J.; Steiner, C.; Sun, J.; Takahashi, K.; Vollset, S.E.; Vos, T.; Wagner, J.A.; Wang, H.; Westerman, R.; Zeeb, H.; Zoeckler, L.; Abd-Allah, F.; Ahmed, M.B.; Alabed, S.; Alam, N.K.; Aldhahri, S.F.; Alem, G.; Alemayohu, M.A.; Ali, R.; Al-Raddadi, R.; Amare, A.; Amoako, Y.; Artaman, A.; Asayesh, H.; Atnafu, N.; Awasthi, A.; Saleem, H.B.; Barac, A.; Bedi, N.; Bensenor, I.; Berhane, A.; Bernabé, E.; Betsu, B.; Binagwaho, A.; Boneya, D.; Campos-Nonato, I.; Castañeda-Orjuela, C.; Catalá-López, F.; Chiang, P.; Chibueze, C.; Chitheer, A.; Choi, J.Y.; Cowie, B.; Damtew, S.; Das Neves, J.; Dey, S.; Dharmaratne, S.; Dhillon, P.; Ding, E.; Driscoll, T.; Ekwueme, D.; Endries, A.Y.; Farvid, M.; Farzadfar, F.; Fernandes, J.; Fischer, F.; Ghiwot, T.T.; Gebru, A.; Gopalani, S.; Hailu, A.; Horino, M.; Horita, N.; Husseini, A.; Huybrechts, I.; Inoue, M.; Islami, F.; Jakovljevic, M.; James, S.; Javanbakht, M.; Jee, S.H.; Kasaeian, A.; Kedir, M.S.; Khader, Y.S.; Khang, Y.H.; Kim, D.; Leigh, J.; Linn, S.; Lunevicius, R.; El Razek, H.M.A.; Malekzadeh, R.; Malta, D.C.; Marcenes, W.; Markos, D.; Melaku, Y.A.; Meles, K.G.; Mendoza, W.; Mengiste, D.T.; Meretoja, T.J.; Miller, T.R.; Mohammad, K.A.; Mohammadi, A.; Mohammed, S.; Moradi-Lakeh, M.; Nagel, G.; Nand, D.; Le Nguyen, Q.; Nolte, S.; Ogbo, F.A.; Oladimeji, K.E.; Oren, E.; Pa, M.; Park, E.K.; Pereira, D.M.; Plass, D.; Qorbani, M.; Radfar, A.; Rafay, A.; Rahman, M.; Rana, S.M.; Søreide, K.; Satpathy, M.; Sawhney, M.; Sepanlou, S.G.; Shaikh, M.A.; She, J.; Shiue, I.; Shore, H.R.; Shrime, M.G.; So, S.; Soneji, S.; Stathopoulou, V.; Stroumpoulis, K.; Sufiyan, M.B.; Sykes, B.L.; Tabarés-Seisdedos, R.; Tadese, F.; Tedla, B.A.; Tessema, G.A.; Thakur, J.S.; Tran, B.X.; Ukwaja, K.N.; Chudi Uzochukwu, B.S.; Vlassov, V.V.; Weiderpass, E.; Wubshet Terefe, M.; Yebyo, H.G.; Yimam, H.H.; Yonemoto, N.; Younis, M.Z.; Yu, C.; Zaidi, Z.; Zaki, M.E.S.; Zenebe, Z.M.; Murray, C.J.L.; Naghavi, M. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study global burden. JAMA Oncol., 2017, 3, 524-548.
[http://dx.doi.org/10.1001/jamaoncol.2016.5688] [PMID: 27918777]
[88]
Low, M.L.; Paulus, G.; Dorlet, P.; Guillot, R.; Rosli, R.; Delsuc, N.; Crouse, K.A.; Policar, C. Synthesis, characterization and biological activity of Cu(II), Zn(II) and Re(I) complexes derived from S-benzyldithiocarbazate and 3-acetylcoumarin. Biometals, 2015, 28(3), 553-566.
[http://dx.doi.org/10.1007/s10534-015-9831-2] [PMID: 25712003]
[89]
Foo, J.B.; Low, M.L.; Lim, J.H.; Lor, Y.Z.; Zainol Abidin, R.; Eh Dam, V.; Abdul Rahman, N.; Beh, C.Y.; Chan, L.C.; How, C.W.; Tor, Y.S.; Saiful Yazan, L. Copper complex derived from S-benzyldithiocarbazate and 3-acetylcoumarin induced apoptosis in breast cancer cell. Biometals, 2018, 31(4), 505-515.
[http://dx.doi.org/10.1007/s10534-018-0096-4] [PMID: 29623473]
[90]
Rodríguez, M.R.; Del Plá, J.; Balsa, L.M.; León, I.E.; Piro, O.E.; Echeverría, G.A.; García-Tojal, J.; Pis-Diez, R.; Parajón-Costa, B.S.; González-Baró, A.C. Cu(ii) and Zn(ii) complexes with a poly-functional ligand derived from: O -vanillin and thiophene. Crystal structure, physicochemical properties, theoretical studies and cytotoxicity assays against human breast cancer cells. New J. Chem., 2019, 43, 7120-7129.
[http://dx.doi.org/10.1039/C8NJ06274A]
[91]
Rocha, M.; Ruiz, M.C.; Echeverría, G.A.; Piro, O.E.; Di Virgilio, A.L.; León, I.E.; Frontera, A.; Gil, D.M. Diethylaminophenyl-based Schiff base Cu(ii) and V(iv) complexes: experimental and theoretical studies and cytotoxicity assays. New J. Chem., 2019, 43, 18832-18842.
[http://dx.doi.org/10.1039/C9NJ04975D]
[92]
Burgos-Lopez, Y.; Del Plá, J.; Balsa, L.M.; León, I.E.; Echeverría, G.A.; Piro, O.E.; García-Tojal, J.; Pis-Diez, R.; González-Baró, A.C.; Parajón-Costa, B.S. Synthesis, crystal structure and cytotoxicity assays of a copper(II) nitrate complex with a tridentate ONO acylhydrazone ligand. Spectroscopic and theoretical studies of the complex and its ligand. Inorg. Chim. Acta, 2019, 487, 31-40.
[http://dx.doi.org/10.1016/j.ica.2018.11.039]
[93]
Vyas, A.; Patitungkho, S.; Jamadar, A.; Adsule, S.; Padhye, S.; Ahmad, A.; Sarkar, F.H. ATRA-hydrazonate derivatives and their copper complexes against hormone-dependent (MCF-7), hormone-independent (MDA-MB-231and BT-20) breast cancer and androgen-independent (PC3) prostate cancer cell lines. Inorg. Chem. Commun., 2012, 23, 17-20.
[http://dx.doi.org/10.1016/j.inoche.2012.05.027]
[94]
Manan, M.A.F.A.; Tahir, M.I.M.; Crouse, K.A.; Rosli, R.; How, F.N.F.; Watkin, D.J. The crystal structure and cytotoxicity of centrosymmetric copper(II) complex derived from S-methyldithiocarbazate with isatin. J. Chem. Crystallogr., 2011, 41, 1866-1871.
[http://dx.doi.org/10.1007/s10870-011-0190-8]
[95]
Rodrigues, J.A.O.; de Oliveira Neto, J.G.; da Silva de Barros, A.O.; Ayala, A.P.; Santos-Oliveira, R.; de Menezes, A.S.; de Sousa, F.F. Copper(II): phenanthroline complexes with L-asparagine and L-methionine: synthesis, crystal structure and in vitro cytotoxic effects on prostate, breast and melanoma cancer cells. Polyhedron, 2020, 191, 114807.
[http://dx.doi.org/10.1016/j.poly.2020.114807]
[96]
Balsa, L.M.; Ruiz, M.C.; Santa Maria de la Parra, L.; Baran, E.J.; León, I.E. Anticancer and antimetastatic activity of copper(II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. J. Inorg. Biochem., 2020, 204, 110975.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110975] [PMID: 31911364]
[97]
AlAjmi, M.F.; Hussain, A.; Rehman, M.T.; Khan, A.A.; Shaikh, P.A.; Khan, R.A. Design, synthesis, and biological evaluation of benzimidazole-derived biocompatible copper(II) and zinc(II) complexes as anticancer chemotherapeutics. Int. J. Mol. Sci., 2018, 19(5), 1-22.
[http://dx.doi.org/10.3390/ijms19051492] [PMID: 29772746]
[98]
Salimi, M.; Abdi, K.; Kandelous, H.M.; Hadadzadeh, H.; Azadmanesh, K.; Amanzadeh, A.; Sanati, H. Antiproliferative effects of copper(II)-polypyridyl complexes in breast cancer cells through inducing apoptosis. Biometals, 2015, 28(2), 267-278.
[http://dx.doi.org/10.1007/s10534-015-9820-5] [PMID: 25673217]
[99]
Alvarez, N.; Velluti, F.; Guidali, F.; Serra, G.; Gabriela Kramer, M.; Ellena, J.; Facchin, G.; Scarone, L.; Torre, M.H. New, BI New BI and TRI-Thiazole copper (II) complexes in the search of new cytotoxic drugs against breast cancer cells. Inorg. Chim. Acta, 2020, 508, 119622.
[http://dx.doi.org/10.1016/j.ica.2020.119622]
[100]
Chen, Z.; Wu, Y.; Wu, W.; Zhang, Y. Reactivity towards DNA and protein, cellular uptake, cytotoxic activity of a mononuclear copper(II) complex of the thioflavin-T (ThT)-based derivative. J. Coord. Chem., 2020, 73, 1987-2003.
[http://dx.doi.org/10.1080/00958972.2020.1808890]
[101]
Mathews, N.A.; Kurup, M.R.P. In vitro biomolecular interaction studies and cytotoxic activities of copper(II) and zinc(II) complexes bearing ONS donor thiosemicarbazones. Appl. Organomet. Chem., 2021, 35, 1-16.
[http://dx.doi.org/10.1002/aoc.6056]
[102]
Afsan, Z.; Roisnel, T.; Tabassum, S.; Arjmand, F. Structure elucidation spectroscopic, single crystal X-ray diffraction and computational DFT studies of new tailored benzenesulfonamide derived Schiff base copper(II) intercalating complexes: comprehensive biological profile DNA binding, pBR322 DNA cleavage, Topo I inhibition and cytotoxic activity. Bioorg. Chem., 2020, 94, 103427.
[http://dx.doi.org/10.1016/j.bioorg.2019.103427] [PMID: 31735357]
[103]
Zhang, X.; Bi, C.; Fan, Y.; Cui, Q.; Chen, D.; Xiao, Y.; Dou, Q.P. Induction of tumor cell apoptosis by taurine Schiff base copper complex is associated with the inhibition of proteasomal activity. Int. J. Mol. Med., 2008, 22(5), 677-682.
[http://dx.doi.org/10.3892/ijmm] [PMID: 18949390]
[104]
Zuo, J.; Bi, C.; Fan, Y.; Buac, D.; Nardon, C.; Daniel, K.G.; Dou, Q.P. Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid Schiff base-copper complexes. J. Inorg. Biochem., 2013, 118, 83-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.10.006] [PMID: 23142973]
[105]
Xiao, Y.; Bi, C.; Fan, Y.; Cui, C.; Zhang, X.; Dou, Q.P. L-glutamine Schiff base copper complex as a proteasome inhibitor and an apoptosis inducer in human cancer cells. Int. J. Oncol., 2008, 33(5), 1073-1079.
[http://dx.doi.org/10.3892/ijo] [PMID: 18949371]
[106]
Li, D.D.; Yagüe, E.; Wang, L.Y.; Dai, L.L.; Yang, Z.B.; Zhi, S.; Zhang, N.; Zhao, X.M.; Hu, Y.H. Novel copper complexes that inhibit the proteasome and trigger apoptosis in triple-negative breast cancer cells. ACS Med. Chem. Lett., 2019, 10(9), 1328-1335.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00284] [PMID: 31531205]
[107]
Chakraborty, A.; Kumar, P.; Ghosh, K.; Roy, P. Evaluation of a Schiff base copper complex compound as potent anticancer molecule with multiple targets of action. Eur. J. Pharmacol., 2010, 647(1-3), 1-12.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.003] [PMID: 20797395]
[108]
Etaiw, S.E.D.H.; Sultan, A.S.; El-Bendary, M.M. In vitro and in vivo antitumor activity of novel 3D-organotin supramolecular coordination polymers based on CuCN and pyridine bases. J. Organomet. Chem., 2011, 696, 1668-1676.
[http://dx.doi.org/10.1016/j.jorganchem.2011.02.003]
[109]
O’Connor, M.; Kellett, A.; McCann, M.; Rosair, G.; McNamara, M.; Howe, O.; Creaven, B.S.; McClean, S.; Kia, A.F.; O’Shea, D.; Devereux, M. Copper(II) complexes of salicylic acid combining superoxide dismutase mimetic properties with DNA binding and cleaving capabilities display promising chemotherapeutic potential with fast acting in vitro cytotoxicity against cisplatin sensitive and resistant cancer cell lines. J. Med. Chem., 2012, 55(5), 1957-1968.
[http://dx.doi.org/10.1021/jm201041d] [PMID: 22313179]
[110]
Gou, Y.; Zhang, Y.; Qi, J.; Chen, S.; Zhou, Z.; Wu, X.; Liang, H.; Yang, F. Developing an anticancer copper(II) pro-drug based on the nature of cancer cell and human serum albumin carrier IIA subdomain: mouse model of breast cancer. Oncotarget, 2016, 7(41), 67004-67019.
[http://dx.doi.org/10.18632/oncotarget.11465] [PMID: 27564255]
[111]
Araghi, M.; Soerjomataram, I.; Jenkins, M.; Brierley, J.; Morris, E.; Bray, F.; Arnold, M. Global trends in colorectal cancer mortality: projections to the year 2035. Int. J. Cancer, 2019, 144(12), 2992-3000.
[http://dx.doi.org/10.1002/ijc.32055] [PMID: 30536395]
[112]
Russo, M.; Siravegna, G.; Blaszkowsky, L.S.; Corti, G.; Crisafulli, G.; Ahronian, L.G.; Mussolin, B.; Kwak, E.L.; Buscarino, M.; Lazzari, L.; Valtorta, E.; Truini, M.; Jessop, N.A.; Robinson, H.E.; Hong, T.S.; Mino-Kenudson, M.; Di Nicolantonio, F.; Thabet, A.; Sartore-Bianchi, A.; Siena, S.; Iafrate, A.J.; Bardelli, A.; Corcoran, R.B. Tumor heterogeneity and Lesion-Specific response to targeted therapy in colorectal cancer. Cancer Discov., 2016, 6(2), 147-153.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1283] [PMID: 26644315]
[113]
Koňariková, K.; Perdikaris, G.A.; Gbelcová, H.; Andrezálová, L.; Švéda, M.; Ruml, T.; Laubertová, L.; Žitňanová, I. Effect of Schiff base Cu(II) complexes on signaling pathways in HT-29 cells. Mol. Med. Rep., 2016, 14(5), 4436-4444.
[http://dx.doi.org/10.3892/mmr.2016.5739] [PMID: 27633628]
[114]
Hajrezaie, M.; Paydar, M.; Moghadamtousi, S.Z.; Hassandarvish, P.; Gwaram, N.S.; Zahedifard, M.; Rouhollahi, E.; Karimian, H.; Looi, C.Y.; Ali, H.M.; Abdul Majid, N.; Abdulla, M.A. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway. Sci. World J., 2014, 2014, 540463.
[http://dx.doi.org/10.1155/2014/540463] [PMID: 24737979]
[115]
Ali, A.; Mishra, S.; Kamaal, S.; Alarifi, A.; Afzal, M.; Saha, K.D.; Ahmad, M. Evaluation of catacholase mimicking activity and apoptosis in human colorectal carcinoma cell line by activating mitochondrial pathway of copper(II) complex coupled with 2-(quinolin-8-yloxy)(methyl)benzonitrile and 8-hydroxyquinoline. Bioorg. Chem., 2021, 106, 104479.
[http://dx.doi.org/10.1016/j.bioorg.2020.104479] [PMID: 33272712]
[116]
Martinez-Bulit, P.; Garza-Ortíz, A.; Mijangos, E.; Barrón-Sosa, L.; Sánchez-Bartéz, F.; Gracia-Mora, I.; Flores-Parra, A.; Contreras, R.; Reedijk, J.; Barba-Behrens, N. 2,6-Bis(2,6-diethylphenyliminomethyl)pyridine coordination compounds with cobalt(II), nickel(II), copper(II), and zinc(II): synthesis, spectroscopic characterization, X-ray study and in vitro cytotoxicity. J. Inorg. Biochem., 2015, 142, 1-7.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.09.007] [PMID: 25282405]
[117]
Pellei, M.; Papini, G.; Trasatti, A.; Giorgetti, M.; Tonelli, D.; Minicucci, M.; Marzano, C.; Gandin, V.; Aquilanti, G.; Dolmella, A.; Santini, C. Nitroimidazole and glucosamine conjugated heteroscorpionate ligands and related copper(II) complexes. Syntheses, biological activity and XAS studies. Dalton Trans., 2011, 40(38), 9877-9888.
[http://dx.doi.org/10.1039/c1dt10486a] [PMID: 21709917]
[118]
Primik, M.F.; Göschl, S.; Jakupec, M.A.; Roller, A.; Keppler, B.K.; Arion, V.B. Structure-activity relationships of highly cytotoxic copper(II) complexes with modified indolo[3,2-c]quinoline ligands. Inorg. Chem., 2010, 49(23), 11084-11095.
[http://dx.doi.org/10.1021/ic101633z] [PMID: 20979395]
[119]
Bacher, F.; Wittmann, C.; Nové, M.; Spengler, G.; Marć, M.A.; Enyedy, E.A.; Darvasiová, D.; Rapta, P.; Reiner, T.; Arion, V.B.; City, N.Y.; Sloan, M.; Cancer, K.; City, N.Y.; States, U.; Program, C.B.; Sloan, M.; Cancer, K.; City, Y.; States, U. Novel latonduine derived proligands and their copper(ii) complexes show cytotoxicity in the nanomolar range in human colon adenocarcinoma cells and in vitro cancer selectivity. Dalton Trans., 2019, 48(28), 10464-10478.
[http://dx.doi.org/10.1039/C9DT01238A] [PMID: 31125040]
[120]
Acilan, C.; Cevatemre, B.; Adiguzel, Z.; Karakas, D.; Ulukaya, E.; Ribeiro, N.; Correia, I.; Pessoa, J.C. Validation data supporting the characterization of novel copper complexes as anticancer agents. Data Brief, 2016, 9, 1160-1174.
[http://dx.doi.org/10.1016/j.dib.2016.11.063] [PMID: 28054019]
[121]
Ali, A.Q.; Teoh, S.G.; Eltayeb, N.E.; Khadeer Ahamed, M.B.; Abdul Majid, A.M.S. Synthesis of copper(II) complexes of isatin thiosemicarbazone derivatives: in vitro anti-cancer, DNA binding, and cleavage activities. Polyhedron, 2014, 74, 6-15.
[http://dx.doi.org/10.1016/j.poly.2014.02.025]
[122]
Qiu, L.; Lv, G.; Guo, L.; Chen, L.; Luo, S.; Zou, M.; Lin, J. Synthesis, crystal structure and antitumor effect of a novel copper(II) complex bearing zoledronic acid derivative. Eur. J. Med. Chem., 2015, 89, 42-50.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.028] [PMID: 25462224]
[123]
Kellett, A.; O’Connor, M.; McCann, M.; Howe, O.; Casey, A.; McCarron, P.; Kavanagh, K.; McNamara, M.; Kennedy, S.; May, D.D.; Skell, P.S.; O’Shea, D.; Devereux, M. Water-soluble bis(1,10-phenanthroline) octanedioate Cu 2+ and Mn 2+ complexes with unprecedented nano and picomolar in vitro cytotoxicity: promising leads for chemotherapeutic drug development. MedChemComm, 2011, 2, 579-584.
[http://dx.doi.org/10.1039/c0md00266f]
[124]
Alcaraz, R.; Muñiz, P.; Cavia, M.; Palacios, Ó.; Samper, K.G.; Gil-García, R.; Jiménez-Pérez, A.; García-Tojal, J.; García-Girón, C. Thiosemicarbazone-metal complexes exhibiting cytotoxicity in colon cancer cell lines through oxidative stress. J. Inorg. Biochem., 2020, 206, 110993.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.110993] [PMID: 32088593]
[125]
Sandhaus, S.; Taylor, R.; Edwards, T.; Huddleston, A.; Wooten, Y.; Venkatraman, R.; Weber, R.T.; González-Sarrías, A.; Martin, P.M.; Cagle, P.; Tse-Dinh, Y.C.; Beebe, S.J.; Seeram, N.; Holder, A.A. A novel copper(II) complex identified as a potent drug against colorectal and breast cancer cells and as a poison inhibitor for human topoisomerase IIα. Inorg. Chem. Commun., 2016, 64, 45-49.
[http://dx.doi.org/10.1016/j.inoche.2015.12.013] [PMID: 26752972]
[126]
Palanimuthu, D.; Shinde, S.V.; Somasundaram, K.; Samuelson, A.G. In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. J. Med. Chem., 2013, 56(3), 722-734.
[http://dx.doi.org/10.1021/jm300938r] [PMID: 23320568]
[127]
Gandin, V.; Pellei, M.; Tisato, F.; Porchia, M.; Santini, C.; Marzano, C. A novel copper complex induces paraptosis in colon cancer cells via the activation of ER stress signalling. J. Cell. Mol. Med., 2012, 16(1), 142-151.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01292.x] [PMID: 21388518]
[128]
Karlsson, H.; Fryknäs, M.; Strese, S.; Gullbo, J.; Westman, G.; Bremberg, U.; Sjöblom, T.; Pandzic, T.; Larsson, R.; Nygren, P. Mechanistic characterization of a copper containing thiosemicarbazone with potent antitumor activity. Oncotarget, 2017, 8(18), 30217-30234.
[http://dx.doi.org/10.18632/oncotarget.16324] [PMID: 28415818]
[129]
Carcelli, M.; Tegoni, M.; Bartoli, J.; Marzano, C.; Pelosi, G.; Salvalaio, M.; Rogolino, D.; Gandin, V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: unravelling an unexplored pharmacological target. Eur. J. Med. Chem., 2020, 194, 112266.
[http://dx.doi.org/10.1016/j.ejmech.2020.112266] [PMID: 32248006]
[130]
Erridge, S.C.; Møller, H.; Price, A.; Brewster, D. International comparisons of survival from lung cancer: pitfalls and warnings. Nat. Clin. Pract. Oncol., 2007, 4(10), 570-577.
[http://dx.doi.org/10.1038/ncponc0932] [PMID: 17898807]
[131]
Angel, N.R.; Khatib, R.M.; Jenkins, J.; Smith, M.; Rubalcava, J.M.; Le, B.K.; Lussier, D.; Chen, Z.G.; Tham, F.S.; Wilson, E.H.; Eichler, J.F. Copper (II) complexes possessing alkyl-substituted polypyridyl ligands: structural characterization and in vitro antitumor activity. J. Inorg. Biochem., 2017, 166, 12-25.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.09.012] [PMID: 27815978]
[132]
Andres, S.A.; Bajaj, K.; Vishnosky, N.S.; Peterson, M.A.; Mashuta, M.S.; Buchanan, R.M.; Bates, P.J.; Grapperhaus, C.A. Synthesis, characterization, and biological activity of hybrid Thiosemicarbazone-Alkylthiocarbamate metal complexes. Inorg. Chem., 2020, 59(7), 4924-4935.
[http://dx.doi.org/10.1021/acs.inorgchem.0c00182] [PMID: 32159342]
[133]
Śliwa, E.I.; Śliwińska-Hill, U.; Bażanów, B.; Siczek, M.; Kłak, J.; Smoleński, P. Synthesis, structural, and cytotoxic properties of new water-soluble copper(II) complexes based on 2,9-dimethyl-1,10-phenanthroline and their one derivative containing 1,3,5-triaza-7-phosphaadamantane-7-oxide. Molecules, 2020, 25(3), E741.
[http://dx.doi.org/10.3390/molecules25030741] [PMID: 32046362]
[134]
Fan, C.; Su, H.; Zhao, J.; Zhao, B.; Zhang, S.; Miao, J. A novel copper complex of salicylaldehyde pyrazole hydrazone induces apoptosis through up-regulating integrin β4 in H322 lung carcinoma cells. Eur. J. Med. Chem., 2010, 45(4), 1438-1446.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.048] [PMID: 20089331]
[135]
Tamayo, L.V.; Gouvea, L.R.; Sousa, A.C.; Albuquerque, R.M.; Teixeira, S.F.; de Azevedo, R.A.; Louro, S.R.W.; Ferreira, A.K.; Beraldo, H. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action. Biometals, 2016, 29(1), 39-52.
[http://dx.doi.org/10.1007/s10534-015-9894-0] [PMID: 26582127]
[136]
Manikandamathavan, V.M.; Rajapandian, V.; Freddy, A.J.; Weyhermüller, T.; Subramanian, V.; Nair, B.U. Effect of coordinated ligands on antiproliferative activity and DNA cleavage property of three mononuclear Cu(II)-terpyridine complexes. Eur. J. Med. Chem., 2012, 57, 449-458.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.039] [PMID: 22846797]
[137]
Chen, M.; Tang, X.Y.; Yang, S.P.; Li, H.H.; Zhao, H.Q.; Jiang, Z.H.; Chen, J.X.; Chen, W.H. Five water-soluble zwitterionic copper(II)-carboxylate polymers: role of dipyridyl coligands in enhancing the DNA-binding, cleaving and anticancer activities. Dalton Trans., 2015, 44(29), 13369-13377.
[http://dx.doi.org/10.1039/C5DT01648G] [PMID: 26131732]
[138]
Jain, S.; Bhar, K.; Bandyopadhayaya, S.; Singh, V.K.; Mandal, C.C.; Tapryal, S.; Sharma, A.K. Development, evaluation and effect of anionic co-ligand on the biological activity of benzothiazole derived copper(II) complexes. J. Inorg. Biochem., 2020, 210, 111174.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111174] [PMID: 32652261]
[139]
Parsekar, S.U.; Singh, M.; Mishra, D.P.; Antharjanam, P.K.S.; Koley, A.P.; Kumar, M. Efficient hydrolytic cleavage of DNA and antiproliferative effect on human cancer cells by two dinuclear Cu(II) complexes containing a carbohydrazone ligand and 1,10-phenanthroline as a coligand. Eur. J. Biochem., 2019, 24(3), 343-363.
[http://dx.doi.org/10.1007/s00775-019-01651-8] [PMID: 30887122]
[140]
Haleel, A.; Mahendiran, D.; Veena, V.; Sakthivel, N.; Rahiman, A.K. Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines. Mater. Sci. Eng. C, 2016, 68, 366-382.
[http://dx.doi.org/10.1016/j.msec.2016.05.120] [PMID: 27524032]
[141]
Oliveri, V.; Lanza, V.; Milardi, D.; Viale, M.; Maric, I.; Sgarlata, C.; Vecchio, G. Amino- and chloro-8-hydroxyquinolines and their copper complexes as proteasome inhibitors and antiproliferative agents. Metallomics, 2017, 9(10), 1439-1446.
[http://dx.doi.org/10.1039/C7MT00156H] [PMID: 28932850]
[142]
Gandin, V.; Tisato, F.; Dolmella, A.; Pellei, M.; Santini, C.; Giorgetti, M.; Marzano, C.; Porchia, M. In vitro and in vivo anticancer activity of copper(I) complexes with homoscorpionate tridentate tris(pyrazolyl)borate and auxiliary monodentate phosphine ligands. J. Med. Chem., 2014, 57(11), 4745-4760.
[http://dx.doi.org/10.1021/jm500279x] [PMID: 24793739]
[143]
Maciel, L.L.F.; de Freitas, W.R.; Bull, E.S.; Fernandes, C.; Horn, A., Jr; de Aquino Almeida, J.C.; Kanashiro, M.M. In vitro and in vivo anti-proliferative activity and ultrastructure investigations of a copper(II) complex toward human lung cancer cell NCI-H460. J. Inorg. Biochem., 2020, 210, 111166.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111166] [PMID: 32673843]
[144]
Zhu, T.; Chen, R.; Yu, H.; Feng, Y.; Chen, J.; Lu, Q.; Xie, J.; Ding, W.; Ma, T. Antitumor effect of a copper (II) complex of a coumarin derivative and phenanthroline on lung adenocarcinoma cells and the mechanism of action. Mol. Med. Rep., 2014, 10(5), 2477-2482.
[http://dx.doi.org/10.3892/mmr.2014.2519] [PMID: 25176185]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy