Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Review Article

Recent Applications of Derivatization Techniques for Pharmaceutical and Bioanalytical Analysis through High-performance Liquid Chromatography

Author(s): Raghav Dogra and Uttam Kumar Mandal*

Volume 18, Issue 2, 2022

Page: [217 - 243] Pages: 27

DOI: 10.2174/1573411017666211108092115

Price: $65

Abstract

Background: Derivatization of analytes is a quite convenient practice from an analytical perspective. Its vast prevalence is accounted by the availability of distinct reagents, primarily pragmatic for obtaining desired modifications in an analyte structure. Another reason for its handiness is typically to overcome limitations such as lack of sensitive methodology or instrumentation. The past decades have witnessed various new derivatization techniques including in-situ, enzymatic, ultrasound-assisted, microwave-assisted, and photochemical derivatization, which have gained popularity recently.

Methods: The online literature available on the utilization of derivatization as prominent analytical tool in recent years with typical advancements is reviewed. The illustrations of the analytical condition and the structures of different derivatizing reagents (DRs) are provided to acknowledge the vast capability of derivatization to resolve analytical problems.

Results: The derivatization techniques have enabled analytical chemists throughout the globe to develop an enhanced sensitivity method with the simplest of the instrument like High-performance Liquid Chromatography (HPLC). The HPLC, compared to more sensitive Liquid chromatography coupled to a tandem mass spectrometer, is readily available and can be readily utilized for routine analysis in fields of pharmaceuticals, bioanalysis, food safety, and environmental contamination. A troublesome aspect of these fields is the presence of a complex matrix with trace concentrations for analyses. Liquid chromatographic methods devoid of MS detectors do not have the desired sensitivity for this. A possible solution for overcoming this is to couple HPLC with derivatization to enable the possibility of detecting trace analytes with a less expensive instrument. Running cost, enhanced sensitivity, low time consumption, and overcoming the inherent problems of analyte are critical parameters for which HPLC is quite useful in high throughput analysis.

Conclusion: The review critically highlights various kinds of derivatization applications in different fields of analytical chemistry. The information primarily focuses on pharmaceutical and bioanalytical applications in recent years. The various modes, types, and derivatizing reagents with mechanisms have been ascribed briefly. Additionally, the importance of HPLC coupled to fluorescence and UV detection is presented as an overview through examples accompanied by their analytical conditions.

Keywords: Chromatography, derivatization, HPLC, bioanalysis, pharmaceutical application, ultrasound-assisted derivatization, microwave-assisted derivatization.

Graphical Abstract

[1]
Qi, B.L.; Liu, P.; Wang, Q.Y.; Cai, W.J.; Yuan, B.F.; Feng, Y.Q. Derivatization for liquid chromatography-mass spectrometry. Trends Analyt. Chem., 2014, 59, 121-132.
[http://dx.doi.org/10.1016/j.trac.2014.03.013]
[2]
Rosenfeld, J. Enhancement of analysis by analytical derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(17-18), 1157-1158.
[http://dx.doi.org/10.1016/j.jchromb.2011.04.010] [PMID: 21515095]
[3]
Semwal, A.; Dogra, R.; Verma, K.; Bhatia, R. Impact of UPLC-MS in food and drug/metabolite analysis. Curr. Pharm. Anal., 2021, 17(1), 10-21.
[http://dx.doi.org/10.2174/1573412915666190923105355]
[4]
Kishikawa, N. Derivatization Techniques for Chromatographic Analysis. Anal. Sci., 2018, 34(10), 1109-1110.
[http://dx.doi.org/10.2116/analsci.highlights1810] [PMID: 30305589]
[5]
Sajid, M.; Płotka-Wasylka, J. “Green” nature of the process of derivatization in analytical sample preparation. Trends Analyt. Chem., 2018, 102, 16-31.
[http://dx.doi.org/10.1016/j.trac.2018.01.005]
[6]
Su, Y.; Xia, S.; Wang, R.; Xiao, L. Phytohormonal Quantification Based on Biological Principles. In: Hormone Metabolism and Signaling in Plants; Elsevier Inc. Science B.V: Amsterdam, 2017, pp. pp. 431-470.
[http://dx.doi.org/10.1016/B978-0-12-811562-6.00013-X]
[7]
Knapp, D. Handbook of Analytical Derivatization Reactions, 1st ed; John Wiley & Sons: Somerset, NJ, 1979.
[8]
Delgado-Povedano, M.M.; Luque de Castro, M.D. Ultrasound-assisted extraction and in situ derivatization. J. Chromatogr. A, 2013, 1296, 226-234.
[http://dx.doi.org/10.1016/j.chroma.2013.04.004] [PMID: 23639123]
[9]
Lavilla, I.; Romero, V.; Costas, I.; Bendicho, C. Greener derivatization in analytical chemistry. Trends Analyt. Chem., 2014, 61, 1-10.
[http://dx.doi.org/10.1016/j.trac.2014.05.007]
[10]
Płotka-Wasylka, J.M.; Morrison, C.; Biziuk, M.; Namieśnik, J. Chemical derivatization processes applied to amine determination in samples of different matrix composition. Chem. Rev., 2015, 115(11), 4693-4718.
[http://dx.doi.org/10.1021/cr4006999] [PMID: 26023865]
[11]
Krull, I.S.; Deyl, Z.; Lingeman, H. General strategies and selection of derivatization reactions for liquid chromatography and capillary electrophoresis. J. Chromatogr. B Biomed. Appl., 1994, 659(1-2), 1-17.
[http://dx.doi.org/10.1016/0378-4347(94)00151-0] [PMID: 7820271]
[12]
Rosenfeld, J.M. Derivatization in the current practice of analytical chemistry. Trends Analyt. Chem., 2003, 22(11), 785-798.
[http://dx.doi.org/10.1016/S0165-9936(03)01205-6]
[13]
Westermeier, R.; Naven, T.; Höpker, H. Proteomics in Practice: A Guide to Successful Experimental Design, 2nd ed; John Wiley & Sons: New Jersey, 2008.
[http://dx.doi.org/10.1002/9783527622290]
[14]
Danielson, N.D.; Gallagher, P.A.; Bao, J.J. Chemical reagents and derivatization procedures in drug analysis. In:Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. John Wiley & Sons Chichester; , 2008.
[http://dx.doi.org/10.1002/9780470027318.a1905.pub2]
[15]
Du, Y.; Xia, L.; Xiao, X.; Li, G.; Chen, X. A simple one-step ultrasonic-assisted extraction and derivatization method coupling to high-performance liquid chromatography for the determination of ε-aminocaproic acid and amino acids in cosmetics. J. Chromatogr. A, 2018, 1554, 37-44.
[http://dx.doi.org/10.1016/j.chroma.2018.04.021] [PMID: 29703597]
[16]
Wang, Z. Green chemistry: Recent advances in developing catalytic processes in environmentally-benign solvent systems. Available from: http://ccc.chem.pitt.edu/wipf/Frontiers/Zhiyong.pdf
[17]
Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Analyt. Chem., 2013, 50, 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[18]
Keith, L.H.; Gron, L.U.; Young, J.L. Green analytical methodologies. Chem. Rev., 2007, 107(6), 2695-2708.
[http://dx.doi.org/10.1021/cr068359e] [PMID: 17521200]
[19]
Perez, H.L.; Evans, C.A. Chemical derivatization in bioanalysis. Bioanalysis, 2015, 7(19), 2435-2437.
[http://dx.doi.org/10.4155/bio.15.182] [PMID: 26526650]
[20]
Munir, M.A.; Badri, K.H. The importance of derivatizing reagent in chromatography applications for biogenic amine detection in food and beverages. J. Anal. Methods Chem., 2020, 20205814389
[http://dx.doi.org/10.1155/2020/5814389] [PMID: 32377440]
[21]
El-Yazbi, A.F.; El-Kimary, E.I.; Youssef, R.M. Hantzsch pre-column derivatization for simultaneous determination of alendronate sodium and its pharmacopoeial related impurity: Comparative study with synchronous fluorometry using fluorescamine. J. Food Drug Anal, 2019, 27(1), 208-220.
[http://dx.doi.org/10.1016/j.jfda.2018.05.009] [PMID: 30648573]
[22]
Beltz, J.; Pfaff, A.; Ercal, N. Simultaneous determination of tiopronin and its primary metabolite in plasma and ocular tissues by HPLC. Biomed. Chromatogr., 2019, 33(2)e4375
[http://dx.doi.org/10.1002/bmc.4375] [PMID: 30176059]
[23]
Vinci, G.; Restuccia, D.; La, R.; Calabria, U. Determination of biogenic amines in wines by HPLC-UV and LC-ESI-MS: A comparative study. Sci. Technol, 2011, 128-135.
[24]
Cimlová, J.; Kružberská, P.; Švagera, Z.; Hušek, P.; Šimek, P. In situ derivatization-liquid liquid extraction as a sample preparation strategy for the determination of urinary biomarker prolyl-4-hydroxyproline by liquid chromatography-tandem mass spectrometry. J. Mass Spectrom., 2012, 47(3), 294-302.
[http://dx.doi.org/10.1002/jms.2952] [PMID: 22431455]
[25]
Cabaleiro, N.; Pena-Pereira, F.; de la Calle, I.; Bendicho, C.; Lavilla, I. Determination of triclosan by cuvetteless UV-Vis micro-spectrophotometry following simultaneous ultrasound assisted emulsification-microextraction with derivatization: Use of a micellar-ionic liquid as extractant. Microchem. J., 2011, 99(2), 246-251.
[http://dx.doi.org/10.1016/j.microc.2011.05.010]
[26]
Gioia, M.G.; Gatti, R.; Minarini, A. LC determination of leuprolide component amino acids in injectable solution by phanquinone pre-column derivatization labelling procedure. J. Pharm. Biomed. Anal., 2005, 37(5), 1135-1141.
[http://dx.doi.org/10.1016/j.jpba.2004.09.028] [PMID: 15862697]
[27]
Hernández-Cassou, S.; Saurina, J. Derivatization strategies for the determination of biogenic amines in wines by chromatographic and electrophoretic techniques. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(17-18), 1270-1281.
[http://dx.doi.org/10.1016/j.jchromb.2010.11.020] [PMID: 21185242]
[28]
Cháfer-Pericás, C.; Campíns-Falcó, P.; Herráez-Hernández, R. Comparative study of the determination of trimethylamine in water and air by combining liquid chromatography and solid-phase microextraction with on-fiber derivatization. Talanta, 2006, 69(3), 716-723.
[http://dx.doi.org/10.1016/j.talanta.2005.11.013] [PMID: 18970628]
[29]
Wan Raihana, W.A.; Gan, S.H.; Tan, S.C. Stereoselective method development and validation for determination of concentrations of amphetamine-type stimulants and metabolites in human urine using a simultaneous extraction-chiral derivatization approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(1), 8-16.
[http://dx.doi.org/10.1016/j.jchromb.2010.10.037] [PMID: 21147046]
[30]
Burakham, R.; Grudpan, K. Flow injection and sequential injection on-line pre-column derivatization for liquid chromatography. J. Chromatogr. Sci., 2009, 47(8), 631-635.
[http://dx.doi.org/10.1093/chromsci/47.8.631] [PMID: 19772739]
[31]
Baghdady, Y.Z.; Schug, K.A. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry. J. Sep. Sci., 2016, 39(1), 102-114.
[http://dx.doi.org/10.1002/jssc.201501003] [PMID: 26496130]
[32]
Mahesh, V.; Narayana, R.; Mohana, C.; Kumar, A. Headspace single-drop microextraction with in-drop derivatization followed by reversed-phase HPLC analysis to determine residual acetaldehyde in polyethylene terephthalate. Sep. Sci. Plus, 2018, 1(4), 237-243.
[http://dx.doi.org/10.1002/sscp.201800001]
[33]
Wang, N.; Duan, C.; Geng, X.; Li, S.; Ding, K.; Guan, Y. One step rapid dispersive liquid-liquid micro-extraction with in-situ derivatization for determination of aflatoxins in vegetable oils based on high performance liquid chromatography fluorescence detection. Food Chem., 2019, 287, 333-337.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.099] [PMID: 30857707]
[34]
Gasnier, C.; Dumont, C.; Benachour, N.; Clair, E.; Chagnon, M.C.; Séralini, G.E. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 2009, 262(3), 184-191.
[http://dx.doi.org/10.1016/j.tox.2009.06.006] [PMID: 19539684]
[35]
Hyötyläinen, T. Principles, developments and applications of on-line coupling of extraction with chromatography. J. Chromatogr. A, 2007, 1153(1-2), 14-28.
[http://dx.doi.org/10.1016/j.chroma.2006.11.102] [PMID: 17196971]
[36]
Ferreira, A.M.C.; Laespada, M.E.F.; Pavón, J.L.P.; Cordero, B.M. In situ aqueous derivatization as sample preparation technique for gas chromatographic determinations. J. Chromatogr. A, 2013, 1296, 70-83.
[http://dx.doi.org/10.1016/j.chroma.2013.04.084] [PMID: 23726081]
[37]
Meyer, J.; Karst, U. Determination of paracetamol (Acetaminophen) by HPLC with post-column enzymatic derivatization and fluorescence detection. Chromatographia, 2001, 54(3-4), 163-167.
[http://dx.doi.org/10.1007/BF02492237]
[38]
Gant-Branum, R.L.; Kerr, T.J.; McLean, J.A. Labeling strategies in mass spectrometry-based protein quantitation. Analyst (Lond.), 2009, 134(8), 1525-1530.
[http://dx.doi.org/10.1039/b904643g] [PMID: 20448914]
[39]
Rzygalinski, I.; Pobozy, E.; Drewnowska, R.; Trojanowicz, M. Enzymatic in-capillary derivatization for glucose determination by electrophoresis with spectrophotometric detection. Electrophoresis, 2008, 29(8), 1741-1748.
[http://dx.doi.org/10.1002/elps.200700726] [PMID: 18383014]
[40]
Dasgupta, A.; Banerjee, P. Microwave induced rapid preparation of acetyl, trifluoroacetyl and tert-butyl dimethylsilyl derivatives of fatty alcohols and diacylglycerols for gas chromatography-mass spectrometric analysis. Chem. Phys. Lipids, 1993, 65(3), 217-224.
[http://dx.doi.org/10.1016/0009-3084(93)90019-Y]
[41]
Damm, M.; Rechberger, G.; Kollroser, M.; Kappe, C.O. Microwave-assisted high-throughput derivatization techniques utilizing silicon carbide microtiter platforms. J. Chromatogr. A, 2010, 1217(1), 167-170.
[http://dx.doi.org/10.1016/j.chroma.2009.11.071] [PMID: 19962705]
[42]
Xu, X.; Liu, Z.; Zhao, X.; Su, R.; Zhang, Y.; Shi, J.; Zhao, Y.; Wu, L.; Ma, Q.; Zhou, X.; Zhang, H.; Wang, Z. Ionic liquid-based microwave-assisted surfactant-improved dispersive liquid-liquid microextraction and derivatization of aminoglycosides in milk samples. J. Sep. Sci., 2013, 36(3), 585-592.
[http://dx.doi.org/10.1002/jssc.201200801] [PMID: 23303586]
[43]
Luo, X.; Sun, Z.; Wang, X.; Yu, Y.; Ji, Z.; Zhang, S.; Li, G.; You, J. Determination of nitrofuran metabolites in marine products by high performance liquid chromatography-fluorescence detection with microwave-assisted derivatization. New J. Chem., 2019, 43(6), 2649-2657.
[http://dx.doi.org/10.1039/C8NJ05479G]
[44]
Chávez, G.; Bravo, B.; Piña, N.; Arias, M.; Vivas, E.; Ysambertt, F.; Márquez, N.; Cáceres, A. Determination of aliphatic alcohols after on-line microwave-assisted derivatization by liquid chromatography-photodiode array detection. Talanta, 2004, 64(5), 1323-1328.
[http://dx.doi.org/10.1016/j.talanta.2004.05.055]
[45]
Fiamegos, Y.C.; Nanos, C.G.; Stalikas, C.D. Ultrasonic-assisted derivatization reaction of amino acids prior to their determination in urine by using single-drop microextraction in conjunction with gas chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 813(1-2), 89-94.
[http://dx.doi.org/10.1016/j.jchromb.2004.09.013] [PMID: 15556520]
[46]
Mason, T.J. Sonochemistry; Oxford University Primer Series, No. 70, 1999.
[47]
Mason, T.J. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing; John Wiley & Sons: New Jersey, 2002.
[http://dx.doi.org/10.1002/352760054X]
[48]
Mason, T.J. Advances in Sonochemistry; JAI press: London, 1996, Vol. 4, .
[49]
Mason, T.J.; Lorimer, J. Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry; John Wiley & Sons: New Jersey, 1988.
[50]
Huang, K.J.; Wei, C.Y.; Liu, W.L.; Xie, W.Z.; Zhang, J.F.; Wang, W. Ultrasound-assisted dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-fluorescence detection for sensitive determination of biogenic amines in rice wine samples. J. Chromatogr. A, 2009, 1216(38), 6636-6641.
[http://dx.doi.org/10.1016/j.chroma.2009.07.070] [PMID: 19674751]
[51]
Lores, M.; Cabaleiro, O.; Cela, R. Post-column photochemical derivatization in high-performance liquid chromatography. Trends Analyt. Chem., 1999, 18(6), 392-400.
[http://dx.doi.org/10.1016/S0165-9936(98)00121-6]
[52]
García-Borregón, P.F.; Lores, M.; Cela, R. Analysis of barbiturates by micro-high-performance liquid chromatography with post-column photochemical derivatization. J. Chromatogr. A, 2000, 870(1-2), 39-44.
[http://dx.doi.org/10.1016/S0021-9673(99)01227-3] [PMID: 10722060]
[53]
Fedorowski, J.; LaCourse, W.R. A review of post-column photochemical reaction systems coupled to electrochemical detection in HPLC. Anal. Chim. Acta, 2010, 657(1), 1-8.
[http://dx.doi.org/10.1016/j.aca.2009.10.011] [PMID: 19951751]
[54]
Engelhardt, H.; Krämer, M.; Waldhoff, H. Enhancement of protein detection by microwave-induced hydrolysis and OPA Derivatization. Chromatographia, 1990, 30(9-10), 523-526.
[http://dx.doi.org/10.1007/BF02269798]
[55]
Bao, J.; Regnier, F.E. Ultramicro enzyme assays in a capillary electrophoretic system. J. Chromatogr. A, 1992, 608(1-2), 217-224.
[http://dx.doi.org/10.1016/0021-9673(92)87127-T] [PMID: 1430025]
[56]
Robards, K.; Robards, K.; Haddad, P.; Haddad, P. Principles and Practice of Modern Chromatographic Methods; Academic Press: London, 1994.
[57]
Jansen, H.; Brinkman, U.A.T.; Frei, R.W. Miniaturization of solid-phase reactors for on-line post-column derivatization in narrow-bore liquid chromatography. Chromatographia, 1985, 20(8), 453-460.
[http://dx.doi.org/10.1007/BF02344785]
[58]
Zacharis, C.K.; Tzanavaras, P.D. Liquid chromatography coupled to on-line post column derivatization for the determination of organic compounds: A review on instrumentation and chemistries. Anal. Chim. Acta, 2013, 798, 1-24.
[http://dx.doi.org/10.1016/j.aca.2013.07.032] [PMID: 24070479]
[59]
Brunton, L.; Chabner, B.; Knollman, B. Goodman and Gillman’s the Pharmacological Basis of Therapeutics, 12th Ed; McGraw Hill: New York, 2011.
[60]
British Pharmacopoeia. Her Majesty’s Stationery Office, Atlantic House, Holborn Viaduct, London EC1P 1BN, England. 1980. 1196pp. 22 × 31.5cm. Price £60. J. Pharm. Sci., 1980, 69(11), 1362.
[http://dx.doi.org/10.1002/jps.2600691142]
[61]
Geiler, J.; Michaelis, M.; Naczk, P.; Leutz, A.; Langer, K.; Doerr, H.W.; Cinatl, J. Jr N-acetyl-L-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem. Pharmacol., 2010, 79(3), 413-420.
[http://dx.doi.org/10.1016/j.bcp.2009.08.025] [PMID: 19732754]
[62]
Dette, C.; Wätzig, H. Separation of enantiomers of N-acetylcysteine by capillary electrophoresis after derivatization by o-phthaldialdehyde. Electrophoresis, 1994, 15(6), 763-768.
[http://dx.doi.org/10.1002/elps.11501501106] [PMID: 7982397]
[63]
Douša, M. Enantioseparation of N-acetyl-dl-cysteine as o-phtaldialdehyde derivatives obtained with various primary aliphatic amine additives on polysaccharide-based chiral stationary phases. J. Pharm. Biomed. Anal., 2019, 166, 147-154.
[http://dx.doi.org/10.1016/j.jpba.2019.01.006] [PMID: 30640045]
[64]
Burnett, C.L.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Safety assessment of α-amino acids as used in cosmetics. Int. J. Toxicol., 2013, 32(6)(Suppl.), 41S-64S.
[http://dx.doi.org/10.1177/1091581813507090] [PMID: 24335967]
[65]
Gliszczyńska-Świgło, A.; Rybicka, I. Simultaneous Determination of caffeine and water-soluble vitamins in energy drinks by hplc with photodiode array and fluorescence detection. Food Anal. Methods, 2015, 8(1), 139-146.
[http://dx.doi.org/10.1007/s12161-014-9880-0]
[66]
Todorova, K.A. Analytical approaches and methods in quality control procedures of energy food drinks containing caffeine and taurine. Int. J. Nutr. Food Sci., 2015, 4(1), 1.
[http://dx.doi.org/10.11648/j.ijnfs.s.2015040101.11]
[67]
Omer, M.; Omar, M.; Thiel, A.; Elbashir, A. High performance liquid chromatographic methods for analysis of taurine in energy drinks after pre-column derivatization. Eur. J. Anal. Chem., 2018, 13(5), 1.
[http://dx.doi.org/10.29333/ejac/93422]
[68]
Ali Omer, M.M.; Ali Omar, M.M.; Abdelaziz, M.A.; Thiel, A.; Elbashir, A.A. Liquid chromatographic and spectrophotometric determination of taurine in energy drinks based on o-phthalaldehyde-sulfite derivatization. J. Food Chem. Nanotechnol., 2019, 05(01), 1-7.
[http://dx.doi.org/10.17756/jfcn.2019-065]
[69]
Kim, M.; Baek, H.S.; Lee, M.; Park, H.; Shin, S.S.; Choi, D.W.; Lim, K.M. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45. Toxicol. In Vitro, 2016, 32, 339-346.
[http://dx.doi.org/10.1016/j.tiv.2016.02.003] [PMID: 26867644]
[70]
Aoyama, Y.; Ito, A.; Suzuki, K.; Suzuki, T.; Tanemura, A.; Nishigori, C.; Ito, M.; Katayama, I.; Sugiura, S. The first epidemiological report of rhododenol-induced leukoderma in japan based on a nationwide survey. He Japanese. J. Dermatol., 2014, 124, 2095-2109.
[71]
Higashi, Y. Improved Method for Determination of raspberry ketone in fragrance mist by HPLC-Fluorescence Analysis after Pre-Column Derivatization with 4-(N,N-Dimethylaminosulfonyl)-7- (N-Chloroformylmethyl-N-Methylamino) -2,1,3-Benzoxadiazole yasuhiko. J. Anal. Sci. Method. Instrument., 2018, 08(02), 17-24.
[http://dx.doi.org/10.4236/jasmi.2018.82002]
[72]
Guo, T.; Shi, Y.; Zheng, L.; Feng, F.; Zheng, F.; Liu, W. Rapid and simultaneous determination of sulfonate ester genotoxic impurities in drug substance by liquid chromatography coupled to tandem mass spectrometry: Comparison of different ionization modes. J. Chromatogr. A, 2014, 1355, 73-79.
[http://dx.doi.org/10.1016/j.chroma.2014.05.079] [PMID: 24997109]
[73]
Li, M.; Gu, C.; Luo, L.; Zhou, J.; Liu, J.; Zheng, F. Determination of trace methanesulfonates in drug matrix using derivatization and headspace single drop microextraction followed by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. A, 2019, 1591, 131-137.
[http://dx.doi.org/10.1016/j.chroma.2019.01.038] [PMID: 30679046]
[74]
Shih, I.K. Photodegradation products of chloramphenicol in aqueous solution. J. Pharm. Sci., 1971, 60(12), 1889-1890.
[http://dx.doi.org/10.1002/jps.2600601231] [PMID: 5158015]
[75]
Szekely, G.; Amores de Sousa, M.C.; Gil, M.; Castelo Ferreira, F.; Heggie, W. Genotoxic impurities in pharmaceutical manufacturing: Sources, regulations, and mitigation. Chem. Rev., 2015, 115(16), 8182-8229.
[http://dx.doi.org/10.1021/cr300095f] [PMID: 26252800]
[76]
Luo, L.; Gu, C.; Li, M.; Zheng, X.; Zheng, F. Determination of residual 4-nitrobenzaldehyde in chloramphenicol and its pharmaceutical formulation by HPLC with UV/Vis detection after derivatization with 3-nitrophenylhydrazine. J. Pharm. Biomed. Anal., 2018, 156, 307-312.
[http://dx.doi.org/10.1016/j.jpba.2018.04.024] [PMID: 29730340]
[77]
Cohen, H.P.; Tway, P.C. High performance liquid chromatographic detection of residual formaldehyde in a Hepatitis-a vaccine by use of hydralazine. J. Liq. Chromatogr., 1993, 1(8), 1667-1684.
[http://dx.doi.org/10.1080/10826079308021680]
[78]
Ogasawara, N.; Misaki, M.; Adachi, S. Method for the determination of residual formaldehyde in an inactivated Zika vaccine formulated with aluminum hydroxide gel. Biologicals, 2019, 58(12), 73-75.
[http://dx.doi.org/10.1016/j.biologicals.2018.12.001] [PMID: 30660437]
[79]
de Groot, A.C.; Flyvholm, M-A.; Lensen, G.; Menné, T.; Coenraads, P-J. Formaldehyde-releasers: Relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers. Contact Dermat., 2009, 61(2), 63-85.
[http://dx.doi.org/10.1111/j.1600-0536.2009.01582.x] [PMID: 19706047]
[80]
Miranda-Vilela, A.L.; Botelho, A.J.; Muehlmann, L.A. An overview of chemical straightening of human hair: Technical aspects, potential risks to hair fibre and health and legal issues. Int. J. Cosmet. Sci., 2014, 36(1), 2-11.
[http://dx.doi.org/10.1111/ics.12093] [PMID: 24102549]
[81]
AlShehri, M.M.; AlMeshal, M.A. Pre-Column Derivatization HPLC method for rapid and sensitive determination of free and total formaldehyde in hair straightening products. Arab. J. Chem., 2020, 13(1), 2096-2100.
[http://dx.doi.org/10.1016/j.arabjc.2018.03.008]
[82]
Yang, J.; Zeng, Y.; Li, Y.; Song, C.; Zhu, W.; Guan, H.; Li, X. Intravascular site-specific delivery of a therapeutic antisense for the inhibition of restenosis. Eur. J. Pharm. Sci., 2008, 35(5), 427-434.
[http://dx.doi.org/10.1016/j.ejps.2008.09.003] [PMID: 18848882]
[83]
Pourasghar, M.; Koenneke, A.; Meiers, P.; Schneider, M. Development of a fast and precise method for simultaneous quantification of the PLGA monomers lactic and glycolic acid by HPLC. J. Pharm. Anal., 2019, 9(2), 100-107.
[http://dx.doi.org/10.1016/j.jpha.2019.01.004] [PMID: 31011466]
[84]
Rohmer, M. Comprehensive Natural Products II, Chemistry and Biology; Mander, L; Liu, H., Ed.; Elsevier: Amsterdam, 2010, Vol. 1, pp. 517-555.
[85]
Liang, Y.F.; Liu, H.; Li, H.; Gao, W.Y. Determination of the activity of 1-Deoxy-D-Xylulose 5-Phosphate synthase by pre-column Derivatization-HPLC using 1,2-Diamino-4,5-Methylenedioxybenzene as a derivatizing reagent. Protein J., 2019, 38(2), 160-166.
[http://dx.doi.org/10.1007/s10930-019-09816-9] [PMID: 30707333]
[86]
Aneja, V.P.; Roelle, P.A.; Murray, G.C.; Southerland, J.; Erisman, J.W.; Fowler, D.; Asman, W.A.H.; Patni, N. Atmospheric nitrogen compounds. II: Emissions, transport, transformation, deposition and assessment. Atmos. Environ., 2001, 35(11), 1903-1911.
[http://dx.doi.org/10.1016/S1352-2310(00)00543-4]
[87]
Huang, X.; Kao, S.J.; Lin, J.; Qin, X.; Deng, C. Development and validation of a HPLC/FLD method combined with online derivatization for the simple and simultaneous determination of trace amino acids and alkyl amines in continental and marine aerosols. PLoS One, 2018, 13(11)e0206488
[http://dx.doi.org/10.1371/journal.pone.0206488] [PMID: 30419031]
[88]
Negus, S.S.; Banks, M.L. Pharmacokinetic–Pharmacodynamic (PKPD) Analysis with Drug Discrimination. In: Current Topics in Behavioral Neurosciences; Springer: Verlag, , 2016; Vol. 39, pp. 254-259.
[http://dx.doi.org/10.1007/7854_2016_36]
[89]
Ahmed, S.; Atia, N.N. Controlled microwave derivatization reaction for reproducible trace analysis of budesonide in human plasma. Anal. Chim. Acta, 2019, 1048, 132-142.
[http://dx.doi.org/10.1016/j.aca.2018.09.059] [PMID: 30598143]
[90]
Bahrami, G.; Mohammadi, B. A new on-line, in-tube pre-column derivatization technique for high performance liquid chromatographic determination of azithromycin in human serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 830(2), 355-358.
[http://dx.doi.org/10.1016/j.jchromb.2005.10.044] [PMID: 16310417]
[91]
Cao, L.; Wei, T.; Shi, Y.; Tan, X.; Meng, J. Determination of D-Penicillamine and Tiopronin in human urine and serum by HPLC-FLD and CE-LIF with 1,3,5,7-Tetramethyl-8-Bromomethyl-Difluoroboradiaza-s-Indacene. J. Liq. Chromatogr. Relat. Technol., 2018, 41(2), 58-65.
[http://dx.doi.org/10.1080/10826076.2017.1348953]
[92]
Kuśmierek, K.; Bald, E. Simultaneous determination of tiopronin and d-penicillamine in human urine by liquid chromatography with ultraviolet detection. Anal. Chim. Acta, 2007, 590(1), 132-137.
[http://dx.doi.org/10.1016/j.aca.2007.03.025] [PMID: 17416233]
[93]
Ichikawa, H.; Imaizumi, K.; Tazawa, Y.; Obara, Y.; Ishikawa, Y.; Tobari, I.; Tanabe, Y. Effect of tiopronin on senile cataracts. A double-blind clinical study. Ophthalmologica, 1980, 180(5), 293-298.
[http://dx.doi.org/10.1159/000308990] [PMID: 7010262]
[94]
World Health Organization. Tratamiento de La Tuberculosis: Directrices Para Los ProgramasNacionales 1997. Available from: https://apps.who.int/iris/handle/10665/64119
[95]
Validation of a Simple Isocratic HPLC-UV method for rifampicin and isoniazid quantification in human plasma. J. Appl. Pharm. Sci., 2018, 8(7), 93-99.
[http://dx.doi.org/10.7324/JAPS.2018.8715]
[96]
Belal, T.S.; El-Kafrawy, D.S.; Mahrous, M.S.; Abdel-Khalek, M.M.; Abo-Gharam, A.H. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 155(3), 47-53.
[http://dx.doi.org/10.1016/j.saa.2015.11.008] [PMID: 26574649]
[97]
Zhang, J.F.; Zhang, Z.Q.; Dong, W.C.; Jiang, Y. A new derivatization method to enhance sensitivity for the determination of low levels of valproic acid in human plasma. J. Chromatogr. Sci., 2014, 52(10), 1173-1180.
[http://dx.doi.org/10.1093/chromsci/bmt167] [PMID: 24243686]
[98]
Mabrouk, M.M.; Hammad, S.F.; Abdel Hamid, M.A.; Mahana, M.H. Precolumn fluorescence labelling of sodium valproate using 9-Chloromethyl anthracene: Application to dosage form and spiked human plasma. Microchem. J., 2019, 149(4)104049
[http://dx.doi.org/10.1016/j.microc.2019.104049]
[99]
Brayfield, A. Martindale: The Complete Drug Reference, 38th ed; Pharmaceutical Press: New York, 2014.
[http://dx.doi.org/10.7748/en.22.5.12.s13]
[100]
Rastkari, N.; Ahmadkhaniha, R. Development and validation of a high-performance liquid chromatography method for determination of lisinopril in human plasma by magnetic solid-phase extraction and pre-column derivatization. Biomed. Chromatogr., 2018, 32(3), 1-10.
[http://dx.doi.org/10.1002/bmc.4120] [PMID: 29148163]
[101]
Shah, A.J.; Crespi, F.; Heidbreder, C. Amino acid neurotransmitters: Separation approaches and diagnostic value. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 781(1-2), 151-163.
[http://dx.doi.org/10.1016/S1570-0232(02)00621-9] [PMID: 12450657]
[102]
Zandy, S.L.; Doherty, J.M.; Wibisono, N.D.; Gonzales, R.A. High sensitivity HPLC method for analysis of in vivo extracellular GABA using optimized fluorescence parameters for o-phthalaldehyde (OPA)/sulfite derivatives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1055-1056, 1-7.
[http://dx.doi.org/10.1016/j.jchromb.2017.04.003] [PMID: 28433865]
[103]
Purwaha, P.; Lorenzi, P.L.; Silva, L.P.; Hawke, D.H.; Weinstein, J.N. Targeted metabolomic analysis of amino acid response to L-asparaginase in adherent cells. Metabolomics, 2014, 10(5), 909-919.
[http://dx.doi.org/10.1007/s11306-014-0634-1] [PMID: 25177232]
[104]
Zhang, M.; Zhang, Y.; Ren, S.; Zhang, Z.; Wang, Y.; Song, R. Optimization of a Precolumn OPA Derivatization HPLC Assay for Monitoring of l-Asparagine Depletion in Serum during l-Asparaginase Therapy. J. Chromatogr. Sci., 2018, 56(9), 794-801.
[http://dx.doi.org/10.1093/chromsci/bmy053] [PMID: 29878070]
[105]
Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 1999, 344(Pt 1), 109-116.
[http://dx.doi.org/10.1042/bj3440109] [PMID: 10548540]
[106]
El-Maghrabey, M.H.; Nakatani, T.; Kishikawa, N.; Kuroda, N. Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum. J. Pharm. Biomed. Anal., 2018, 158, 38-46.
[http://dx.doi.org/10.1016/j.jpba.2018.05.012] [PMID: 29860177]
[107]
Schauer, R. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol., 2009, 19(5), 507-514.
[http://dx.doi.org/10.1016/j.sbi.2009.06.003] [PMID: 19699080]
[108]
Kawasaki, A.; Yasuda, M.; Mawatari, K.I.; Fukuuchi, T.; Yamaoka, N.; Kaneko, K.; Iijima, R.; Yui, S.; Satoh, M.; Nakagomi, K. Sensitive analysis of sialic acid and related compound by hydrophilic interaction liquid chromatography using fluorescence detection after derivatization with DBD-PZ. Anal. Sci., 2018, 34(7), 841-844.
[http://dx.doi.org/10.2116/analsci.18N001] [PMID: 29998968]
[109]
Leitner, A.; Zöllner, P.; Lindner, W. Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2001, 939(1-2), 49-58.
[http://dx.doi.org/10.1016/S0021-9673(01)01331-0] [PMID: 11806545]
[110]
Sakaguchi, Y.; Yoshida, H.; Hayama, T.; Itoyama, M.; Todoroki, K.; Yamaguchi, M.; Nohta, H. Selective liquid-chromatographic determination of native fluorescent biogenic amines in human urine based on fluorous derivatization. J. Chromatogr. A, 2011, 1218(33), 5581-5586.
[http://dx.doi.org/10.1016/j.chroma.2011.05.076] [PMID: 21752389]
[111]
Frey, K.A. The neurochemistry of therapeutics: Levodopa pharmacodynamics in Parkinson’s disease. Ann. Neurol., 2001, 49(3), 285-287.
[http://dx.doi.org/10.1002/ana.62] [PMID: 11261500]
[112]
le Fang, W.; Xia, L.J.; Huang, X.; Guo, X.F.; Ding, J.; Wang, H.; Feng, Y.Q. Highly sensitive determination for catecholamines using boronate affinity polymer monolith microextraction with In-Situ derivatization and HPLC fluorescence detection. Chromatographia, 2018, 81(10), 1381-1389.
[http://dx.doi.org/10.1007/s10337-018-3592-3]
[113]
Huang, X.; Guo, X.F.; Wang, H.; Zhang, H.S. Analysis of catecholamines and related compounds in one whole metabolic pathway with high performance liquid chromatography based on derivatization. Arab. J. Chem., 2019, 12(7), 1159-1167.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.038]
[114]
Barry, S.J.; Carr, R.M.; Lane, S.J.; Leavens, W.J.; Manning, C.O.; Monté, S.; Waterhouse, I. Use of S-pentafluorophenyl tris(2,4,6-trimethoxyphenyl)phosphonium acetate bromide and (4-hydrazino-4-oxobutyl) [tris(2,4,6-trimethoxyphenyl)phosphonium bromide for the derivatization of alcohols, aldehydes and ketones for detection by liquid chromatography/electrospray mass spectrometry. Rapid Commun. Mass Spectrom., 2003, 17(5), 484-497.
[http://dx.doi.org/10.1002/rcm.933] [PMID: 12590398]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy