[1]
Wang, X.; Huang, B.; Liu, X.; Zhan, P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov. Today, 2016, 21(1), 118-132.
[http://dx.doi.org/10.1016/j.drudis.2015.08.004] [PMID: 26315392]
[http://dx.doi.org/10.1016/j.drudis.2015.08.004] [PMID: 26315392]
[2]
Peng, B.; Thorsell, A-G.; Karlberg, T.; Schüler, H.; Yao, S.Q. Small molecule microarray based discovery of PARP14 inhibitors. Angew. Chem. Int. Ed. Engl., 2017, 56(1), 248-253.
[http://dx.doi.org/10.1002/anie.201609655] [PMID: 27918638]
[http://dx.doi.org/10.1002/anie.201609655] [PMID: 27918638]
[3]
Jing, L.; Wu, G.; Hao, X.; Olotu, F.A.; Kang, D.; Chen, C.H.; Lee, K.H.; Soliman, M.E.S.; Liu, X.; Song, Y.; Zhan, P. Identification of highly potent and selective Cdc25 protein phosphatases inhibitors from miniaturization click-chemistry-based combinatorial libraries. Eur. J. Med. Chem., 2019, 183, 111696.
[http://dx.doi.org/10.1016/j.ejmech.2019.111696] [PMID: 31541869]
[http://dx.doi.org/10.1016/j.ejmech.2019.111696] [PMID: 31541869]
[4]
Tao, Y.; Hao, X.; Jing, L.; Sun, L.; Cherukupalli, S.; Liu, S.; Wu, G.; Xu, S.; Zhang, X.; Shi, X.; Song, Y.; Liu, X.; Zhan, P. Discovery of potent and selective Cdc25 phosphatase inhibitors via rapid assembly and in situ screening of Quinonoid-focused libraries. Bioorg. Chem., 2021, 115, 105254.
[http://dx.doi.org/10.1016/j.bioorg.2021.105254] [PMID: 34426152]
[http://dx.doi.org/10.1016/j.bioorg.2021.105254] [PMID: 34426152]
[5]
Agard, N.J.; Prescher, J.A.; Bertozzi, C.R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc., 2004, 126(46), 15046-15047.
[http://dx.doi.org/10.1021/ja044996f] [PMID: 15547999]
[http://dx.doi.org/10.1021/ja044996f] [PMID: 15547999]
[6]
Qian, L.; Zhang, C-J.; Wu, J.; Yao, S.Q. Fused bicyclic caspase-1 inhibitors assembled by copper-free strain-promoted alkyne-azide cycloaddition (SPAAC). Chemistry, 2017, 23(2), 360-369.
[http://dx.doi.org/10.1002/chem.201603150] [PMID: 27882694]
[http://dx.doi.org/10.1002/chem.201603150] [PMID: 27882694]
[7]
Kim, E.; Koo, H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem. Sci. (Camb.), 2019, 10(34), 7835-7851.
[http://dx.doi.org/10.1039/C9SC03368H] [PMID: 31762967]
[http://dx.doi.org/10.1039/C9SC03368H] [PMID: 31762967]
[8]
Barrow, A.S.; Smedley, C.J.; Zheng, Q.; Li, S.; Dong, J.; Moses, J.E. The growing applications of SuFEx click chemistry. Chem. Soc. Rev., 2019, 48(17), 4731-4758.
[http://dx.doi.org/10.1039/C8CS00960K] [PMID: 31364998]
[http://dx.doi.org/10.1039/C8CS00960K] [PMID: 31364998]
[9]
Liu, Z.; Li, J.; Li, S.; Li, G.; Sharpless, K.B.; Wu, P. SuFEx click chemistry enabled late-stage drug functionalization. J. Am. Chem. Soc., 2018, 140(8), 2919-2925.
[http://dx.doi.org/10.1021/jacs.7b12788] [PMID: 29451783]
[http://dx.doi.org/10.1021/jacs.7b12788] [PMID: 29451783]
[10]
Kitamura, S.; Zheng, Q.; Woehl, J.L.; Solania, A.; Chen, E.; Dillon, N.; Hull, M.V.; Kotaniguchi, M.; Cappiello, J.R.; Kitamura, S.; Nizet, V.; Sharpless, K.B.; Wolan, D.W. Sulfur(VI) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. J. Am. Chem. Soc., 2020, 142(25), 10899-10904.
[http://dx.doi.org/10.1021/jacs.9b13652] [PMID: 32479075]
[http://dx.doi.org/10.1021/jacs.9b13652] [PMID: 32479075]
[11]
Dai, H.; Huang, M.; Qian, J.; Liu, J.; Meng, C.; Li, Y.; Ming, G.; Zhang, T.; Wang, S.; Shi, Y.; Yao, Y.; Ge, S.; Zhang, Y.; Ling, Y. Excellent antitumor and antimetastatic activities based on novel coumarin/pyrazole oxime hybrids. Eur. J. Med. Chem., 2019, 166, 470-479.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.070] [PMID: 30739827]
[http://dx.doi.org/10.1016/j.ejmech.2019.01.070] [PMID: 30739827]
[12]
Lin, Y.; Penna, M.; Spicer, C.D.; Higgins, S.G.; Gelmi, A.; Kim, N.; Wang, S.T.; Wojciechowski, J.P.; Pashuck, E.T.; Yarovsky, I.; Stevens, M.M. High-throughput peptide derivatization toward supramolecular diversification in microtiter plates. ACS Nano, 2021, 15(3), 4034-4044.
[http://dx.doi.org/10.1021/acsnano.0c05423] [PMID: 33587607]
[http://dx.doi.org/10.1021/acsnano.0c05423] [PMID: 33587607]
[13]
He, R.; Yu, Z-H.; Zhang, R-Y.; Wu, L.; Gunawan, A.M.; Lane, B.S.; Shim, J.S.; Zeng, L.F.; He, Y.; Chen, L.; Wells, C.D.; Liu, J.O.; Zhang, Z.Y. Exploring the existing drug space for novel pTyr mimetic and SHP2 inhibitors. ACS Med. Chem. Lett., 2015, 6(7), 782-786.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00118] [PMID: 26191366]
[http://dx.doi.org/10.1021/acsmedchemlett.5b00118] [PMID: 26191366]
[14]
Sutanto, F.; Shaabani, S.; Oerlemans, R.; Eris, D.; Patil, P.; Hadian, M.; Wang, M.; Sharpe, M.E.; Groves, M.R.; Dömling, A. Combining high-throughput synthesis and high-throughput protein crystallography for accelerated hit identification. Angew. Chem. Int. Ed. Engl., 2021, 60(33), 18231-18239.
[http://dx.doi.org/10.1002/anie.202105584] [PMID: 34097796]
[http://dx.doi.org/10.1002/anie.202105584] [PMID: 34097796]
[15]
Sutanto, F.; Shaabani, S.; Neochoritis, C.G.; Zarganes-Tzitzikas, T.; Patil, P.; Ghonchepour, E.; Dömling, A. Multicomponent reaction-derived covalent inhibitor space. Sci. Adv., 2021, 7(6), ,eabd9307.
[http://dx.doi.org/10.1126/sciadv.abd9307] [PMID: 33536213]
[http://dx.doi.org/10.1126/sciadv.abd9307] [PMID: 33536213]