Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Development of an Autoinducible Plasmid for Recombinant Protein Production

Author(s): Young Kee Chae* and Hakbeom Kim

Volume 28, Issue 12, 2021

Published on: 05 November, 2021

Page: [1398 - 1407] Pages: 10

DOI: 10.2174/0929866528666211105113750

Price: $65

conference banner
Abstract

Background: The production of recombinant proteins in E. coli involves such factors as host strains, expression vectors, culture media, and induction methods. The typical procedure to produce heterologous proteins consists of the following: (1) insertion of the target gene into a suitable vector to construct an overexpression plasmid, (2) transformation of a strain specialized for protein production with the constructed plasmid DNA, (3) growth of the host in a suitable medium and induction of the protein production at a right moment, and (4) further growth to get the maximum yield. There are hurdles involved in each of these steps, and researchers have developed many materials or methods, which often require special recipes or procedures.

Objective: To eliminate the special requirements for recombinant protein production by using readily available materials. Also to save time and effort in the routine protein production work.

Methods: We started with a vector capable of producing a target protein fused to the C-terminus of the maltose-binding protein (MBP). The mCherry (red fluorescent protein) gene was fused to MBP. It acted as a reporter in the initial screening procedure. The original lethal gene (barnase) was replaced with sacB. We chose 3 stationary phase promoters and made hybrids of them by mixing halves from each one. The T5 promoter was replaced with these stationary phase promoters or their hybrids. The best plasmid was selected by the color intensity of the cell pellet. MBP and GST genes were inserted in the place of sacB, and their production yields were compared with the original plasmid in the conventional way of expression.

Results: We constructed an expression plasmid with an autoinducible promoter working in a host that was not specially designed for protein production and in a TB medium that did not contain any secret ingredient, nor was it difficult to prepare unlike Studier’s defined medium. This plasmid also contains a color indicator that turns red when protein production is successful. We tested our system with the maltose-binding protein (MBP) and the glutathione S-transferase (GST), and showed that both proteins were produced to a level comparable to what the commercial medium and/or the specialized strain yielded.

Conclusion: We developed a plasmid equipped with an autoinducible promoter, a hybrid of the two promoters which were activated at the stationary phase. This plasmid does not need a special E. coli strain nor a sophisticated nor an expensive medium. It produces an intense red (or pink) color, which can be used as an indicator of a successful production of the target protein and as a predictive measure of the amount of the produced target protein. We speculate that this plasmid will have its greatest advantage when growing cells at low temperatures, which would inevitably take a long time.

Keywords: Autoinducible, recombinant protein, stationary phase, promoter, IPTG, protein production.

Graphical Abstract

[1]
Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol., 2014, 5, 172.
[http://dx.doi.org/10.3389/fmicb.2014.00172] [PMID: 24860555]
[2]
Sivashanmugam, A.; Murray, V.; Cui, C.; Zhang, Y.; Wang, J.; Li, Q. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci., 2009, 18, 936-948.
[3]
Larentis, A.L.; Nicolau, J.F.M.Q.; Esteves, Gdos.S.; Vareschini, D.T.; de Almeida, F.V.R.; dos Reis, M.G.; Galler, R.; Medeiros, M.A. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res. Notes, 2014, 7, 671.
[http://dx.doi.org/10.1186/1756-0500-7-671] [PMID: 25252618]
[4]
Berkmen, M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr. Purif., 2012, 82(1), 240-251.
[http://dx.doi.org/10.1016/j.pep.2011.10.009] [PMID: 22085722]
[5]
de Marco, A.; Deuerling, E.; Mogk, A.; Tomoyasu, T.; Bukau, B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol., 2007, 7, 32.
[http://dx.doi.org/10.1186/1472-6750-7-32] [PMID: 17565681]
[6]
Ni, W.W.; Huang, W.; Wu, D.Q.; Zhou, Y.J.; Ji, C.M.; Cao, M.D.; Guo, M.; Sun, J.L.; Wei, J.F. Expression and purification of a major allergen, Pla a 1, from Platanus acerifolia pollen and the preparation of its monoclonal antibody. Mol. Med. Rep., 2017, 16(3), 2887-2892.
[http://dx.doi.org/10.3892/mmr.2017.6899] [PMID: 28677761]
[7]
Bienick, M.S.; Young, K.W.; Klesmith, J.R.; Detwiler, E.E.; Tomek, K.J.; Whitehead, T.A. The interrelationship between promoter strength, gene expression, and growth rate. PLoS One, 2014, 9(10), e109105.
[http://dx.doi.org/10.1371/journal.pone.0109105] [PMID: 25286161]
[8]
Gopal, G.J.; Kumar, A. Strategies for the production of recombinant protein in Escherichia coli. Protein J., 2013, 32(6), 419-425.
[http://dx.doi.org/10.1007/s10930-013-9502-5] [PMID: 23897421]
[9]
Schumann, W.; Ferreira, L.C.S. Production of recombinant proteins in Escherichia coli. Genet. Mol. Biol., 2004, 27, 442-453.
[http://dx.doi.org/10.1590/S1415-47572004000300022]
[10]
Tegel, H.; Ottosson, J.; Hober, S. Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J., 2011, 278(5), 729-739.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07991.x] [PMID: 21205203]
[11]
Chen, Y.; Ho, J.M.L.; Shis, D.L.; Gupta, C.; Long, J.; Wagner, D.S.; Ott, W.; Josić, K.; Bennett, M.R. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Nat. Commun., 2018, 9(1), 64.
[http://dx.doi.org/10.1038/s41467-017-02473-5] [PMID: 29302024]
[12]
Fox, B.G.; Blommel, P.G. Autoinduction of protein expression. Curr. Protoc. Protein Sci., 2009, 56, 5.23.21-25.23.18.
[http://dx.doi.org/10.1002/0471140864.ps0523s56]
[13]
Mancini, E.J.; Assenberg, R.; Verma, A.; Walter, T.S.; Tuma, R.; Grimes, J.M.; Owens, R.J.; Stuart, D.I. Structure of the Murray Valley encephalitis virus RNA helicase at 1.9 Angstrom resolution. Protein Sci., 2007, 16, 2294-2300.
[14]
Zhang, L.; Nephew, K.P.; Gallagher, P.J. Regulation of death-associated protein kinase. Stabilization by HSP90 heterocomplexes. J. Biol. Chem., 2007, 282(16), 11795-11804.
[http://dx.doi.org/10.1074/jbc.M610430200] [PMID: 17324930]
[15]
Grabski, A.; Mehler, M.; Drott, D. The overnight express autoinduction system: High-density cell growth and protein expression while you sleep. Nat. Methods, 2005, 2, 233-235.
[http://dx.doi.org/10.1038/nmeth0305-233]
[16]
Miksch, G.; Bettenworth, F.; Friehs, K.; Flaschel, E.; Saalbach, A.; Twellmann, T.; Nattkemper, T.W. Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. J. Biotechnol., 2005, 120(1), 25-37.
[http://dx.doi.org/10.1016/j.jbiotec.2005.04.027] [PMID: 16019099]
[17]
Yu, X.; Xu, J.; Liu, X.; Chu, X.; Wang, P.; Tian, J.; Wu, N.; Fan, Y. Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Sci. Rep., 2015, 5, 18405.
[http://dx.doi.org/10.1038/srep18405] [PMID: 26673679]
[18]
Briand, L.; Marcion, G.; Kriznik, A.; Heydel, J.M.; Artur, Y.; Garrido, C.; Seigneuric, R.; Neiers, F. A self-inducible heterologous protein expression system in Escherichia coli. Sci. Rep., 2016, 6, 33037.
[http://dx.doi.org/10.1038/srep33037] [PMID: 27611846]
[19]
Ben, R.; Jiying, F.; Jian’an, S.; Tu, T.N.; Jing, S.; Jingsong, Z.; Qiuyi, S. Yaling, An auto-inducible expression system based on the RhlI-RhlR quorum-sensing regulon for recombinant protein production in E. coli. Biotechnol. Bioprocess Eng., 2016, 21, 160-168.
[http://dx.doi.org/10.1007/s12257-015-0507-0]
[20]
Sethia, P.P.; Rao, K.K.; Noronha, S.B. A dps promoter based expression system for improved solubility of expressed proteins in Escherichia coli. Biotechnol. Bioprocess Eng., 2014, 19, 790-797.
[http://dx.doi.org/10.1007/s12257-013-0722-5]
[21]
de Groot, N.S.; Ventura, S. Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett., 2006, 580(27), 6471-6476.
[http://dx.doi.org/10.1016/j.febslet.2006.10.071] [PMID: 17101131]
[22]
Gutiérrez-González, M.; Farías, C.; Tello, S.; Pérez-Etcheverry, D.; Romero, A.; Zúñiga, R.; Ribeiro, C.H.; Lorenzo-Ferreiro, C.; Molina, M.C. Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci. Rep., 2019, 9(1), 16850.
[http://dx.doi.org/10.1038/s41598-019-53200-7] [PMID: 31727948]
[23]
Singh, A.; Upadhyay, V.; Upadhyay, A.K.; Singh, S.M.; Panda, A.K. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb. Cell Fact., 2015, 14, 41.
[http://dx.doi.org/10.1186/s12934-015-0222-8] [PMID: 25889252]
[24]
Blommel, P.G.; Martin, P.A.; Seder, K.D.; Wrobel, R.L.; Fox, B.G. Flexi Vector Cloning. In: High Throughput Protein Expression and Purification: Methods and Protocols; Doyle, S.A., Ed.; Humana Press: Totowa, NJ, 2009; pp. 55-73.
[http://dx.doi.org/10.1007/978-1-59745-196-3_4]
[25]
Shaner, N.C.; Campbell, R.E.; Steinbach, P.A.; Giepmans, B.N.G.; Palmer, A.E.; Tsien, R.Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol., 2004, 22(12), 1567-1572.
[http://dx.doi.org/10.1038/nbt1037] [PMID: 15558047]
[26]
Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif., 2005, 41(1), 207-234.
[http://dx.doi.org/10.1016/j.pep.2005.01.016] [PMID: 15915565]
[27]
Navarro Llorens, J.M.; Tormo, A.; Martínez-García, E. Stationary phase in gram-negative bacteria. FEMS Microbiol. Rev., 2010, 34(4), 476-495.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00213.x] [PMID: 20236330]
[28]
Zhou, Y.; Gottesman, S. Regulation of proteolysis of the stationary-phase sigma factor RpoS. J. Bacteriol., 1998, 180(5), 1154-1158.
[http://dx.doi.org/10.1128/JB.180.5.1154-1158.1998] [PMID: 9495753]
[29]
Shimada, T.; Makinoshima, H.; Ogawa, Y.; Miki, T.; Maeda, M.; Ishihama, A. Classification and strength measurement of stationary-phase promoters by use of a newly developed promoter cloning vector. J. Bacteriol., 2004, 186(21), 7112-7122.
[http://dx.doi.org/10.1128/JB.186.21.7112-7122.2004] [PMID: 15489422]
[30]
Hengge-Aronis, R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev., 2002, 66(3), 373-395.
[http://dx.doi.org/10.1128/MMBR.66.3.373-395.2002] [PMID: 12208995]
[31]
Lutz, R.; Bujard, H. Independent and tight regulation of transcriptional units in Escherichia colivia the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res., 1997, 25(6), 1203-1210.
[http://dx.doi.org/10.1093/nar/25.6.1203] [PMID: 9092630]
[32]
Castanié-Cornet, M-P.; Cam, K.; Bastiat, B.; Cros, A.; Bordes, P.; Gutierrez, C. Acid stress response in Escherichia coli: Mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res., 2010, 38(11), 3546-3554.
[http://dx.doi.org/10.1093/nar/gkq097] [PMID: 20189963]
[33]
Sezonov, G.; Joseleau-Petit, D.; D’Ari, R. Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol., 2007, 189(23), 8746-8749.
[http://dx.doi.org/10.1128/JB.01368-07] [PMID: 17905994]
[34]
Guinote, I.B.; Matos, R.G.; Freire, P.; Arraiano, C.M. BolA affects cell growth, and binds to the promoters of penicillin-binding proteins 5 and 6 and regulates their expression. J. Microbiol. Biotechnol., 2011, 21(3), 243-251.
[http://dx.doi.org/10.4014/jmb.1009.09034] [PMID: 21464593]
[35]
Stanger, F.V.; Harms, A.; Dehio, C.; Schirmer, T. Crystal Structure of the Escherichia coli Fic toxin-like protein in complex with its cognate antitoxin. PLoS One, 2016, 11(9), e0163654.
[http://dx.doi.org/10.1371/journal.pone.0163654] [PMID: 27657533]
[36]
Komano, T.; Utsumi, R.; Kawamukai, M. Functional analysis of the fic gene involved in regulation of cell division. Res. Microbiol., 1991, 142(2-3), 269-277.
[http://dx.doi.org/10.1016/0923-2508(91)90040-H] [PMID: 1656497]
[37]
McDonough, K.A.; Rodriguez, A. The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat. Rev. Microbiol., 2011, 10(1), 27-38.
[http://dx.doi.org/10.1038/nrmicro2688] [PMID: 22080930]
[38]
de Boer, H.A.; Comstock, L.J.; Vasser, M. The tac promoter: A functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA, 1983, 80(1), 21-25.
[http://dx.doi.org/10.1073/pnas.80.1.21] [PMID: 6337371]
[39]
Blommel, P.G.; Martin, P.A.; Seder, K.D.; Wrobel, R.L.; Fox, B.G. Flexi vector cloning. Methods Mol. Biol., 2009, 498, 55-73.
[http://dx.doi.org/10.1007/978-1-59745-196-3_4] [PMID: 18988018]
[40]
Merlin, C.; McAteer, S.; Masters, M. Tools for characterization of Escherichia coli genes of unknown function. J. Bacteriol., 2002, 184(16), 4573-4581.
[http://dx.doi.org/10.1128/JB.184.16.4573-4581.2002] [PMID: 12142427]
[41]
Hui, C.Y.; Guo, Y.; Zhang, W.; Huang, X.Q. Rapid monitoring of the target protein expression with a fluorescent signal based on a dicistronic construct in Escherichia coli. AMB Express, 2018, 8(1), 81.
[http://dx.doi.org/10.1186/s13568-018-0612-5] [PMID: 29785487]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy