Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Developments in Mesoporous Silica Nanoparticles for Tumor Theranostic Applications

Author(s): Xuerui Wang, Mengyuan Zheng, Faisal Raza, Yuhao Liu, Yiqi Wei, Mingfeng Qiu* and Jing Su*

Volume 28, Issue 2, 2022

Published on: 30 November, 2021

Page: [151 - 164] Pages: 14

DOI: 10.2174/1381612827666211111152839

Price: $65

Abstract

Due to the advantages of adjustable pore size, easy surface modification, high biocompatibility, and so on, mesoporous silica nanoparticles (MSNs) have attracted significant attention. Moreover, they are widely used in the fields of biology and medical research, mostly focusing on drug and gene delivery and bioimaging. This review introduces several commonly used synthetic methods of MSNs and the latest progress of MSNs in tumor therapy and diagnosis, mainly including the study about modified MSNs as drug carriers and the application of MSNs in bioimaging. The deficiencies of MSNs’ application and prospects for its future clinical transformation are also discussed.

Keywords: Mesoporous silica nanoparticles (MSNs), synthesis, tumor therapy, tumor diagnosis, gene delivery, bioimaging.

[1]
Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B Mater Biol Med 2019; 7(48): 7639-55.
[http://dx.doi.org/10.1039/C9TB01842E] [PMID: 31746934]
[2]
Barkat A, Beg S, Panda SK, S Alharbi K, Rahman M, Ahmed FJ. Functionalized mesoporous silica nanoparticles in anticancer therapeutics. Semin Cancer Biol 2021; 69: 365-75.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.022] [PMID: 31442571]
[3]
Cheng Y, Jiao X, Fan W, Yang Z, Wen Y, Chen X. Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics. Biomaterials 2020; 256: 120191.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120191] [PMID: 32593907]
[4]
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012; 24(12): 1504-34.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[5]
Yu Y. Advances in preparation of mesoporous silica nanoparticles and its use as different functional drug. Chinese J New Drugs 2017; 26(16): 1906-12.
[6]
Abbaraju PL, Meka AK, Song H, et al. Asymmetric silica nanoparticles with tunable head-tail structures enhance hemocompatibility and maturation of immune cells. J Am Chem Soc 2017; 139(18): 6321-8.
[http://dx.doi.org/10.1021/jacs.6b12622] [PMID: 28440642]
[7]
You YY, He L, Ma B, Chen T. High-drug-loading mesoporous silica nanorods with reduced toxicity for precise cancer therapy against nasopharyngeal carcinoma. Adv Funct Mater 2017; 27(42): 1703313.
[http://dx.doi.org/10.1002/adfm.201703313]
[8]
Singh RK, Knowles JC, Kim H-W. Advances in nanoparticle development for improved therapeutics delivery: Nanoscale topographical aspect. J Tissue Eng 2019; 10: 2041731419877528.
[http://dx.doi.org/10.1177/2041731419877528] [PMID: 31555432]
[9]
Kaya S, Cresswell M, Boccaccini AR. Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications. Mater Sci Eng C 2018; 83: 99-107.
[http://dx.doi.org/10.1016/j.msec.2017.11.003] [PMID: 29208293]
[10]
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 2019; 109: 1100-11.
[http://dx.doi.org/10.1016/j.biopha.2018.10.167] [PMID: 30551360]
[11]
Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 2009; 9(5): 1909-15.
[http://dx.doi.org/10.1021/nl900031y] [PMID: 19344179]
[12]
Pham SH, Choi Y, Choi J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics 2020; 12(7): E630.
[http://dx.doi.org/10.3390/pharmaceutics12070630] [PMID: 32635539]
[13]
Raza F, Zhu Y, Chen L, et al. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 2019; 7(5): 2023-36.
[http://dx.doi.org/10.1039/C9BM00139E] [PMID: 30839983]
[14]
Zhu Y, Wang L, Li Y, et al. Injectable pH and redox dual responsive hydrogel based on self-assembled peptides for anti-tumor drug delivery. Biomater Sci 2020; 8(19): 5415-26.
[http://dx.doi.org/10.1039/D0BM01004A]
[15]
Downing MA, Jain PK. Mesoporous silica nanoparticles: Synthesis, properties, and biomedical applications. In: Chung EJ, Leon L, Rinaldi C, Eds. Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Elsevier 2020; pp. 267-81.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00016-3]
[16]
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthc Mater 2018; 7(4): 1700831.
[http://dx.doi.org/10.1002/adhm.201700831] [PMID: 29193848]
[17]
Pal N, Lee J-H, Cho E-B. Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles. Nanomaterials (Basel) 2020; 10(11): E2122.
[http://dx.doi.org/10.3390/nano10112122] [PMID: 33113856]
[18]
Das P, Ray S, Bhanja P, Bhaumik A, Mukhopadhyay C. Serendipitous observation of liquid-phase size selectivity inside a mesoporous silica nanoreactor in the reaction of chromene with formic acid. ChemCatChem 2018; 10(10): 2260-70.
[http://dx.doi.org/10.1002/cctc.201701975]
[19]
Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 2009; 5(12): 1408-13.
[http://dx.doi.org/10.1002/smll.200900005] [PMID: 19296554]
[20]
Nandiyanto ABD, Kim SG, Iskandar F, Okuyama K. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous Mesoporous Mater 2009; 120(3): 447-53.
[http://dx.doi.org/10.1016/j.micromeso.2008.12.019]
[21]
Pal N, Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids. Adv Colloid Interface Sci 2013; 189-190: 21-41.
[http://dx.doi.org/10.1016/j.cis.2012.12.002] [PMID: 23337774]
[22]
Djojoputro H, Zhou XF, Qiao SZ, Wang LZ, Yu CZ, Lu GQ. Periodic mesoporous organosilica hollow spheres with tunable wall thickness. J Am Chem Soc 2006; 128(19): 6320-1.
[http://dx.doi.org/10.1021/ja0607537] [PMID: 16683788]
[23]
Rahman ZU, Wei N, Li Z, Sun W, Wang D. Preparation of hollow mesoporous silica nanospheres: Controllable template synthesis and their application in drug delivery. New J Chem 2017; 41(23): 14122-9.
[http://dx.doi.org/10.1039/C7NJ02804K]
[24]
Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 2013; 42(9): 3862-75.
[http://dx.doi.org/10.1039/c3cs35405a] [PMID: 23403864]
[25]
Zhangxu C, Zheng B, Li X, et al. Progress in the preparation of nanomaterials employing template method. CIEP 2010; 29(1): 94-9.
[26]
Mukherjee I, Mylonakis A, Guo Y, et al. Effect of nonsurfactant template content on the particle size and surface area of monodisperse mesoporous silica nanospheres. Microporous Mesoporous Mater 2009; 122(1-3): 168-74.
[http://dx.doi.org/10.1016/j.micromeso.2009.02.030]
[27]
Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annual Review of Medicine. Palo Alto: Annual Reviews 2012; 63: pp. 185-98.
[28]
Ambrogi V, Famiani F, Perioli L, Marmottini F, Di Cunzolo I, Rossi C. Effect of MCM-41 on the dissolution rate of the poorly soluble plant growth regulator, the indole-3-butyric acid. Microporous Mesoporous Mater 2006; 96(1-3): 177-83.
[http://dx.doi.org/10.1016/j.micromeso.2006.06.033]
[29]
Yu L, Lin H, Lu X, Chen Y. Multifunctional mesoporous silica nanoprobes: material chemistry-based fabrication and bio-imaging functionality. Adv Ther (Weinh) 2018; 1(8): 1800078.
[http://dx.doi.org/10.1002/adtp.201800078]
[30]
Aquib M, Farooq MA, Banerjee P, et al. Targeted and stimuli-responsive mesoporous silica nanoparticles for drug delivery and theranostic use. J Biomed Mater Res A 2019; 107(12): 2643-66.
[http://dx.doi.org/10.1002/jbm.a.36770] [PMID: 31390141]
[31]
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2012; 64: 206-12.
[http://dx.doi.org/10.1016/j.addr.2012.09.033] [PMID: 15350294]
[32]
Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 2017; 7(3): 523-37.
[http://dx.doi.org/10.7150/thno.42848] [PMID: 32104511]
[33]
Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 2017; 46(12): 3830-52.
[http://dx.doi.org/10.1039/C6CS00592F] [PMID: 28516983]
[34]
Zheng Z, Chen Q, Rong S, et al. Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation. Nanoscale 2020; 12(29): 15845-56.
[http://dx.doi.org/10.1039/D0NR03661G] [PMID: 32696787]
[35]
Chen K, Chang C, Liu Z, et al. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2020; 194: 111166-6.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111166] [PMID: 32521461]
[36]
Wu Y, Ge P, Xu W, et al. Cancer-targeted and intracellular delivery of Bcl-2-converting peptide with functional macroporous silica nanoparticles for biosafe treatment. Mater Sci Eng C Mater Biol Appl 2020; 108.110386.
[37]
Naz S, Wang M, Han Y, et al. Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage-targeted drug delivery. Int J Nanomedicine 2019; 14: 2533-42.
[http://dx.doi.org/10.2147/IJN.S202210] [PMID: 31114189]
[38]
Zhu Y, Sundaram HS, Liu S, et al. A robust graft-to strategy to form multifunctional and stealth zwitterionic polymer-coated mesoporous silica nanoparticles. Biomacromolecules 2014; 15(5): 1845-51.
[http://dx.doi.org/10.1021/bm500209a] [PMID: 24670217]
[39]
Milgroom A, Intrator M, Madhavan K, et al. Mesoporous silica nanoparticles as a breast-cancer targeting ultrasound contrast agent. Colloids Surf B Biointerfaces 2014; 116: 652-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.038] [PMID: 24269054]
[40]
Raza F, Zafar H, Zhu Y, et al. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers. Pharmaceutics 2018; 10(1): 16.
[http://dx.doi.org/10.3390/pharmaceutics10010016] [PMID: 29346275]
[41]
Durfee PN, Lin YS, Dunphy DR, et al. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano 2016; 10(9): 8325-45.
[http://dx.doi.org/10.1021/acsnano.6b02819] [PMID: 27419663]
[42]
Jankovic-Karasoulos T, Furness LD, Leemaqz YS, et al. Maternal folate, one-carbon metabolism and pregnancy outcomes. Matern Child Nutr 2021; 17(1): e13064.
[PMID: 32720760]
[43]
Bailey LB, Stover PJ, McNulty H, et al. Biomarkers of nutrition for development-folate review. J Nutr 2015; 145(7): 1636S-80S.
[http://dx.doi.org/10.3945/jn.114.206599] [PMID: 26451605]
[44]
Joseph MM, Ramya AN, Vijayan VM, et al. Targeted theranostic nano vehicle endorsed with self-destruction and immunostimulatory features to circumvent drug resistance and wipe-out tumor reinitiating cancer stem cells. Small 2020; 16(38): e2003309.
[http://dx.doi.org/10.1002/smll.202003309] [PMID: 32797715]
[45]
Rosenholm JM, Meinander A, Peuhu E, et al. Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 2009; 3(1): 197-206.
[http://dx.doi.org/10.1021/nn800781r] [PMID: 19206267]
[46]
Guo R, Li LL, Zhao WH, et al. The intracellular controlled release from bioresponsive mesoporous silica with folate as both targeting and capping agent. Nanoscale 2012; 4(11): 3577-83.
[http://dx.doi.org/10.1039/c2nr30425b] [PMID: 22543578]
[47]
Danhier F, Vroman B, Lecouturier N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release 2009; 140(2): 166-73.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.011] [PMID: 19699245]
[48]
Fukumura D, Jain RK. Imaging angiogenesis and the microenvironment. Acta Pathol Microbiol Scand Suppl 2008; 116(7-8): 695-715.
[http://dx.doi.org/10.1111/j.1600-0463.2008.01148.x] [PMID: 18834413]
[49]
Ferris DP, Lu J, Gothard C, et al. Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 2011; 7(13): 1816-26.
[http://dx.doi.org/10.1002/smll.201002300] [PMID: 21595023]
[50]
Bhattarai P, Hameed S, Dai Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale 2018; 10(12): 5393-423.
[http://dx.doi.org/10.1039/C7NR09612G] [PMID: 29528075]
[51]
Paris JL, Villaverde G, Gómez-Graña S, Vallet-Regí M. Nanoparticles for multimodal antivascular therapeutics: Dual drug release, photothermal and photodynamic therapy. Acta Biomater 2020; 101: 459-68.
[http://dx.doi.org/10.1016/j.actbio.2019.11.004] [PMID: 31706040]
[52]
Yan H, You Y, Li X, et al. Preparation of RGD peptide/folate acid double-targeted mesoporous silica nanoparticles and its application in human breast cancer MCF-7 cells. Front Pharmacol 2020; 11: 898.
[http://dx.doi.org/10.3389/fphar.2020.00898] [PMID: 32612532]
[53]
Huang M, Zhang SF, Lü S, et al. Synthesis of mesoporous silica/polyglutamic acid peptide dendrimer with dual targeting and its application in dissolving thrombus. J Biomed Mater Res A 2019; 107(8): 1824-31.
[http://dx.doi.org/10.1002/jbm.a.36703] [PMID: 31012233]
[54]
Pan L, Liu J, He Q, Shi J. MSN-mediated sequential vascular-to- cell nuclear-targeted drug delivery for efficient tumor regression. Adv Mater 2014; 26(39): 6742-8.
[http://dx.doi.org/10.1002/adma.201402752] [PMID: 25159109]
[55]
Zhou J, Li M, Lim WQ, et al. A Transferrin-conjugated hollow nanoplatform for redox-controlled and targeted chemotherapy of tumor with reduced inflammatory reactions. Theranostics 2018; 8(2): 518-32.
[http://dx.doi.org/10.7150/thno.21194] [PMID: 29290824]
[56]
Wang X, Wang M, Lei R, Zhu SF, Zhao Y, Chen C. Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano 2017; 11(5): 4606-16.
[http://dx.doi.org/10.1021/acsnano.7b00200] [PMID: 28460159]
[57]
Liu J, Wei T, Zhao J, et al. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 2016; 91: 44-56.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.013] [PMID: 26994877]
[58]
Taghavi S, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett 2017; 400: 1-8.
[http://dx.doi.org/10.1016/j.canlet.2017.04.008] [PMID: 28412238]
[59]
Zahiri M, Babaei M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid nanoreservoirs based on dextran-capped dendritic mesoporous silica nanoparticles for CD133-targeted drug delivery. J Cell Physiol 2020; 235(2): 1036-50.
[http://dx.doi.org/10.1002/jcp.29019] [PMID: 31276199]
[60]
Pascual L, Cerqueira-Coutinho C, García-Fernández A, et al. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine 2017; 13(8): 2495-505.
[http://dx.doi.org/10.1016/j.nano.2017.08.006] [PMID: 28842375]
[61]
Wan J, Li Y, Jin K, Guo J, Xu J, Wang C. Robust strategy for antibody-polymer-drug conjugation: significance of conjugating orientation and linker charge on targeting ability. ACS Appl Mater Interfaces 2020; 12(21): 23717-25.
[http://dx.doi.org/10.1021/acsami.0c04471] [PMID: 32368886]
[62]
Chen DJ, Nirodi CS. The epidermal growth factor receptor: A role in repair of radiation-induced DNA damage. Clin Cancer Res 2007; 13(22 Pt 1): 6555-60.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1610] [PMID: 18006754]
[63]
Nyati MK, Morgan MA, Feng YF, Lawrence TS. Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer 2006; 6(11): 876-85.
[http://dx.doi.org/10.1038/nrc2030]
[64]
Raza F, Zafar H, Zhang S, et al. Recent advances in cell membrane-derived biomimetic nanotechnology for cancer immunotherapy. Adv Healthc Mater 2021; 10(6): e2002081.
[http://dx.doi.org/10.1002/adhm.202002081] [PMID: 33586322]
[65]
Wang X, Li X, Yoshiyuki K, et al. Comprehensive mechanism analysis of mesoporous-silica-nanoparticle-induced cancer immunotherapy. Adv Healthc Mater 2016; 5(10): 1169-76.
[http://dx.doi.org/10.1002/adhm.201501013] [PMID: 26987867]
[66]
Liu Q, Zhou Y, Li M, et al. Polyethylenimine hybrid thin-shell hollow mesoporous silica nanoparticles as vaccine self-adjuvants for cancer immunotherapy. ACS Appl Mater Interfaces 2019; 11(51): 47798-809.
[http://dx.doi.org/10.1021/acsami.9b19446] [PMID: 31773941]
[67]
Lee JY, Kim MK, Nguyen TL, Kim J. Hollow mesoporous silica nanoparticles with extra-large mesopores for enhanced cancer vaccine. ACS Appl Mater Interfaces 2020; 12(31): 34658-66.
[http://dx.doi.org/10.1021/acsami.0c09484] [PMID: 32662625]
[68]
Li X, Wang X, Ito A, Tsuji NM. A nanoscale metal organic frameworks-based vaccine synergises with PD-1 blockade to potentiate anti-tumour immunity. Nat Commun 2020; 11(1): 3858.
[http://dx.doi.org/10.1038/s41467-020-17637-z] [PMID: 32737343]
[69]
Xu C, Nam J, Hong H, Xu Y, Moon JJ. Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano 2019; 13(10): 12148-61.
[http://dx.doi.org/10.1021/acsnano.9b06691] [PMID: 31556987]
[70]
Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 2013; 25(23): 3144-76.
[http://dx.doi.org/10.1002/adma.201205292] [PMID: 23681931]
[71]
Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, et al. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 2011; 7(24): 3519-28.
[http://dx.doi.org/10.1002/smll.201100521] [PMID: 22069305]
[72]
Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 2016; 91: 90-127.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.019] [PMID: 27017579]
[73]
Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010; 6(16): 1794-805.
[http://dx.doi.org/10.1002/smll.201000538] [PMID: 20623530]
[74]
Xie M, Shi H, Li Z, et al. A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf B Biointerfaces 2013; 110: 138-47.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.009] [PMID: 23711784]
[75]
Kim J, Kim HS, Lee N, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 2008; 47(44): 8438-41.
[http://dx.doi.org/10.1002/anie.200802469] [PMID: 18726979]
[76]
Shao Y, Tian X, Hu W, et al. The properties of Gd2O3-assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials 2012; 33(27): 6438-46.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.065] [PMID: 22704842]
[77]
Chan M-H, Lin H-M. Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials 2015; 46: 149-58.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.034] [PMID: 25678124]
[78]
Chen Y, Chen H, Zhang S, et al. Structure-property relationships in manganese oxide--mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials 2012; 33(7): 2388-98.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.086] [PMID: 22177841]
[79]
Du D, Fu HJ, Ren WW, Li XL, Guo LH. PSA targeted dual-modality manganese oxide-mesoporous silica nanoparticles for prostate cancer imaging. Biomed Pharmacother 2020; 121: 109614.
[http://dx.doi.org/10.1016/j.biopha.2019.109614] [PMID: 31731188]
[80]
Zhang K, Chen H, Li P, et al. Marriage strategy of structure and composition designs for Intensifying ultrasound & MR & CT trimodal contrast imaging. ACS Appl Mater Interfaces 2015; 7(33): 18590-9.
[http://dx.doi.org/10.1021/acsami.5b04999] [PMID: 26245739]
[81]
Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 2012; 64(13): 1394-416.
[http://dx.doi.org/10.1016/j.addr.2012.06.006] [PMID: 22728642]
[82]
Martins Estevão B, Miletto I, Marchese L, Gianotti E. Optimized Rhodamine B labeled mesoporous silica nanoparticles as fluorescent scaffolds for the immobilization of photosensitizers: A theranostic platform for optical imaging and photodynamic therapy. Phys Chem Chem Phys 2016; 18(13): 9042-52.
[http://dx.doi.org/10.1039/C6CP00906A] [PMID: 26967375]
[83]
Lozano-Torres B, Blandez JF, Galiana I, et al. Real-time in vivo detection of cellular senescence through the controlled release of the NIR fluorescent dye nile blue. Angew Chem Int Ed Engl 2020; 59(35): 15152-6.
[http://dx.doi.org/10.1002/anie.202004142] [PMID: 32416002]
[84]
Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6): 435-46.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[85]
Akbarzadeh M, Babaei M, Abnous K, et al. Hybrid silica-coated Gd-Zn-Cu-In-S/ZnS bimodal quantum dots as an epithelial cell adhesion molecule targeted drug delivery and imaging system. Int J Pharm 2019; 570: 118645.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118645] [PMID: 31465835]
[86]
Wei Y, Xia H, Zhang F, et al. Theranostic nanoprobe mediated simultaneous monitoring and inhibition of p-glycoprotein potentiating multidrug-resistant cancer therapy. Anal Chem 2019; 91(17): 11200-8.
[http://dx.doi.org/10.1021/acs.analchem.9b02118] [PMID: 31403276]
[87]
Singh RK, Patel KD, Mahapatra C, Kang MS, Kim HW. C-dot generated bioactive organosilica nanospheres in theranostics: multicolor luminescent and photothermal properties combined with drug delivery capacity. ACS Appl Mater Interfaces 2016; 8(37): 24433-44.
[http://dx.doi.org/10.1021/acsami.6b07494] [PMID: 27557854]
[88]
Kang MS, Singh RK, Kim TH, Kim JH, Patel KD, Kim HW. Optical imaging and anticancer chemotherapy through carbon dot created hollow mesoporous silica nanoparticles. Acta Biomater 2017; 55: 466-80.
[http://dx.doi.org/10.1016/j.actbio.2017.03.054] [PMID: 28373086]
[89]
Chen H, Zhen Z, Tang W, et al. Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery. Theranostics 2013; 3(9): 650-7.
[http://dx.doi.org/10.7150/thno.6668] [PMID: 24052805]
[90]
Gisbert-Garzarán M, Vallet-Regí M. Influence of the surface functionalization on the fate and performance of mesoporous silica nanoparticles. Nanomaterials (Basel) 2020; 10(5): E916.
[http://dx.doi.org/10.3390/nano10050916] [PMID: 32397449]
[91]
Kwon S, Singh RK, Kim TH, et al. Luminescent mesoporous nanoreservoirs for the effective loading and intracellular delivery of therapeutic drugs. Acta Biomater 2014; 10(3): 1431-42.
[http://dx.doi.org/10.1016/j.actbio.2013.10.028] [PMID: 24239681]
[92]
Singh RK, Kim TH, Mahapatra C, Patel KD, Kim HW. Preparation of self-activated fluorescence mesoporous silica hollow nanoellipsoids for theranostics. Langmuir 2015; 31(41): 11344-52.
[http://dx.doi.org/10.1021/acs.langmuir.5b03436] [PMID: 26393922]
[93]
Luo D, Cui S, Liu Y, et al. Biocompatibility of magnetic resonance imaging nanoprobes improved by transformable gadolinium oxide nanocoils. J Am Chem Soc 2018; 140(47): 16368-8.
[http://dx.doi.org/10.1021/jacs.8b11782] [PMID: 30421922]
[94]
Taylor KML, Kim JS, Rieter WJ, An H, Lin W, Lin W. Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 2008; 130(7): 2154-5.
[http://dx.doi.org/10.1021/ja710193c] [PMID: 18217764]
[95]
Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy. Int J Nanomedicine 2019; 14: 8321-44.
[http://dx.doi.org/10.2147/IJN.S218085] [PMID: 31695370]
[96]
Hao Q, Wang Z, Zhao W, et al. Dual-Responsive polyprodrug nanoparticles with cascade-enhanced magnetic resonance signals for deep-penetration drug release in tumor therapy. ACS Appl Mater Interfaces 2020; 12(44): 49489-501.
[http://dx.doi.org/10.1021/acsami.0c16110] [PMID: 33079514]
[97]
Raymond KN, Pierre VC. Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 2005; 16(1): 3-8.
[http://dx.doi.org/10.1021/bc049817y] [PMID: 15656568]
[98]
Langereis S, de Lussanet QG, van Genderen MH, et al. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 2006; 19(1): 133-41.
[http://dx.doi.org/10.1002/nbm.1015] [PMID: 16450331]
[99]
Weissleder R. Molecular imaging in cancer. Science 2006; 312(5777): 1168-71.
[http://dx.doi.org/10.1126/science.1125949] [PMID: 16728630]
[100]
Wang D, Lin H, Zhang G, et al. Effective pH-activated theranostic platform for synchronous magnetic resonance imaging diagnosis and chemotherapy. ACS Appl Mater Interfaces 2018; 10(37): 31114-23.
[http://dx.doi.org/10.1021/acsami.8b11408] [PMID: 30141893]
[101]
Singh RK, Patel KD, Kim JJ, et al. Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS Appl Mater Interfaces 2014; 6(4): 2201-8.
[http://dx.doi.org/10.1021/am4056936] [PMID: 24476195]
[102]
Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 2011; 399(1): 3-27.
[http://dx.doi.org/10.1007/s00216-010-4207-5] [PMID: 20924568]
[103]
Yildirim A, Chattaraj R, Blum NT, Goodwin AP. Understanding acoustic cavitation initiation by porous nanoparticles: toward nanoscale agents for ultrasound Imaging and therapy. Chem Mater 2016; 28(16): 5962-72.
[http://dx.doi.org/10.1021/acs.chemmater.6b02634] [PMID: 28484307]
[104]
Jin Q, Lin CY, Kang ST, et al. Superhydrophobic silica nanoparticles as ultrasound contrast agents. Ultrason Sonochem 2017; 36: 262-9.
[http://dx.doi.org/10.1016/j.ultsonch.2016.12.001] [PMID: 28069209]
[105]
Lu Y, Li L, Lin Z, et al. Enhancing osteosarcoma killing and CT imaging using ultrahigh drug loading and NIR-responsive bismuth sulfide@Mesoporous silica nanoparticles. Adv Healthc Mater 2018; 7(19): e1800602.
[http://dx.doi.org/10.1002/adhm.201800602] [PMID: 30102469]
[106]
Baek S, Singh RK, Kim TH, et al. Triple hit with drug carriers: ph- and temperature-responsive theranostics for multimodal chemo- and photothermal therapy and diagnostic applications. ACS Appl Mater Interfaces 2016; 8(14): 8967-79.
[http://dx.doi.org/10.1021/acsami.6b00963] [PMID: 26926826]
[107]
Zhang X, Zhang X, Wang S, et al. Facile incorporation of aggregation-induced emission materials into mesoporous silica nanoparticles for intracellular imaging and cancer therapy. ACS Appl Mater Interfaces 2013; 5(6): 1943-7.
[http://dx.doi.org/10.1021/am302512u] [PMID: 23363527]
[108]
He Z, Jiang R, Long W, et al. Red aggregation-induced emission luminogen and Gd3+ codoped mesoporous silica nanoparticles as dual-mode probes for fluorescent and magnetic resonance imaging. J Colloid Interface Sci 2020; 567: 136-44.
[http://dx.doi.org/10.1016/j.jcis.2020.02.009] [PMID: 32045735]
[109]
Bellin M-F. MR contrast agents, the old and the new. Eur J Radiol 2006; 60(3): 314-23.
[http://dx.doi.org/10.1016/j.ejrad.2006.06.021] [PMID: 17005349]
[110]
Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 2001; 104(17): 2107-12.
[http://dx.doi.org/10.1161/hc4201.097061] [PMID: 11673354]
[111]
Lambert JW, Sun Y, Stillson C, et al. An Intravascular tantalum oxide-based CT contrast agent: preclinical evaluation emulating overweight and obese patient size. Radiology 2018; 289(1): 103-10.
[http://dx.doi.org/10.1148/radiol.2018172381] [PMID: 29969071]
[112]
Yuan Y, Zhou R, Li T, et al. Enriched Au nanoclusters with mesoporous silica nanoparticles for improved fluorescence/computed tomography dual-modal imaging. Cell Prolif 2021; 54(4): e13008.
[http://dx.doi.org/10.1111/cpr.13008] [PMID: 33634540]
[113]
Ryoo R. Birth of a class of nanomaterial. Nature 2019; 575(7781): 40-1.
[http://dx.doi.org/10.1038/d41586-019-02835-7] [PMID: 31686044]
[114]
Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours. Nat Mater 2020; 19(5): 566-75.
[http://dx.doi.org/10.1038/s41563-019-0566-2] [PMID: 31932672]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy