Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Plant Products in the Prevention of Diabetes Mellitus

Author(s): Ana M. Džamić and Jelena S. Matejić *

Volume 22, Issue 10, 2022

Published on: 14 January, 2022

Page: [1395 - 1419] Pages: 25

DOI: 10.2174/1389557521666211116122232

Price: $65

Abstract

The beneficial effect of plants in treating diabetes is not only well-known in traditional medicine but also confirmed in numerous scientific studies. The basic platform for testing the potential antidiabetic activity of traditionally known plants and their bioactive compounds is a set of in vitro, in vivo experiments, clinical trials, and molecular docking studies. Basic assays usually measure enzyme inhibitory activity (α-amylase and α-glucosidase) and other aspects related to diabetes mellitus disease. Recently, the use of plant-derived compounds has proven useful in treating diabetes and reducing complications resulting from high blood sugar levels. The main goal is to establish an action mechanism of plant extracts or active compounds to find new antidiabetic drugs with less toxicological properties. This work aims to collect data and discuss the newest results in the area of plant extracts, compounds, and antidiabetic effects using in vitro, in vivo, and in silico models. The data covered in this review include plant extracts, polyphenols, terpenoids, saponins, phytosterols, and other bioactive compounds, with some of the investigated plants being less known. Isolation of new compounds might be a plentiful source for treatment and prevention of diabetes mellitus. Clinical trials with adequate monitoring give the best results of plants' product efficacy and safety. Many studies have confirmed the importance of patent and use of medicinal herbs in the treatment of diabetes.

Keywords: Diabetes mellitus, plants, compounds, enzyme inhibitory activity, antidiabetic activity, insulin.

Graphical Abstract

[1]
World Health Organization. Global report on diabetes; Geneva, Switzerland, 2016.
[2]
Malviya, N.; Jain, S.; Malviya, S. Antidiabetic potential of medicinal plants. Acta Pol. Pharm., 2010, 67(2), 113-118.
[PMID: 20369787]
[3]
Wang, H.; Shi, S.; Wang, S. Can highly cited herbs in ancient Traditional Chinese medicine formulas and modern publications predict therapeutic targets for diabetes mellitus? J. Ethnopharmacol., 2018, 213, 101-110.
[http://dx.doi.org/10.1016/j.jep.2017.10.032] [PMID: 29102765]
[4]
Mamun-or-Rashid, A.; Hossain, M.S.; Naim Hassan, B.; Kumar Dash, M.; Sapon, A.; Sen, M.K. A review on medicinal plants with anti-diabetic activity. J. Pharmacogn. Phytochem., 2014, 3(4), 149-159.
[5]
Ashktorab, H.; Soleimani, A.; Singh, G.; Amin, A.; Tabtabaei, S.; Latella, G.; Stein, U.; Akhondzadeh, S.; Solanki, N.; Gondré-Lewis, M.C.; Habtezion, A.; Brim, H. Saffron: the golden spice with therapeutic properties on digestive diseases. Nutrients, 2019, 11(5), 943.
[http://dx.doi.org/10.3390/nu11050943] [PMID: 31027364]
[6]
Al-Hrout, A.; Chaiboonchoe, A.; Khraiwesh, B.; Murali, C.; Baig, B.; El-Awady, R.; Tarazi, H.; Alzahmi, A.; Nelson, D.R.; Greish, Y.E.; Ramadan, W.; Salehi-Ashtiani, K.; Amin, A. Safranal induces DNA double-strand breakage and ER-stress-mediated cell death in hepatocellular carcinoma cells. Sci. Rep., 2018, 8(1), 16951.
[http://dx.doi.org/10.1038/s41598-018-34855-0] [PMID: 30446676]
[7]
Nanda, S.; Madan, K. The role of Safranal and saffron stigma extracts in oxidative stress, diseases and photoaging: A systematic review. Heliyon, 2021, 7(2), e06117.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06117] [PMID: 33615006]
[8]
Singh, R.; Parasuraman, S.; Kathiresan, S. Antioxidant and antidiabetic activities of methanolic extract of bark of Cinnamomum zeylanicum in diabetic rats. Free Radic. Antioxid., 2020, 10(1), 16-23.
[http://dx.doi.org/10.5530/fra.2020.1.4]
[9]
Islam, D.; Akter, A.; Huque, A.; Akhter, S.; Roy, D.C.; Lyzu, C.; Hakim, M.; Mohanta, L.C.; Lipy, E.P.; Siddique, A.; Linkon, K. Md.M.R.; Rahman, Md.N. Hypoglycemic effect study of a combination of some stipulated spices in alloxan induced diabetic Wistar albino rats along with nutritional value evaluation. J. Diabetes Mellitus, 2018, 8, 43-53.
[http://dx.doi.org/10.4236/jdm.2018.82005]
[10]
Amin, A.; Lotfy, M.; Mahmoud-Ghoneim, D.; Adeghate, E.; Al-Akhras, M.A.; Al-Saadi, M.; Al-Rahmoun, S.; Hameed, R. Pancreas-protective effects of chlorella in STZ-induced diabetic animal model: Insights into the mechanism. J. Diabetes Mellitus, 2011, 1(3), 36-45.
[http://dx.doi.org/10.4236/jdm.2011.13006]
[11]
Hamza, A.A.; Fikry, E.M.; Abdallah, W.; Amin, A. Mechanistic insights into the augmented effect of bone marrow mesenchymal stem cells and thiazolidinediones in streptozotocin-nicotinamide induced diabetic rats. Sci. Rep., 2018, 8(1), 9827.
[http://dx.doi.org/10.1038/s41598-018-28029-1] [PMID: 29959408]
[12]
Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; Chen, H.; Qin, W.; Wu, H.; Chen, S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Moleculs, 2016, 21(10), pii: E1374.
[13]
Dsouza, D.; Lakshmidevi, N. Models to study in vitro antidiabetic activity of plants: A review. Int. J. Pharm. Bio. Sci., 2015, 6(3), 732-741.
[14]
Kumar, A.B.S.; Khan, S.; Saran, G.S.; Nandeesh, R.; Manjunath, N.K. In vitro antidiabetic activity of Nisamalaki Churna. Sains Malays., 2013, 42(5), 625-628.
[15]
Kumar, Y.; Goyal, R.K.; Thakur, A.K. Pharmacotherapeutics of miglitol: An α-glucosidase inhibitor. J. Anal. Pharm. Res., 2018, 7(6), 617-619.
[16]
Bedekar, A.; Shah, K.; Koffas, M. Natural Products for Type II Diabetes treatment. In: Advances in Applied Microbiology; Laskin, A.I.; Sariaslani, S.; Gadd, G.M., Eds.; Elsevier Inc. Academic Press: Burlington, 2010; 71, pp. 21-74.
[http://dx.doi.org/10.1016/S0065-2164(10)71002-9]
[17]
Rosak, C.; Mertes, G. Critical evaluation of the role of acarbose in the treatment of diabetes: Patient considerations. Diabetes Metab. Syndr. Obes., 2012, 5, 357-367.
[http://dx.doi.org/10.2147/DMSO.S28340] [PMID: 23093911]
[18]
Gao, X.; Cai, X.; Yang, W.; Chen, Y.; Han, X.; Ji, L. Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhi-bitors in Asian and non-Asian populations. J. Diabetes Investig., 2018, 9(2), 321-331.
[http://dx.doi.org/10.1111/jdi.12711] [PMID: 28685995]
[19]
Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician, 2016, 8(1), 1832-1842.
[http://dx.doi.org/10.19082/1832] [PMID: 26955456]
[20]
Al-Shamsi, M.; Amin, A.; Adeghate, E. Vitamin E decreases the hyperglucagonemia of diabetic rats. Ann. N. Y. Acad. Sci., 2006, 1084, 432-441.
[http://dx.doi.org/10.1196/annals.1372.032] [PMID: 17151320]
[21]
Al-Shamsi, M.; Amin, A.; Adeghate, E. Vitamin E ameliorates some biochemical parameters in normal and diabetic rats. Ann. N. Y. Acad. Sci., 2006, 1084, 411-431.
[http://dx.doi.org/10.1196/annals.1372.033] [PMID: 17151319]
[22]
Al-Shamsi, M.; Amin, A.; Adeghate, E. Effect of vitamin C on liver and kidney functions in normal and diabetic rats. Ann. N. Y. Acad. Sci., 2006, 1084, 371-390.
[http://dx.doi.org/10.1196/annals.1372.031] [PMID: 17151316]
[23]
Hamza, A.A.; Ahmed, M.M.; Elwey, H.M.; Amin, A. Melissa officinalis protects against doxorubicin-induced cardiotoxicity in rats and potentiates its anticancer activity on MCF-7 cells. PLoS One, 2016, 11(11), e0167049.
[http://dx.doi.org/10.1371/journal.pone.0167049] [PMID: 27880817]
[24]
Mukherjee, A.K.; Basu, S.; Sarkar, N.; Ghosh, A.C. Advances in cancer therapy with plant based natural products. Curr. Med. Chem., 2001, 8(12), 1467-1486.
[http://dx.doi.org/10.2174/0929867013372094] [PMID: 11562277]
[25]
Scartezzini, P.; Speroni, E. Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmacol., 2000, 71(1-2), 23-43.
[http://dx.doi.org/10.1016/S0378-8741(00)00213-0] [PMID: 10904144]
[26]
Jia, W.; Gao, W.; Tang, L. Antidiabetic herbal drugs officially approved in China. Phytother. Res., 2003, 17(10), 1127-1134.
[http://dx.doi.org/10.1002/ptr.1398] [PMID: 14669243]
[27]
Li, W.L.; Zheng, H.C.; Bukuru, J.; De Kimpe, N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol., 2004, 92(1), 1-21.
[http://dx.doi.org/10.1016/j.jep.2003.12.031] [PMID: 15099842]
[28]
Liu, J.P.; Zhang, M.; Wang, W.Y.; Grimsgaard, S. Chinese herbal medicines for type 2 diabetes mellitus. Cochrane Database Syst. Rev., 2004, 3(3), CD003642.
[PMID: 15266492]
[29]
Xie, W.; Xing, D.; Sun, H.; Wang, W.; Ding, Y.; Du, L. The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. Am. J. Chin. Med., 2005, 33(1), 95-105.
[http://dx.doi.org/10.1142/S0192415X05002692] [PMID: 15844837]
[30]
Xie, W.; Zhang, Y.; Wang, N.; Zhou, H.; Du, L.; Ma, X.; Shi, X.; Cai, G. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice. Eur. J. Pharmacol., 2008, 599(1-3), 159-165.
[http://dx.doi.org/10.1016/j.ejphar.2008.09.042] [PMID: 18930725]
[31]
Xie, W.D.; Zhao, Y.N.; Du, L.J.; Cai, G.P.; Gu, D.Y.; Zhang, Y.O. Scorpion in combination with Gypsum: novel antidiabetic activities in streptozotocin-induced diabetic mice by up-regulating pancreatic PPARγ and PDX-1 expressions. Evid. Based Complement. Alternat. Med., 2011, 1-9.
[http://dx.doi.org/10.1093/ecam/neq031]
[32]
Chen, X.; Xiong, J.; He, L.; Zhang, Y.; Li, X.; Zhang, L.; Wang, F. Effects of in vitro digestion on the content and biological activity of polyphenols from Acacia mearnsii bark. Molecules, 2018, 23(7), E1804.
[http://dx.doi.org/10.3390/molecules23071804] [PMID: 30037047]
[33]
Chávez-Silva, F.; Cerón-Romero, L.; Arias-Durán, L.; Navarrete-Vázquez, G.; Almanza-Pérez, J.; Román-Ramos, R.; Ramírez-Ávila, G.; Perea-Arango, I.; Villalobos-Molina, R.; Estrada-Soto, S. Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities. J. Ethnopharmacol., 2018, 212, 1-7.
[http://dx.doi.org/10.1016/j.jep.2017.10.005] [PMID: 29031783]
[34]
Venditti, A.; Maggi, F.; Vittori, S.; Papa, F.; Serrilli, A.M.; Di Cecco, M.; Ciaschetti, G.; Mandrone, M.; Poli, F.; Bianco, A. Antioxidant and α-glucosidase inhibitory activities of Achillea tenorii. Pharm. Biol., 2015, 53(10), 1505-1510.
[http://dx.doi.org/10.3109/13880209.2014.991833] [PMID: 25853956]
[35]
Ahmed, D.; Kumar, V.; Sharma, M.; Verma, A. Target guided isolation, in-vitro antidiabetic, antioxidant activity and molecular docking studies of some flavonoids from Albizzia Lebbeck Benth. bark. BMC Complement. Altern. Med., 2014, 14, 155.
[http://dx.doi.org/10.1186/1472-6882-14-155] [PMID: 24886138]
[36]
Semaan, D.G.; Igoli, J.O.; Young, L.; Marrero, E.; Gray, A.I.; Rowan, E.G. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw. on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes. J. Ethnopharmacol., 2017, 203, 39-46.
[http://dx.doi.org/10.1016/j.jep.2017.03.023] [PMID: 28341245]
[37]
Tousch, D.; Bidel, L.P.; Cazals, G.; Ferrare, K.; Leroy, J.; Faucanié, M.; Chevassus, H.; Tournier, M.; Lajoix, A.D.; Azay-Milhau, J. Che-mical analysis and antihyperglycemic activity of an original extract from burdock root (Arctium lappa). J. Agric. Food Chem., 2014, 62(31), 7738-7745.
[http://dx.doi.org/10.1021/jf500926v] [PMID: 24933284]
[38]
Richard, A.J.; Fuller, S.; Fedorcenco, V.; Beyl, R.; Burris, T.P.; Mynatt, R.; Ribnicky, D.M.; Stephens, J.M. Artemisia scoparia enhances adipocyte development and endocrine function in vitro and enhances insulin action in vivo. PLoS One, 2014, 9(6), e98897.
[http://dx.doi.org/10.1371/journal.pone.0098897] [PMID: 24915004]
[39]
Zhao, H.; Zhang, Y.; Guo, Y.; Shi, S. Identification of major α-glucosidase inhibitors in Radix Astragali and its human microsomal metabolites using ultrafiltration HPLC-DAD-MS(n.). J. Pharm. Biomed. Anal., 2015, 104, 31-37.
[http://dx.doi.org/10.1016/j.jpba.2014.09.029] [PMID: 25474715]
[40]
Ponnusamy, S.; Haldar, S.; Mulani, F.; Zinjarde, S.; Thulasiram, H. RaviKumar, A. RaviKumar, A. Gedunin and azadiradione: Human pancreatic alpha-amylase inhibiting limonoids from neem (Azadirachta indica) as anti-diabetic agents. PLoS One, 2015, 10(10), e0140113.
[http://dx.doi.org/10.1371/journal.pone.0140113] [PMID: 26469405]
[41]
Bljajić, K.; Šoštarić, N.; Petlevski, R.; Vujić, L.; Brajković, A.; Fumić, B.; de Carvalho, I.S.; Končić, M.Z. Effect of Betula pendula leaf extract on α-glucosidase and glutathione level in glucose-induced oxidative stress. Evid. Based Complement. Alternat. Med., 2016, 2016, 8429398.
[http://dx.doi.org/10.1155/2016/8429398] [PMID: 27668005]
[42]
Sagbo, I.J.; van de Venter, M.; Koekemoer, T.; Bradley, G. In vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evid. Based Complement. Alternat. Med., 2018, 2018, 4170372.
[http://dx.doi.org/10.1155/2018/4170372] [PMID: 30108655]
[43]
Kazeem, M.I.; Mayaki, A.M.; Ogungbe, B.F.; Ojekale, A.B. In vitro studies on Calotropis procera leaf extracts as inhibitors of key enzy-mes linked to diabetes mellitus. Iran. J. Pharm. Res., 2016, 15(Suppl.), 37-44.
[PMID: 28228802]
[44]
Liu, S.; Yu, Z.; Zhu, H.; Zhang, W.; Chen, Y. In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea. BMC Complement. Altern. Med., 2016, 16(1), 378.
[http://dx.doi.org/10.1186/s12906-016-1361-0] [PMID: 27681250]
[45]
Kim, H.; Cho, K.W.; Jeong, J.; Park, K.; Ryu, Y.; Moyo, K.M.; Kim, H.K.; Go, G.W. Red pepper (Capsicum annuum L.) seed extract decreased hepatic gluconeogenesis and increased muscle glucose uptake in vitro. J. Med. Food, 2018, 21(7), 665-671.
[http://dx.doi.org/10.1089/jmf.2017.4065] [PMID: 29969359]
[46]
Bellamakondi, P.K.; Godavarthi, A.; Ibrahim, M. Anti-hyperglycemic activity of Caralluma umbellata Haw. Bioimpacts, 2014, 4(3), 113-116.
[http://dx.doi.org/10.15171/bi.2014.003] [PMID: 25337463]
[47]
Doan, H.V.; Riyajan, S.; Iyara, R.; Chudapongse, N. Antidiabetic activity, glucose uptake stimulation and α-glucosidase inhibitory effect of Chrysophyllum cainito L. stem bark extract. BMC Complement. Altern. Med., 2018, 18(1), 267.
[http://dx.doi.org/10.1186/s12906-018-2328-0] [PMID: 30285723]
[48]
Peng, J.L.; Wang, J.; Mei, W.L.; Kong, F.D.; Liu, Z.Q.; Wang, P.; Gai, C.J.; Jiang, B.; Dai, H.F. Two new phragmalin-type limonoids from Chukrasia tabularis and their α-glucosidase inhibitory activity. J. Asian Nat. Prod. Res., 2016, 18(7), 629-636.
[http://dx.doi.org/10.1080/10286020.2015.1136291] [PMID: 26837821]
[49]
Muritala, H.F.; Akolade, J.O.; Akande, S.A.; Abdulazeez, A.T.; Aladodo, R.A.; Bello, A.B. Antioxidant and alpha-amylase inhibitory po-tentials of Cocos nucifera husk. Food Sci. Nutr., 2018, 6(6), 1676-1683.
[http://dx.doi.org/10.1002/fsn3.741] [PMID: 30258612]
[50]
Brindis, F.; González-Andrade, M.; González-Trujano, M.E.; Estrada-Soto, S.; Villalobos-Molina, R. Postprandial glycaemia and inhibition of α-glucosidase activity by aqueous extract from Coriandrum sativum. Nat. Prod. Res., 2014, 28(22), 2021-2025.
[http://dx.doi.org/10.1080/14786419.2014.917414] [PMID: 24836119]
[51]
Dinakaran, S.K.; Banji, D.; Avasarala, H.; Banji, O. Determination of antioxidant capacity, α-amylase and lipase inhibitory activity of Cro-talaria juncea Linn in vitro inhibitory activity of Crotalaria Juncea Linn. J. Diet. Suppl., 2014, 11(2), 175-183.
[http://dx.doi.org/10.3109/19390211.2013.859218] [PMID: 24670121]
[52]
Beelders, T.; Brand, D.J.; de Beer, D.; Malherbe, C.J.; Mazibuko, S.E.; Muller, C.J.; Joubert, E. Benzophenone C- and O-glucosides from Cyclopia genistoides (Honeybush) inhibit mammalian α-glucosidase. J. Nat. Prod., 2014, 77(12), 2694-2699.
[http://dx.doi.org/10.1021/np5007247] [PMID: 25419864]
[53]
Erukainure, O.L.; Mopuri, R.; Oyebode, O.A.; Koorbanally, N.A.; Islam, M.S. Dacryodes edulis enhances antioxidant activities, suppresses DNA fragmentation in oxidative pancreatic and hepatic injuries; and inhibits carbohydrate digestive enzymes linked to type 2 diabetes. Biomed. Pharmacother., 2017, 96, 37-47.
[http://dx.doi.org/10.1016/j.biopha.2017.09.106] [PMID: 28963949]
[54]
Nguyen, V.B.; Wang, S.L.; Nhan, N.T.; Nguyen, T.H.; Nguyen, N.P.D.; Nghi, D.H.; Cuong, N.M. New records of potent in vitro antidiabetic properties of Dalbergia tonkinensis heartwood and the bioactivity-guided isolation of active compounds. Molecules, 2018, 23(7), E1589.
[http://dx.doi.org/10.3390/molecules23071589] [PMID: 29966279]
[55]
Kumkrai, P.; Weeranantanapan, O.; Chudapongse, N. Antioxidant, α-glucosidase inhibitory activity and sub-chronic toxicity of Derris reticulata extract: Its antidiabetic potential. BMC Complement. Altern. Med., 2015, 15(35), 35.
[http://dx.doi.org/10.1186/s12906-015-0552-4] [PMID: 25887793]
[56]
Sheliya, M.A.; Rayhana, B.; Ali, A.; Pillai, K.K.; Aeri, V.; Sharma, M.; Mir, S.R. Inhibition of α-glucosidase by new prenylated flavonoids from Euphorbia Hirta L. herb. J. Ethnopharmacol., 2015, 176, 1-8.
[http://dx.doi.org/10.1016/j.jep.2015.10.018] [PMID: 26477374]
[57]
Yahaya, N.; Mohd Dom, N.S.; Adam, Z.; Hamid, M. Insulinotropic activity of standardized methanolic extracts of Ficus deltoidea from seven varieties. Evid. Based Complement. Alternat. Med., 2018, 2018, 3769874.
[http://dx.doi.org/10.1155/2018/3769874] [PMID: 30046337]
[58]
Mouho, D.G.; Oliveira, A.P.; Kodjo, C.G.; Valentão, P.; Gil-Izquierdo, A.; Andrade, P.B.; Ouattara, Z.A.; Bekro, Y.A.; Ferreres, F. Chemical findings and in vitro biological studies to uphold the use of Ficus exasperata Vahl leaf and stem bark. Food Chem. Toxicol., 2018, 112, 134-144.
[http://dx.doi.org/10.1016/j.fct.2017.12.043] [PMID: 29288758]
[59]
Meena, S.N.; Majik, M.S.; Ghadi, S.C.; Tilve, S.G. Quick identification of piperidine alkaloid from roots of Grewia nervosa and their glucosidase inhibitory activity. Chem. Biodivers., 2017, 14(12), e1700400.
[http://dx.doi.org/10.1002/cbdv.201700400] [PMID: 29044865]
[60]
Jiménez-Suárez, V.; Nieto-Camacho, A.; Jiménez-Estrada, M.; Alvarado Sánchez, B. Anti-inflammatory, free radical scavenging and alpha-glucosidase inhibitory activities of Hamelia patens and its chemical constituents. Pharm. Biol., 2016, 54(9), 1822-1830.
[http://dx.doi.org/10.3109/13880209.2015.1129544] [PMID: 26731099]
[61]
Panigrahy, S.K.; Kumar, A.; Bhatt, R. Hedychium coronarium rhizomes: promising antidiabetic and natural inhibitor of α-amylase and α-glucosidase. J. Diet. Suppl., 2020, 17(1), 81-87.
[PMID: 30325249]
[62]
Quispe, Y.N.G.; Hwang, S.H.; Wang, Z.; Zuo, G.; Lim, S.S. Screening in vitro targets related to diabetes in herbal extracts from Peru: identification of active compounds in Hypericum laricifolium Juss. by offline high-performance liquid chromatography. Int. J. Mol. Sci., 2017, 18(12), E2512.
[http://dx.doi.org/10.3390/ijms18122512] [PMID: 29186785]
[63]
Ibrahim, M.A.; Koorbanally, N.A.; Islam, M.S. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis. Acta Pharm., 2014, 64(3), 311-324.
[http://dx.doi.org/10.2478/acph-2014-0025] [PMID: 25296677]
[64]
Liu, Z.; Cheng, Z.; He, Q.; Lin, B.; Gao, P.; Li, L.; Liu, Q.; Song, S. Secondary metabolites from the flower buds of Lonicera japonica and their in vitro anti-diabetic activities. Fitoterapia, 2016, 110, 44-51.
[http://dx.doi.org/10.1016/j.fitote.2016.02.011] [PMID: 26915302]
[65]
de Cássia Lemos Lima, R.; T. Kongstad, K.; Kato, L.; José das Silva, M.; Franzyk, H.; Staerk, D. High-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of PTP1B inhibitors from Miconia albicans. Molecules, 2018, 23(7), E1755.
[http://dx.doi.org/10.3390/molecules23071755] [PMID: 30018269]
[66]
Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med., 2016, 16(1)(Suppl. 1), 185.
[http://dx.doi.org/10.1186/s12906-016-1085-1] [PMID: 27454418]
[67]
Zhao, Y.; Kongstad, K.T.; Jäger, A.K.; Nielsen, J.; Staerk, D. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L. J. Chromatogr. A, 2018, 1556, 55-63.
[http://dx.doi.org/10.1016/j.chroma.2018.04.041] [PMID: 29729863]
[68]
Torres-Naranjo, M.; Suárez, A.; Gilardoni, G.; Cartuche, L.; Flores, P.; Morocho, V. Chemical constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and its in vitro α-amilase and α-glucosidase inhibitory activities. Molecules, 2016, 21(11), E1461.
[http://dx.doi.org/10.3390/molecules21111461] [PMID: 27827864]
[69]
Gopalan, G.; Prabha, B.; Joe, A.; Reshmitha, T.R.; Sherin, D.R.; Abraham, B.; Sabu, M.; Manojkumar, T.K.; Radhakrishnan, K.V.; Nisha, P. Screening of Musa balbisiana Colla. seeds for antidiabetic properties and isolation of apiforol, a potential lead, with antidiabetic activity. J. Sci. Food Agric., 2019, 99(5), 2521-2529.
[PMID: 30393852]
[70]
Sheikh, Y.; Maibam, B.C.; Talukdar, N.C.; Deka, D.C.; Borah, J.C. In vitro and in vivo anti-diabetic and hepatoprotective effects of edible pods of Parkia roxburghii and quantification of the active constituent by HPLC-PDA. J. Ethnopharmacol., 2016, 191, 21-28.
[http://dx.doi.org/10.1016/j.jep.2016.06.015] [PMID: 27282664]
[71]
Chakroun, M.; Khemakhem, B.; Mabrouk, H.B.; El Abed, H.; Makni, M.; Bouaziz, M.; Drira, N.; Marrakchi, N.; Mejdoub, H. Evaluation of anti-diabetic and anti-tumoral activities of bioactive compounds from Phoenix dactylifera L’s leaf: In vitro and in vivo approach. Biomed. Pharmacother., 2016, 84, 415-422.
[http://dx.doi.org/10.1016/j.biopha.2016.09.062] [PMID: 27668542]
[72]
Najari Beidokhti, M.; Andersen, M.V.; Eid, H.M.; Sanchez Villavicencio, M.L.; Staerk, D.; Haddad, P.S.; Jäger, A.K. Investigation of anti-diabetic potential of Phyllanthus niruri L. using assays for α-glucosidase, muscle glucose transport, liver glucose production, and adipogenesis. Biochem. Biophys. Res. Commun., 2017, 493(1), 869-874.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.080] [PMID: 28928090]
[73]
Zhang, Q.; Hu, X.F.; Xin, M.M.; Liu, H.B.; Sun, L.J.; Morris-Natschke, S.L.; Chen, Y.; Lee, K.H. Antidiabetic potential of the ethyl acetate extract of Physalis alkekengi and chemical constituents identified by HPLC-ESI-QTOF-MS. J. Ethnopharmacol., 2018, 225, 202-210.
[http://dx.doi.org/10.1016/j.jep.2018.07.007] [PMID: 29981847]
[74]
Mehenni, C.; Atmani-Kilani, D.; Dumarçay, S.; Perrin, D.; Gérardin, P.; Atmani, D. Hepatoprotective and antidiabetic effects of Pistacia lentiscus leaf and fruit extracts. J. Food Drug Anal., 2016, 24(3), 653-669.
[http://dx.doi.org/10.1016/j.jfda.2016.03.002] [PMID: 28911573]
[75]
López-Angulo, G.; Montes-Avila, J.; Sánchez-Ximello, L.; Díaz-Camacho, S.P.; Miranda-Soto, V.; López-Valenzuela, J.A.; Delgado-Vargas, F. Anthocyanins of Pithecellobium dulce (Roxb.) Benth. fruit associated with high antioxidant and α-glucosidase inhibitory activities. Plant Foods Hum. Nutr., 2018, 73(4), 308-313.
[http://dx.doi.org/10.1007/s11130-018-0693-y] [PMID: 30238426]
[76]
Ucar, E.; Eruygur, N.; Atas, M.; Ergul, M.; Ergul, M.; Sozmen, F. Determination of inhibitory activities of enzymes, related to Alzheimer’s disease and diabetes mellitus of plane tree (Platanus orientalis L.) extracts and their antioxidant, antimicrobial and anticancer activities. Cell. Mol. Biol., 2018, 64(11), 13-19.
[http://dx.doi.org/10.14715/cmb/2018.64.11.3] [PMID: 30213283]
[77]
Ahmad Aufa, Z.; Hassan, F.A.; Ismail, A.; Mohd Yusof, B.N.; Hamid, M. Chemical compositions and antioxidative and antidiabetic properties of underutilized vegetable palm hearts from Plectocomiopsis geminiflora and Eugeissona insignis. J. Agric. Food Chem., 2014, 62(9), 2077-2084.
[http://dx.doi.org/10.1021/jf403481p] [PMID: 24499380]
[78]
Kidane, Y.; Bokrezion, T.; Mebrahtu, J.; Mehari, M.; Gebreab, Y.B.; Fessehaye, N.; Achila, O.O. In vitro inhibition of α-amylase and α-glucosidase by extracts from Psiadia punctulata and Meriandra bengalensis. Evid. Based Complement. Alternat. Med., 2018, 2018, 2164345.
[http://dx.doi.org/10.1155/2018/2164345] [PMID: 30108648]
[79]
Jiao, Y.; Hua, D.; Huang, D.; Zhang, Q.; Yan, C. Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type II diabetes. Food Funct., 2018, 9(7), 3997-4007.
[http://dx.doi.org/10.1039/C8FO00790J] [PMID: 29975387]
[80]
Paramaguru, R.; Mazumder, P.M.; Sasmal, D.; Jayaprakash, V. Antidiabetic activity of Pterospermum acerifolium flowers and glucose uptake potential of bioactive fraction in L6 muscle cell lines with its HPLC fingerprint. BioMed Res. Int., 2014, 2014, 459376.
[http://dx.doi.org/10.1155/2014/459376] [PMID: 25401101]
[81]
Barathikannan, K.; Venkatadri, B.; Khusro, A.; Al-Dhabi, N.A.; Agastian, P.; Arasu, M.V.; Choi, H.S.; Kim, Y.O. Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties. BMC Complement. Altern. Med., 2016, 16, 264.
[http://dx.doi.org/10.1186/s12906-016-1237-3] [PMID: 27476116]
[82]
Xu, J.; Wang, X.; Yue, J.; Sun, Y.; Zhang, X.; Zhao, Y. Polyphenols from acorn leaves (Quercus liaotungensis) protect pancreatic beta cells and their inhibitory activity against α-glucosidase and protein tyrosine phosphatase 1B. Molecules, 2018, 23(9), E2167.
[http://dx.doi.org/10.3390/molecules23092167] [PMID: 30154343]
[83]
Wang, L.; Chen, C.; Zhang, B.; Huang, Q.; Fu, X.; Li, C. Structural characterization of a novel acidic polysaccharide from Rosa roxburghii Tratt fruit and its α-glucosidase inhibitory activity. Food Funct., 2018, 9(7), 3974-3985.
[http://dx.doi.org/10.1039/C8FO00561C] [PMID: 29974117]
[84]
Ratna Wulan, D.; Priyo Utomo, E.; Mahdi, C. Antidiabetic activity of Ruellia tuberosa L., role of α-amylase inhibitor: in silico, in vitro, and in vivo approaches. Biochem. Res. Int., 2015, 2015, 349261.
[http://dx.doi.org/10.1155/2015/349261] [PMID: 26576302]
[85]
Vijayalakshmi, K.; Selvaraj, C.I. Cell line cytotoxicity, antiadipogenic and glucose uptake activity of Sarcostemma brevistigma Wight. &. Arn. Mol. Biol. Rep., 2018, 45(6), 2555-2561.
[http://dx.doi.org/10.1007/s11033-018-4423-1] [PMID: 30311128]
[86]
Yang, J.R.; Luo, J.G.; Kong, L.Y. Determination of α-glucosidase inhibitors from Scutellaria baicalensis using liquid chromatography with quadrupole time of flight tandem mass spectrometry coupled with centrifugal ultrafiltration. Chin. J. Nat. Med., 2015, 13(3), 208-214.
[http://dx.doi.org/10.1016/S1875-5364(15)30006-6] [PMID: 25835365]
[87]
Zuo, J.; Ji, C.L.; Xia, Y.; Li, X.; Chen, J.W. Xanthones as α-glucosidase inhibitors from the antihyperglycemic extract of Securidaca inappendiculata. Pharm. Biol., 2014, 52(7), 898-903.
[http://dx.doi.org/10.3109/13880209.2013.872673] [PMID: 24621306]
[88]
Ma, T.; Sun, X.; Tian, C.; Luo, J.; Zheng, C.; Zhan, J. Enrichment and purification of polyphenol extract from Sphallerocarpus gracilis stems and leaves and in vitro evaluation of DNA damage-protective activity and inhibitory effects of α-amylase and α-glucosidase. Molecules, 2015, 20(12), 21442-21457.
[http://dx.doi.org/10.3390/molecules201219780] [PMID: 26633339]
[89]
Antu, K.A.; Riya, M.P.; Mishra, A.; Anilkumar, K.S.; Chandrakanth, C.K.; Tamrakar, A.K.; Srivastava, A.K.; Raghu, K.G. Antidiabetic property of Symplocos cochinchinensis is mediated by inhibition of alpha glucosidase and enhanced insulin sensitivity. PLoS One, 2014, 9(9), e105829.
[http://dx.doi.org/10.1371/journal.pone.0105829] [PMID: 25184241]
[90]
Poongunran, J.; Perera, H.K.; Jayasinghe, L.; Fernando, I.T.; Sivakanesan, R.; Araya, H.; Fujimoto, Y. Bioassay-guided fractionation and identification of α-amylase inhibitors from Syzygium cumini leaves. Pharm. Biol., 2017, 55(1), 206-211.
[http://dx.doi.org/10.1080/13880209.2016.1257031] [PMID: 27927056]
[91]
Lee, K.H.; Whang, W.K. Inhibitory effects of bioassay-guided isolation of anti-glycation components from Taraxacum coreanum and simultaneous quantification. Molecules, 2018, 23(9), E2148.
[http://dx.doi.org/10.3390/molecules23092148] [PMID: 30150550]
[92]
Ercan, P.; El, S.N. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase. Food Chem., 2016, 205, 163-169.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.012] [PMID: 27006227]
[93]
Zhao, C.; Chen, J.; Shao, J.; Shen, J.; Li, K.; Gu, W.; Li, S.; Fan, J. Neolignan constituents with potential beneficial effects in prevention of type 2 diabetes from Viburnum fordiae Hance fruits. J. Agric. Food Chem., 2018, 66(40), 10421-10430.
[http://dx.doi.org/10.1021/acs.jafc.8b03772] [PMID: 30231607]
[94]
Rynjah, C.V.; Devi, N.N.; Khongthaw, N.; Syiem, D.; Majaw, S. Evaluation of the antidiabetic property of aqueous leaves extract of Zanthoxylum armatum DC. using in vivo and in vitro approaches. J. Tradit. Complement. Med., 2017, 8(1), 134-140.
[http://dx.doi.org/10.1016/j.jtcme.2017.04.007] [PMID: 29322001]
[95]
Sabiu, S.; O’Neill, F.H.; Ashafa, A.O.T. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: an in vitro assessment. J. Ethnopharmacol., 2016, 183(183), 1-8.
[http://dx.doi.org/10.1016/j.jep.2016.02.024] [PMID: 26902829]
[96]
Munhoz, A.C.M.; Frode, T.S. Isolated compounds from natural products with potential antidiabetic activity-a systematic review. Curr. Diabetes Rev., 2018, 14(1), 36-106.
[PMID: 28474555]
[97]
Matejić, J.S.; Stojanović-Radić, Z.Z.; Ristić, M.S.; Veselinović, J.B.; Zlatković, B.K.; Marin, P.D.; Džamić, A.M. Chemical characterization, in vitro biological activity of essential oils and extracts of three Eryngium L. species and molecular docking of selected major compounds. J. Food Sci. Technol., 2018, 55(8), 2910-2925.
[http://dx.doi.org/10.1007/s13197-018-3209-8] [PMID: 30065400]
[98]
Agarwal, A.; D’Souza, P.; Johnson, T.S.; Dethe, S.M.; Chandrasekaran, C. Use of in vitro bioassays for assessing botanicals. Curr. Opin. Biotechnol., 2014, 25, 39-44.
[http://dx.doi.org/10.1016/j.copbio.2013.08.010] [PMID: 24484879]
[99]
Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.R.; Miraldi, E.; Biagi, M. Phytotherapy in the management of diabetes: a review. Molecules, 2018, 23(1), E105.
[http://dx.doi.org/10.3390/molecules23010105] [PMID: 29300317]
[100]
Swaroop, A.; Bagchi, M.; Kumar, P.; Preuss, H.G.; Tiwari, K.; Marone, P.A.; Bagchi, D. Safety, efficacy and toxicological evaluation of a novel, patented anti-diabetic extract of Trigonella Foenum-Graecum seed extract (Fenfuro). Toxicol. Mech. Methods, 2014, 24(7), 495-503.
[http://dx.doi.org/10.3109/15376516.2014.943443] [PMID: 25045923]
[101]
Singab, A.N.; Youssef, F.S.; Ashour, M.L. Medicinal plants with potential antidiabetic activity and their assessment. Med. Aromat. Plants, 2014, 3(1), 1-12.
[102]
Parasuraman, S.; Balamurugan, S.; Christapher, P.V.; Petchi, R.R.; Yeng, W.Y.; Sujithra, J.; Vijaya, C. Evaluation of antidiabetic and anti-hyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activity of its phytoconstituents. Pharmacognosy Res., 2015, 7(2), 156-165.
[http://dx.doi.org/10.4103/0974-8490.151457] [PMID: 25829789]
[103]
Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological properties and bioactive components of Allium cepa L.: focus on potential benefits in the treatment of obesity and related comorbidities. Molecules, 2018, 24(1), 119.
[http://dx.doi.org/10.3390/molecules24010119] [PMID: 30598012]
[104]
Jung, M.; Park, M.; Lee, H.C.; Kang, Y-H.; Kang, E.S.; Kim, S.K. Antidiabetic agents from medicinal plants. Curr. Med. Chem., 2006, 13(10), 1203-1218.
[http://dx.doi.org/10.2174/092986706776360860] [PMID: 16719780]
[105]
Damnjanovic, I.; Kitic, D.; Stefanovic, N.; Zlatkovic-Guberinic, S.; Catic-Djordjevic, A.; Velickovic-Radovanovic, R. Herbal self-medication use in patients with diabetes mellitus type 2. Turk. J. Med. Sci., 2015, 45(4), 964-971.
[http://dx.doi.org/10.3906/sag-1410-60] [PMID: 26422875]
[106]
Khan, A.; Zaman, G.; Anderson, R.A. Bay leaves improve glucose and lipid profile of people with type 2 diabetes. J. Clin. Biochem. Nutr., 2009, 44(1), 52-56.
[http://dx.doi.org/10.3164/jcbn.08-188] [PMID: 19177188]
[107]
Umar, A.; Ahmed, Q.U.; Muhammad, B.Y.; Dogarai, B.B.; Soad, S.Z. Anti-hyperglycemic activity of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in alloxan induced diabetic rats. J. Ethnopharmacol., 2010, 131(1), 140-145.
[http://dx.doi.org/10.1016/j.jep.2010.06.016] [PMID: 20600771]
[108]
Andrade-Cetto, A.; Vázquez, R.C. Gluconeogenesis inhibition and phytochemical composition of two Cecropia species. J. Ethnopharmacol., 2010, 130(1), 93-97.
[http://dx.doi.org/10.1016/j.jep.2010.04.016] [PMID: 20420891]
[109]
He, X.; Wang, J.; Li, M.; Hao, D.; Yang, Y.; Zhang, C.; He, R.; Tao, R. Eucommia ulmoides Oliv.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol., 2014, 151(1), 78-92.
[http://dx.doi.org/10.1016/j.jep.2013.11.023] [PMID: 24296089]
[110]
Geethangili, M.; Ding, S.T. A review of the phytochemistry and pharmacology of Phyllanthus urinaria L. Front. Pharmacol., 2018, 9, 1109.
[http://dx.doi.org/10.3389/fphar.2018.01109] [PMID: 30327602]
[111]
Matsuda, H.; Nishida, N.; Yoshikawa, M. Antidiabetic principles of natural medicines. V. Aldose reductase inhibitors from Myrcia multi-flora DC. (2): structures of myrciacitrins III, IV, and V. Chem. Pharm. Bull. (Tokyo), 2002, 50(3), 429-431.
[http://dx.doi.org/10.1248/cpb.50.429] [PMID: 11911215]
[112]
Lee, S.J.; Choi, H.N.; Kang, M.J.; Choe, E.; Auh, J.H.; Kim, J.I. Chamnamul [Pimpinella brachycarpa (Kom.) Nakai] ameliorates hyperglycemia and improves antioxidant status in mice fed a high-fat, high-sucrose diet. Nutr. Res. Pract., 2013, 7(6), 446-452.
[http://dx.doi.org/10.4162/nrp.2013.7.6.446] [PMID: 24353829]
[113]
Saio, V.; Syiem, D.; Sharma, R. Effect of Potentilla fulgens on lipid peroxidation and antioxidant status in alloxan-induced diabetic mice. J. Basic Clin. Pharm., 2012, 3(2), 249-254.
[http://dx.doi.org/10.4103/0976-0105.103816] [PMID: 24826032]
[114]
Das, M.P.; Devi, V.P.; Yasmine, Y. Assessment of in vitro anti-diabetic activity of Ficus glomerata. Pharm. Lett., 2016, 8(3), 267-272.
[115]
Leung, L.; Birtwhistle, R.; Kotecha, J.; Hannah, S.; Cuthbertson, S. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br. J. Nutr., 2009, 102(12), 1703-1708.
[http://dx.doi.org/10.1017/S0007114509992054] [PMID: 19825210]
[116]
Yuan, H.D.; Kim, J.T.; Kim, S.H.; Chung, S.H. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J. Ginseng Res., 2012, 36(1), 27-39.
[http://dx.doi.org/10.5142/jgr.2012.36.1.27] [PMID: 23717101]
[117]
Zhou, Y.; Yang, K.; Zhang, D.; Duan, H.; Liu, Y.; Guo, M. Metabolite accumulation and metabolic network in developing roots of Rehmannia glutinosa reveals its root developmental mechanism and quality. Sci. Rep., 2018, 8(1), 14127.
[http://dx.doi.org/10.1038/s41598-018-32447-6] [PMID: 30237415]
[118]
Krasteva, I.; Shkondrov, A.; Ionkova, I.; Zdraveva, P. Advances in phytochemistry, pharmacology and biotechnology of Bulgarian Astragalus species. Phytochem. Rev., 2016, 15(4), 567-590.
[http://dx.doi.org/10.1007/s11101-016-9462-4]
[119]
Li, K.; Yao, F.; Xue, Q.; Fan, H.; Yang, L.; Li, X.; Sun, L.; Liu, Y. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure-activity relationship of its eight flavonoids by a refined assign-score method. Chem. Cent. J., 2018, 12(1), 82.
[http://dx.doi.org/10.1186/s13065-018-0445-y] [PMID: 30003449]
[120]
Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally occurring xanthones: chemistry and biology. J. Appl. Chem, 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/621459]
[121]
Liu, M-H.; Zhang, Q.; Zhang, Y-H.; Lu, X-Y.; Fu, W-M.; He, J-Y. Chemical analysis of dietary constituents in Rosa roxburghii and Rosa sterilis fruits. Molecules, 2016, 21(9), E1204.
[http://dx.doi.org/10.3390/molecules21091204] [PMID: 27618004]
[122]
Kroemer, R.T. Structure-based drug design: docking and scoring. Curr. Protein Pept. Sci., 2007, 8(4), 312-328.
[http://dx.doi.org/10.2174/138920307781369382] [PMID: 17696866]
[123]
Wulan, D.R.; Utomo, E.P.; Mahdi, C. Molecular modeling of Ruellia tuberosa L compounds as a-amylase inhibitor: an in silico comparation between human and rat enzyme model. Bioinformation, 2014, 10(4), 209-215.
[http://dx.doi.org/10.6026/97320630010209] [PMID: 24966522]
[124]
Jhong, C.H.; Riyaphan, J.; Lin, S.H.; Chia, Y.C.; Weng, C.F. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Biofactors, 2015, 41(4), 242-251.
[http://dx.doi.org/10.1002/biof.1219] [PMID: 26154585]
[125]
Sui, X.; Zhang, Y.; Zhou, W. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. J. Funct. Foods, 2016, 21, 50-57.
[http://dx.doi.org/10.1016/j.jff.2015.11.042]
[126]
Sobhy, R.; Eid, M.; Zhan, F.; Liang, H.; Li, B. Toward understanding the in vitro anti-amylolytic effects of three structurally different phytosterols in an aqueous medium using multispectral and molecular docking studies. J. Mol. Liq., 2019, 283, 225-234.
[http://dx.doi.org/10.1016/j.molliq.2019.03.098]
[127]
Martinez-Gonzalez, A.I.; Díaz-Sánchez, Á.G.; de la Rosa, L.A.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Inhibition of α-amylase by flavonoids: Structure Activity Relationship (SAR). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 437-447.
[http://dx.doi.org/10.1016/j.saa.2018.08.057] [PMID: 30172871]
[128]
Alqahtani, A.S.; Hidayathulla, S.; Rehman, M.T.; ElGamal, A.A.; Al-Massarani, S.; Razmovski-Naumovski, V.; Alqahtani, M.S.; El Dib, R.A.; AlAjmi, M.F. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules, 2019, 10(1), 61.
[http://dx.doi.org/10.3390/biom10010061] [PMID: 31905962]
[129]
Noor, Z.I.; Ahmed, D.; Rehman, H.M.; Qamar, M.T.; Froeyen, M.; Ahmad, S.; Mirza, M.U. In vitro antidiabetic, anti-obesity and antioxidant analysis of Ocimum basilicum aerial biomass and in silico molecular docking simulations with alpha-amylase and lipase enzymes. Biology (Basel), 2019, 8(4), 92.
[http://dx.doi.org/10.3390/biology8040092] [PMID: 31817095]
[130]
Shanmugam, K.R.; Shanmugam, B.; Venkatasubbaiah, G.; Ravi, S.; Reddy, K.S. Medicinal plants and bioactive compounds for diabetes management: important advances for drug discovery. Curr. Pharm. Des., 2021, 27(6), 763-774.
[http://dx.doi.org/10.2174/1381612826666200928160357] [PMID: 32988345]
[131]
Maithili Karpaga Selvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Sripradha, R. Efficacy of turmeric as adjuvant therapy in type 2 diabetic patients. Indian J. Clin. Biochem., 2015, 30(2), 180-186.
[http://dx.doi.org/10.1007/s12291-014-0436-2] [PMID: 25883426]
[132]
Fan, X.; Zhang, C.; Liu, D.B.; Yan, J.; Liang, H.P. The clinical applications of curcumin: current state and the future. Curr. Pharm. Des., 2013, 19(11), 2011-2031.
[PMID: 23116310]
[133]
Banu, S.; Jabir, N.R.; Manjunath, N.C.; Khan, M.S.; Ashraf, G.M.; Kamal, M.A.; Tabrez, S. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J. Biol. Sci., 2015, 22(1), 32-36.
[http://dx.doi.org/10.1016/j.sjbs.2014.04.005] [PMID: 25561880]
[134]
Kianbakht, S.; Nabati, F.; Abasi, B. Salvia officinalis (Sage) leaf extract as add-on to statin therapy in hypercholesterolemic type 2 diabetic patients: a randomized clinical trial. Int. J. Mol. Cell. Med. Summer., 2016, 5(3), 141-148.
[135]
Rashad, H.; Metwally, F.M.; Ezzat, S.M.; Salama, M.M.; Hasheesh, A.; Abdel Motaal, A. Randomized double-blinded pilot clinical study of the antidiabetic activity of Balanites aegyptiaca and UPLC-ESI-MS/MS identification of its metabolites. Pharm. Biol., 2017, 55(1), 1954-1961.
[http://dx.doi.org/10.1080/13880209.2017.1354388] [PMID: 28724331]
[136]
Ranasinghe, P.; Galappaththy, P.; Constantine, G.R.; Jayawardena, R.; Weeratunga, H.D.; Premakumara, S.; Katulanda, P. Cinnamomum zeylanicum (Ceylon cinnamon) as a potential pharmaceutical agent for type-2 diabetes mellitus: study protocol for a randomized controlled trial. Trials, 2017, 18(1), 446.
[http://dx.doi.org/10.1186/s13063-017-2192-0] [PMID: 28962661]
[137]
Shoshi, S.J.; Akter, H. Effects of garlic (Allium sativum) on blood glucose level in type 2 diabetes mellitus patients treated with metformin. J. Enam. Med. Col, 2017, 7(3), 151-155.
[http://dx.doi.org/10.3329/jemc.v7i3.34075]
[138]
Kim, H.; Simbo, S.Y.; Fang, C.; McAlister, L.; Roque, A.; Banerjee, N.; Talcott, S.T.; Zhao, H.; Kreider, R.B.; Mertens-Talcott, S.U. Açaí (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct., 2018, 9(6), 3097-3103.
[http://dx.doi.org/10.1039/C8FO00595H] [PMID: 29850709]
[139]
Moravej Aleali, A.; Amani, R.; Shahbazian, H.; Namjooyan, F.; Latifi, S.M.; Cheraghian, B. The effect of hydroalcoholic Saffron (Crocus sativus L.) extract on fasting plasma glucose, HbA1c, lipid profile, liver, and renal function tests in patients with type 2 diabetes mellitus: a randomized double-blind clinical trial. Phytother. Res., 2019, 33(6), 1648-1657.
[http://dx.doi.org/10.1002/ptr.6351] [PMID: 30942510]
[140]
Jeykodi, S.; Deshpande, J.; Juturu, V. Salacia extract improves postprandial glucose and insulin response: A randomized double-blind, placebo controlled, crossover study in healthy volunteers. J. Diabetes Res., 2016, 2016, 7971831.
[http://dx.doi.org/10.1155/2016/7971831] [PMID: 27803937]
[141]
Leach, M.J. Gymnema sylvestre for diabetes mellitus: a systematic review. J. Altern. Complement. Med., 2007, 13(9), 977-983.
[http://dx.doi.org/10.1089/acm.2006.6387] [PMID: 18047444]
[142]
Pothuraju, R.; Sharma, R.K.; Chagalamarri, J.; Jangra, S.; Kumar Kavadi, P. A systematic review of Gymnema sylvestre in obesity and diabetes management. J. Sci. Food Agric., 2014, 94(5), 834-840.
[http://dx.doi.org/10.1002/jsfa.6458] [PMID: 24166097]
[143]
Milutinović, M.; Veličković Radovanović, R.; Šavikin, K.; Radenković, S.; Arvandi, M.; Pešić, M.; Milica Kostić, M.; Miladinović, B.; Branković, S.; Kitić, D. Chokeberry juice supplementation in type 2 diabetic patients - impact on health status. J. Appl. Biomed., 2019, 17, 218-224.
[http://dx.doi.org/10.32725/jab.2019.020]
[144]
Padiya, R.; Banerjee, S.K. Garlic as an anti-diabetic agent: recent progress and patent reviews. Recent Pat. Food Nutr. Agric., 2013, 5(2), 105-127.
[http://dx.doi.org/10.2174/18761429113059990002] [PMID: 23270395]
[145]
Dubey, G.; Agarwal, A.; Dubey, N.; Dubey, S.; Dubey, R.; Deborah, S. Herbal formulation for the prevention and management of type-2 diabetes mellitus and vascular complications associated with diabetes. US Patent 8,337,911, 2011.
[146]
Naguib, Y. Herbal compositions and methods for diabetes and weight loss management. US Patent 6,780,440, 2004.
[147]
Peltier, S.; Sirvent, P.; Maugard, T. Compositions and methods for treating diabetes, fatty liver, cardiopathies, insulin resistance, carbohydrate and fat metabolism. US Patent 9,962,420, 2018.
[148]
Campbell-Tofte, J. Anti-diabetic extract isolated from Rauvolfia vomitoria and Citrus aurantium, and methods of using same. US Patent 7,579,025, 2009.
[149]
Ribnicky, D.M.; Raskin, I. Method for treating type 2 diabetes with an extract of Artemisia. US Patent 6,893,627, 2005.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy