Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Correlation of Oxidative Stress with Melasma: An Overview

Author(s): Shweta Katiyar* and Dhananjay Yadav*

Volume 28, Issue 3, 2022

Published on: 30 November, 2021

Page: [225 - 231] Pages: 7

DOI: 10.2174/1381612827666211104154928

Price: $65

Abstract

Melasma is a hypermelanotic skin disorder characterized by dark brown macules of symmetrical sizes and shapes that develop over time. Apart from the multiple etiological factors for melasma, such as hormonal imbalances, thyroid dysfunction, drugs, and contraceptive pills, a new and significant cause has been discovered: the effect of oxidative stress. Oxidative stress is the result of disequilibrium between reactive oxygen species and antioxidants in the cells. It is a key element that can cause skin hypopigmentation or hyperpigmentation. The physiological significance of reactive oxygen species and its function in skin health are addressed in this study. The development process and pathophysiology of reactive oxygen species with melasma disorder are also highlighted and the advantages of integrating antioxidants in clinical and experimental environments are discussed.

Keywords: Melasma, oxidative stress, skin hyperpigmentation, reactive oxygen species, lipid peroxidation, DNA damage.

[1]
Sarkar R, Ailawadi P, Garg S. Melasma in Men: A review of clinical, etiological, and management issues. J Clin Aesthet Dermatol 2018; 11(2): 53-9.
[PMID: 29552277]
[2]
Nouveau S, Agrawal D, Kohli M, Bernerd F, Misra N, Nayak CS. Skin hperpigmentation in indian population: insight and best practice. Indian J Dermatol 2016; 61(5): 487-95.
[http://dx.doi.org/10.4103/0019-5154.190103] [PMID: 27688436]
[3]
Ogbechie-Godec OA, Elbuluk N. Melasma: an up-to-date comprehensive review. Dematol ther (heidelb) 2017; 7(3): 305-18.
[http://dx.doi.org/10.1007/s13555-017-0194-1]
[4]
Choubey V, Sarkar R, Garg V, Kaushik S, Ghunawat S, Sonthalia S. Role of oxidative stress in melasma: a prospective study on serum and blood markers of oxidative stress in melasma patients. Int J Dermatol 2017; 56(9): 939-43.
[http://dx.doi.org/10.1111/ijd.13695] [PMID: 28681382]
[5]
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30(1): 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[6]
Castro L, Freeman BA. Reactive oxygen species in human health and disease. Nutrition 2001; 17(2): 161-165, 163-165.
[http://dx.doi.org/10.1016/S0899-9007(00)00570-0] [PMID: 11240347]
[7]
Seçkin HY, Kalkan G, Baş Y, et al. Oxidative stress status in patients with melasma. Cutan Ocul Toxicol 2014; 33(3): 212-7.
[http://dx.doi.org/10.3109/15569527.2013.834496] [PMID: 24147944]
[8]
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci USA 2018; 115(23): 5839-48.
[http://dx.doi.org/10.1073/pnas.1804932115] [PMID: 29802228]
[9]
Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004; 52: 794-804.
[PMID: 15909857]
[10]
Van Acker H, Coenye T. The role of reactive oxygen speciesin antibiotic-mediated killing of bacteria. Trends Microbiol 2017; 25(6): 456-66.
[http://dx.doi.org/10.1016/j.tim.2016.12.008] [PMID: 28089288]
[11]
Franchina DG, Dostert C, Brenner D. Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol 2018; 39(6): 489-502.
[http://dx.doi.org/10.1016/j.it.2018.01.005] [PMID: 29452982]
[12]
Xu H, Zheng Y-W, Liu Q, et al. Reactive oxygen species in skin repair, regeneration, aging and inflammation. In: Reactive oxygen species(ROS) in Living Cells. IntechOpen 2017.
[13]
Rifkind JM, Mohanty JG, Nagababu E, Salgado MT, Cao Z. Potential modulation of vascular function by nitric oxide and reactive oxygen species released from erythrocytes. Front Physiol 2018; 9(690): 690.
[http://dx.doi.org/10.3389/fphys.2018.00690] [PMID: 29930515]
[14]
de Jager TL, Cockrell AE, Du Plessis SS. Ultraviolet light induced generation of reactive oxygen species. Adv Exp Med Biol 2017; 996: 15-23.
[http://dx.doi.org/10.1007/978-3-319-56017-5_2] [PMID: 29124687]
[15]
Dębowska K, Smulik-Izydorczyk R, Pięta J, Adamus J, Michalski R, Sikora A. Oxidation of the selected probes for detection of reactive oxygen species(ROS) and reactive nitrogen species (RNS) in aqueous solutions of nitric oxide donors. Free Radic Biol Med 2018; 120: S78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.258]
[16]
Depayras S, Kondakova T, Heipieper HJ, Feuilloley MG, Orange N, Duclairoir-Poc C. Emerging pollutants-some strategies for the quality preservation of our environment. IntechOpen 2018.
[17]
Afanas’ev IB. Signaling by reactive oxygen and nitrogen species in skin diseases. Curr Drug Metab 2010; 11(5): 409-14.
[http://dx.doi.org/10.2174/138920010791526060] [PMID: 20540699]
[18]
Rembiesa J, Ruzgas T, Engblom J, Holefors A. The impact of pollution on skin and proper efficacy testing for anti-pollution claims. Cosmetics 2018; 5(1): 1-9.
[http://dx.doi.org/10.3390/cosmetics5010004]
[19]
França K, França A, França R. Environmental psychodermatology: stress, environment and skin. In: França K, Jafferany M, Eds. Stress and skin disorders. Heidelberg: Springer 2017; pp. 47-53.
[http://dx.doi.org/10.1007/978-3-319-46352-0_5]
[20]
Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev 2015; 21: 16-29.
[http://dx.doi.org/10.1016/j.arr.2015.01.001] [PMID: 25653189]
[21]
Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011; 2011: 792639.
[http://dx.doi.org/10.1155/2011/792639] [PMID: 21637379]
[22]
D’Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling pathways in melanogenesis. Int J Mol Sci 2016; 17(7): 1-18.
[PMID: 27428965]
[23]
Chen H, Weng QY, Fisher DE. UV signaling pathways within the skin. J Invest Dermatol 2014; 134(8): 2080-5.
[http://dx.doi.org/10.1038/jid.2014.161] [PMID: 24759085]
[24]
Reelfs O, Tyrrell RM, Pourzand C. Ultraviolet a radiation-induced immediate iron release is a key modulator of the activation of NF-kappaB in human skin fibroblasts. J Invest Dermatol 2004; 122(6): 1440-7.
[http://dx.doi.org/10.1111/j.0022-202X.2004.22620.x] [PMID: 15175035]
[25]
Takata T, Araki S, Tsuchiya Y, Watanabe Y. Oxidative stress orchestrates MAPK and nitric-oxide synthase signal. Int J Mol Sci 2020; 21(22): 8750.
[http://dx.doi.org/10.3390/ijms21228750] [PMID: 33228180]
[26]
Mizutani T, Sumida H, Sagawa Y, Okano Y, Masaki H. ROS generation from the stratum corneum under UV irradiation. J Dermatol Sci 2016; 84(1): e78-9.
[http://dx.doi.org/10.1016/j.jdermsci.2016.08.242]
[27]
Niki E. Lipid oxidation in the skin. Free Radic Res 2015; 49(7): 827-34.
[http://dx.doi.org/10.3109/10715762.2014.976213] [PMID: 25312699]
[28]
Markovitsi D. UV‐induced DNA Damage: The role of electronic excited states. Photochem Photobiol 2016; 92(1): 45-51.
[http://dx.doi.org/10.1111/php.12533] [PMID: 26436855]
[29]
Cadet J, Grand A, Douki T. Solar UV radiation-induced DNA bipyrimidine photoproducts: formation and mechanistic insights. Top Curr Chem 2015; 356: 249-75.
[http://dx.doi.org/10.1007/128_2014_553]
[30]
Panich U, Sittithumcharee G, Rathviboon N, Jirawatnotai S. Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells Int 2016; 2016: 7370642.
[http://dx.doi.org/10.1155/2016/7370642] [PMID: 27148370]
[31]
Sarkar R, Arora P, Garg VK, Sonthalia S, Gokhale N. Melasma update. Indian Dermatol Online J 2014; 5(4): 426-35.
[http://dx.doi.org/10.4103/2229-5178.142484] [PMID: 25396123]
[32]
Campuzano-Garcia AE, Torres-Alvarez B, Hernandez-Blanco D, Fuentes-Ahumada C, Juan Diego Cortes-Garcia JD, Castanedo-Cazares JP. DNA Methyltransferases in malar melasma and their modification by sunscreen in combination with 4% niacinamide, 0.05% retinoic acid, or placebo. Hindawi biomed international 2019; 1-7.
[33]
Brianezi G, Handel AC, Schmitt JV, Miot LDB, Miot HA. Changes in nuclear morphology and chromatin texture of basal keratinocytes in melasma. J Eur Acad Dermatol Venereol 2015; 29(4): 809-12.
[http://dx.doi.org/10.1111/jdv.12453] [PMID: 24629163]
[34]
Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol 2012; 4(3): 259-70.
[http://dx.doi.org/10.4161/derm.22028] [PMID: 23467327]
[35]
Lee EJ, Kim JY, Oh SH. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci Rep 2016; 6: 27848.
[http://dx.doi.org/10.1038/srep27848] [PMID: 27293210]
[36]
Hart PH, Norval M. Ultraviolet radiation-induced immunosuppression and its relevance for skin carcinogenesis. Photochem Photobiol Sci 2018; 17(12): 1872-84.
[http://dx.doi.org/10.1039/C7PP00312A] [PMID: 29136080]
[37]
Kang HY, Ortonne JP. What should be considered in treatment of melasma. Ann Dermatol 2010; 22(4): 373-8.
[http://dx.doi.org/10.5021/ad.2010.22.4.373] [PMID: 21165205]
[38]
Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling-An overview. Ageing Res Rev 2020; 62: 101127.
[http://dx.doi.org/10.1016/j.arr.2020.101127] [PMID: 32721499]
[39]
Kang HY, Suzuki I, Lee DJ, et al. Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma. J Invest Dermatol 2011; 131(8): 1692-700.
[http://dx.doi.org/10.1038/jid.2011.109] [PMID: 21562572]
[40]
Kim NH, Lee CH, Lee AY. H19 RNA downregulation stimulated melanogenesis in melasma. Pigment Cell Melanoma Res 2010; 23(1): 84-92.
[http://dx.doi.org/10.1111/j.1755-148X.2009.00659.x] [PMID: 19968822]
[41]
Kawaguchi M, Suzuki T. Melanogenesis and new signaling regulators for the treatment of melasma. In: melasma and vitiligo in brown skin. 2017; pp. 85-92.
[http://dx.doi.org/10.1007/978-81-322-3664-1_11]
[42]
Ainger SA, Jagirdar K, Lee KJ, Soyer HP, Sturm RA. Skin pigmentation genetics for the clinic. Dermatology 2017; 233(1): 1-15.
[http://dx.doi.org/10.1159/000468538] [PMID: 28463841]
[43]
Bin BH, Bhin J, Yang SH, et al. Membrane-associated transporter protein (MATP) regulates melanosomal pH and influences tyrosinase activity. PLoS One 2015; 10(6): e0129273.
[http://dx.doi.org/10.1371/journal.pone.0129273] [PMID: 26057890]
[44]
Bissig C, Rochin L, Van Niel G. PMEL amyloid fibril formation: the bright steps of pigmentation. Int J Mol Sci 2016; 17(9): 1-14.
[http://dx.doi.org/10.3390/ijms17091438]
[45]
Cario M. How hormones may modulate human skin pigmentation in melasma: An in vitro perspective. Exp Dermatol 2019; 28(6): 709-18.
[http://dx.doi.org/10.1111/exd.13915] [PMID: 30883945]
[46]
Basit H, Godse KV, Al Aboud AM. Melasma. Statpearls 2021.
[47]
Azzahra CN, Widyawati W, Afriliana L, Dewantiningrum J. Melasma show up in contraceptive pills acceptors. Diponegoro Med J 2021; 10(1): 1-4.
[48]
Sadeghpour M, Dover JS, Rohrer TE. Advances in the Treatment of melasma: an evidence-based approach. Adv Cosm Surg 2018; 1(1): 163-74.
[49]
Zhou LL, Baibergenova A. Melasma: systematic review of the systemic treatments. Int J Dermatol 2017; 56(9): 902-8.
[http://dx.doi.org/10.1111/ijd.13578] [PMID: 28239840]
[50]
Pullar JM, Carr AC, Vissers MCM. The roles of vitamin C in skin health. Nutrients 2017; 9(8): 1-27.
[http://dx.doi.org/10.3390/nu9080866] [PMID: 28805671]
[51]
Keen MA, Hassan I. Vitamin E in dermatology. Indian Dermatol Online J 2016; 7(4): 311-5.
[http://dx.doi.org/10.4103/2229-5178.185494] [PMID: 27559512]
[52]
Sarkar R, Arora P, Garg KV. Cosmeceuticals for hyperpigmentation: what is available? J Cutan Aesthet Surg 2013; 6(1): 4-11.
[http://dx.doi.org/10.4103/0974-2077.110089] [PMID: 23723597]
[53]
Grimes PE, Ijaz S, Nashawati R, Kwak D. New oral and topical approaches for the treatment of melasma. Int J Womens Dermatol 2018; 5(1): 30-6.
[http://dx.doi.org/10.1016/j.ijwd.2018.09.004] [PMID: 30809577]
[54]
Kwon HH, Ohn J, Suh DH, et al. A pilot study for triple combination therapy with a low-fluence 1064 nm Q-switched Nd:YAG laser, hydroquinone cream and oral tranexamic acid for recalcitrant Riehl’s Melanosis. J Dermatolog Treat 2017; 28(2): 155-9.
[http://dx.doi.org/10.1080/09546634.2016.1187706] [PMID: 27346606]
[55]
Wu DC, Goldman MP, Wat H, Chan HHL. A systematic review of picosecond laser in dermatology: evidence and recommendations. Lasers Surg Med 2021; 53(1): 9-49.
[http://dx.doi.org/10.1002/lsm.23244] [PMID: 32282094]
[56]
Wong CSM, Chan MWM, Shek SYN, Yeung CK, Chan HHL. Fractional 1064nm picosecond laser in treatment of melasma and skin rejuvenation in asians, a prospective study. Lasers Surg Med 2021; 53(8): 1032-42.
[http://dx.doi.org/10.1002/lsm.23382] [PMID: 33544930]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy