Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Mini-Review Article

Interleukin-6: Important Mediator of Vasospasm Following Subarachnoid Hemorrhage

Author(s): Brandon Lucke-Wold*, Koji Hosaka, William Dodd, Kartik Motwani, Dimitri Laurent, Melanie Martinez and Brian Hoh

Volume 18, Issue 3, 2021

Page: [364 - 369] Pages: 6

DOI: 10.2174/1567202618666211104122408

Price: $65

Abstract

Abstract: The correlation of neuroinflammation with the development of cerebral vasospasm following subarachnoid hemorrhage has been well documented in the literature; both clinical and preclinical. The exact mechanisms by which this process occurs, however, are poorly elucidated. Recent evidence indicates that interleukin-6 is not only an important prognostic biomarker for subarachnoid hemorrhage and subsequent vasospasm development but also an integral component in the progression of injury following initial insult. In this review, we briefly highlight other pathways under investigation and focus heavily on what has been discovered regarding the role of interleukin 6 and cerebral vasospasm following subarachnoid hemorrhage. A proposed mechanistic pathway is highlighted in written and graphical format. A discussion regarding the human correlative findings and initial pre-clinical mechanistic studies is addressed. Finally, in the future investigation section, innovative developments and a clear description of areas warranting further scientific inquiry are emphasized. This review will catalyze continued discovery in this area of emerging significance and aid in the quest for effective vasospasm treatment where limited clinical therapeutics currently exist.

Keywords: Interleukin-6, subarachnoid hemorrhage, cerebral vasospasm, microglia, apoptosis, neuroinflammation.

« Previous
[1]
Ciurea AV, Palade C, Voinescu D, Nica DA. Subarachnoid hemorrhage and cerebral vasospasm - literature review. J Med Life 2013; 6(2): 120-5.
[PMID: 23904869]
[2]
Croci D, Nevzati E, Muroi C, et al. Changes in the cerebrospinal fluid lipid profile following subarachnoid hemorrhage in a closed cranium model: Correlations to cerebral vasospasm, neuronal cell death and Interleukin-6 synthesis. A pilot study. J Stroke Cerebrovasc Dis 2020; 29(9): 105054.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105054] [PMID: 32807460]
[3]
Ďuriš K, Neuman E, Vybíhal V, et al. Early dynamics of interleukin-6 in cerebrospinal fluid after aneurysmal subarachnoid hemorrhage. J Neurol Surg A Cent Eur Neurosurg 2018; 79(2): 145-51.
[http://dx.doi.org/10.1055/s-0037-1604084] [PMID: 28869993]
[4]
Blecharz-Lang KG, Wagner J, Fries A, et al. Interleukin 6-mediated endothelial barrier disturbances can be attenuated by blockade of the IL6 receptor expressed in brain microvascular endothelial cells. Transl Stroke Res 2018; 9(6): 631-42.
[http://dx.doi.org/10.1007/s12975-018-0614-2] [PMID: 29429002]
[5]
Liu L, Fujimoto M, Nakano F, et al. Deficiency of tenascin-C alleviates neuronal apoptosis and neuroinflammation after experimental subarachnoid hemorrhage in mice. Mol Neurobiol 2018; 55(11): 8346-54.
[http://dx.doi.org/10.1007/s12035-018-1006-z] [PMID: 29546590]
[6]
Dong Y, Fan C, Hu W, et al. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J Pineal Res 2016; 60(3): 253-62.
[http://dx.doi.org/10.1111/jpi.12300] [PMID: 26639408]
[7]
Bowman G, Dixit S, Bonneau RH, Chinchilli VM, Cockroft KM. Neutralizing antibody against interleukin-6 attenuates posthemorrhagic vasospasm in the rat femoral artery model. Neurosurgery 2004; 54(3): 719-25.
[http://dx.doi.org/10.1227/01.NEU.0000108981.73153.6E] [PMID: 15028149]
[8]
Osuka K, Suzuki Y, Tanazawa T, et al. Interleukin-6 and development of vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wien) 1998; 140(9): 943-51.
[http://dx.doi.org/10.1007/s007010050197] [PMID: 9842432]
[9]
Lin CL, Dumont AS, Zhang JH, Zuccarello M, Muroi C. Cerebral vasospasm after aneurysmal subarachnoid hemorrhage: Mechanism and therapies. BioMed Res Int 2014; 2014: 679014.
[http://dx.doi.org/10.1155/2014/679014] [PMID: 25276807]
[10]
Kolias AG, Sen J, Belli A. Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: Putative mechanisms and novel approaches. J Neurosci Res 2009; 87(1): 1-11.
[http://dx.doi.org/10.1002/jnr.21823] [PMID: 18709660]
[11]
Sasaki T, Kikkawa Y. Proposed mechanism of cerebral vasospasm: Our hypothesis and current topics. Acta Neurochir Suppl (Wien) 2013; 115: 53-6.
[http://dx.doi.org/10.1007/978-3-7091-1192-5_12] [PMID: 22890644]
[12]
Mutch WA. New concepts regarding cerebral vasospasm: Glial- centric mechanisms. Can J Anaesth 2010; 57(5): 479-89.
[http://dx.doi.org/10.1007/s12630-010-9271-y] [PMID: 20131107]
[13]
Munakata A, Naraoka M, Katagai T, Shimamura N, Ohkuma H. Role of Cyclooxygenase-2 in relation to Nitric Oxide and Endothelin-1 on pathogenesis of cerebral vasospasm after subarachnoid hemorrhage in rabbit. Transl Stroke Res 2016; 7(3): 220-7.
[http://dx.doi.org/10.1007/s12975-016-0466-6] [PMID: 27044361]
[14]
Ko NU, Rajendran P, Kim H, et al. Endothelial nitric oxide synthase polymorphism (-786T->C) and increased risk of angiographic vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 2008; 39(4): 1103-8.
[http://dx.doi.org/10.1161/STROKEAHA.107.496596] [PMID: 18309169]
[15]
Sugawara T, Ayer R, Jadhav V, Chen W, Tsubokawa T, Zhang JH. Mechanisms of statin treatment in cerebral vasospasm. Acta Neurochir Suppl (Wien) 2011; 110(Pt 2): 9-11.
[http://dx.doi.org/10.1007/978-3-7091-0356-2_2] [PMID: 21125437]
[16]
McGirt MJ, Lynch JR, Parra A, et al. Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage. Stroke 2002; 33(12): 2950-6.
[http://dx.doi.org/10.1161/01.STR.0000038986.68044.39] [PMID: 12468796]
[17]
Pluta RM. Delayed cerebral vasospasm and nitric oxide: Review, new hypothesis, and proposed treatment. Pharmacol Ther 2005; 105(1): 23-56.
[http://dx.doi.org/10.1016/j.pharmthera.2004.10.002] [PMID: 15626454]
[18]
Yang Y, Chen S, Zhang JM. The updated role of oxidative stress in subarachnoid hemorrhage. Curr Drug Deliv 2017; 14(6): 832-42.
[http://dx.doi.org/10.2174/1567201813666161025115531] [PMID: 27784210]
[19]
Wu L, Su Z, Zha L, et al. Tetramethylpyrazine Nitrone reduces oxidative stress to alleviate cerebral vasospasm in experimental subarachnoid hemorrhage models. Neuromolecular Med 2019; 21(3): 262-74.
[http://dx.doi.org/10.1007/s12017-019-08543-9] [PMID: 31134485]
[20]
Echigo R, Shimohata N, Karatsu K, et al. Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 2012; 10: 80.
[http://dx.doi.org/10.1186/1479-5876-10-80] [PMID: 22546323]
[21]
Zhuang K, Zuo YC, Sherchan P, Wang JK, Yan XX, Liu F. Hydrogen inhalation attenuates oxidative stress related endothelial cells injury after subarachnoid hemorrhage in rats. Front Neurosci 2020; 13: 1441.
[http://dx.doi.org/10.3389/fnins.2019.01441] [PMID: 32038143]
[22]
Reynolds RA, Amin SN, Jonathan SV, et al. Hyperoxemia and cerebral vasospasm in aneurysmal subarachnoid hemorrhage. Neurocrit Care 2021; 35(1): 30-8.
[PMID: 33150573]
[23]
El Amki M, Dubois M, Lefevre-Scelles A, et al. Long-lasting cerebral vasospasm, microthrombosis, apoptosis and paravascular alterations associated with neurological deficits in a mouse model of subarachnoid hemorrhage. Mol Neurobiol 2018; 55(4): 2763-79.
[http://dx.doi.org/10.1007/s12035-017-0514-6] [PMID: 28455691]
[24]
Cahill J, Calvert JW, Solaroglu I, Zhang JH. Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke 2006; 37(7): 1868-74.
[http://dx.doi.org/10.1161/01.STR.0000226995.27230.96] [PMID: 16741174]
[25]
Zhou C, Yamaguchi M, Colohan AR, Zhang JH. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2005; 25(5): 572-82.
[http://dx.doi.org/10.1038/sj.jcbfm.9600069] [PMID: 15729295]
[26]
Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2004; 24(4): 419-31.
[http://dx.doi.org/10.1097/00004647-200404000-00007] [PMID: 15087711]
[27]
Hanafy KA. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation 2013; 10: 83.
[http://dx.doi.org/10.1186/1742-2094-10-83] [PMID: 23849248]
[28]
Tsai TH, Lin SH, Wu CH, Tsai YC, Yang SF, Lin CL. Mechanisms and therapeutic implications of RTA 408, an activator of Nrf2, in subarachnoid hemorrhage-induced delayed cerebral vasospasm and secondary brain injury. PLoS One 2020; 15(10): e0240122.
[http://dx.doi.org/10.1371/journal.pone.0240122] [PMID: 33017422]
[29]
Cheng G, Wei L, Zhi-Dan S, Shi-Guang Z, Xiang-Zhen L. Atorvastatin ameliorates cerebral vasospasm and early brain injury after subarachnoid hemorrhage and inhibits caspase-dependent apoptosis pathway. BMC Neurosci 2009; 10: 7.
[http://dx.doi.org/10.1186/1471-2202-10-7] [PMID: 19159448]
[30]
Mathiesen T, Andersson B, Loftenius A, von Holst H. Increased interleukin-6 levels in cerebrospinal fluid following subarachnoid hemorrhage. J Neurosurg 1993; 78(4): 562-7.
[http://dx.doi.org/10.3171/jns.1993.78.4.0562] [PMID: 8450329]
[31]
Vlachogiannis P, Hillered L, Khalil F, Enblad P, Ronne-Engström E. Interleukin-6 levels in cerebrospinal fluid and plasma in patients with severe spontaneous subarachnoid hemorrhage. World Neurosurg 2019; 122: e612-8.
[http://dx.doi.org/10.1016/j.wneu.2018.10.113] [PMID: 30814021]
[32]
Han M, Liu D, Qiu J, et al. Evaluation of H2S-producing enzymes in cerebrospinal fluid and its relationship with interleukin-6 and neurologic deficits in subarachnoid hemorrhage. Biomed Pharmacother 2020; 123: 109722.
[http://dx.doi.org/10.1016/j.biopha.2019.109722] [PMID: 31865144]
[33]
Taylor RA, Chang CF, Goods BA, et al. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest 2017; 127(1): 280-92.
[http://dx.doi.org/10.1172/JCI88647] [PMID: 27893460]
[34]
Wang L, Gao Z. Expression of MMP-9 and IL-6 in patients with subarachnoid hemorrhage and the clinical significance. Exp Ther Med 2018; 15(2): 1510-4.
[PMID: 29434735]
[35]
Wang TH, Xiong LL, Yang SF, et al. LPS pretreatment provides neuroprotective roles in rats with subarachnoid hemorrhage by downregulating mmp9 and caspase3 associated with tlr4 signaling activation. Mol Neurobiol 2017; 54(10): 7746-60.
[http://dx.doi.org/10.1007/s12035-016-0259-7] [PMID: 27844284]
[36]
Li R, Liu W, Yin J, et al. TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway. J Neuroinflammation 2018; 15(1): 231.
[http://dx.doi.org/10.1186/s12974-018-1279-1] [PMID: 30126439]
[37]
Niwa A, Osuka K, Nakura T, Matsuo N, Watabe T, Takayasu M. Interleukin-6, MCP-1, IP-10, and MIG are sequentially expressed in cerebrospinal fluid after subarachnoid hemorrhage. J Neuroinflammation 2016; 13(1): 217.
[http://dx.doi.org/10.1186/s12974-016-0675-7] [PMID: 27576738]
[38]
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8(9): 1254-66.
[http://dx.doi.org/10.7150/ijbs.4679] [PMID: 23136554]
[39]
Chen YH, Cheng ZY, Shao LH, Shentu HS, Fu B. Macrophage migration inhibitory factor as a serum prognostic marker in patients with aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2017; 473: 60-4.
[http://dx.doi.org/10.1016/j.cca.2017.08.018] [PMID: 28823650]
[40]
Wu W, Guan Y, Zhao G, et al. Elevated IL-6 and TNF-α levels in cerebrospinal fluid of subarachnoid hemorrhage patients. Mol Neurobiol 2016; 53(5): 3277-85.
[http://dx.doi.org/10.1007/s12035-015-9268-1] [PMID: 26063595]
[41]
Hendryk S, Jarzab B, Josko J. Increase of the IL-1 beta and IL-6 levels in CSF in patients with vasospasm following aneurysmal SAH. Neuroendocrinol Lett 2004; 25(1-2): 141-7.
[PMID: 15159698]
[42]
Ni W, Gu YX, Song DL, Leng B, Li PL, Mao Y. The relationship between IL-6 in CSF and occurrence of vasospasm after subarachnoid hemorrhage. Acta Neurochir Suppl (Wien) 2011; 110(Pt 1): 203-8.
[http://dx.doi.org/10.1007/978-3-7091-0353-1_35] [PMID: 21116940]
[43]
Schoch B, Regel JP, Wichert M, Gasser T, Volbracht L, Stolke D. Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. Neurosurgery 2007; 60(5): 828-36.
[http://dx.doi.org/10.1227/01.NEU.0000255440.21495.80] [PMID: 17460517]
[44]
Ridwan S, Grote A, Simon M. Interleukin 6 in cerebrospinal fluid is a biomarker for delayed cerebral ischemia (DCI) related infarctions after aneurysmal subarachnoid hemorrhage. Sci Rep 2021; 11(1): 12.
[http://dx.doi.org/10.1038/s41598-020-79586-3] [PMID: 33420113]
[45]
Kwon KY, Jeon BC. Cytokine levels in cerebrospinal fluid and delayed ischemic deficits in patients with aneurysmal subarachnoid hemorrhage. J Korean Med Sci 2001; 16(6): 774-80.
[http://dx.doi.org/10.3346/jkms.2001.16.6.774] [PMID: 11748361]
[46]
Wostrack M, Reeb T, Martin J, et al. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: the role of intrathecal interleukin-6. Neurocrit Care 2014; 21(1): 78-84.
[http://dx.doi.org/10.1007/s12028-014-9991-x] [PMID: 24840896]
[47]
Graetz D, Nagel A, Schlenk F, Sakowitz O, Vajkoczy P, Sarrafzadeh A. High ICP as trigger of proinflammatory IL-6 cytokine activation in aneurysmal subarachnoid hemorrhage. Neurol Res 2010; 32(7): 728-35.
[http://dx.doi.org/10.1179/016164109X12464612122650] [PMID: 19682408]
[48]
Höllig A, Remmel D, Stoffel-Wagner B, Schubert GA, Coburn M, Clusmann H. Association of early inflammatory parameters after subarachnoid hemorrhage with functional outcome: A prospective cohort study. Clin Neurol Neurosurg 2015; 138: 177-83.
[http://dx.doi.org/10.1016/j.clineuro.2015.08.030] [PMID: 26355810]
[49]
Chaudhry SR, Stoffel-Wagner B, Kinfe TM, et al. Elevated systemic IL-6 levels in patients with aneurysmal subarachnoid hemorrhage is an unspecific marker for post-SAH complications. Int J Mol Sci 2017; 18(12): E2580.
[http://dx.doi.org/10.3390/ijms18122580] [PMID: 29194369]
[50]
Kao HW, Lee KW, Kuo CL, et al. Interleukin-6 as a prognostic biomarker in ruptured intracranial aneurysms. PLoS One 2015; 10(7): e0132115.
[http://dx.doi.org/10.1371/journal.pone.0132115] [PMID: 26176774]
[51]
Miller BA, Turan N, Chau M, Pradilla G. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BioMed Res Int 2014; 2014: 384342.
[http://dx.doi.org/10.1155/2014/384342] [PMID: 25105123]
[52]
Rasmussen R, Bache S, Stavngaard T, Møller K. Plasma Levels of IL-6, IL-8, IL-10, ICAM-1, VCAM-1, IFNγ, and TNFα are not associated with delayed cerebral ischemia, cerebral vasospasm, or clinical outcome in patients with subarachnoid hemorrhage. World Neurosurg 2019; 128: e1131-6.
[http://dx.doi.org/10.1016/j.wneu.2019.05.102] [PMID: 31121365]
[53]
Sarrafzadeh A, Schlenk F, Gericke C, Vajkoczy P. Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2010; 13(3): 339-46.
[http://dx.doi.org/10.1007/s12028-010-9432-4] [PMID: 20725805]
[54]
Höllig A, Thiel M, Stoffel-Wagner B, Coburn M, Clusmann H. Neuroprotective properties of dehydroepiandrosterone-sulfate and its relationship to interleukin 6 after aneurysmal subarachnoid hemorrhage: a prospective cohort study. Crit Care 2015; 19: 231.
[http://dx.doi.org/10.1186/s13054-015-0954-1] [PMID: 25993987]
[55]
Song Y, Lim BJ, Kim DH, Ju JW, Han DW. Effect of dexmedetomidine on cerebral vasospasm and associated biomarkers in a rat subarachnoid hemorrhage model. J Neurosurg Anesthesiol 2019; 31(3): 342-9.
[http://dx.doi.org/10.1097/ANA.0000000000000504] [PMID: 29683965]
[56]
Croci DM, Wanderer S, Strange F, et al. Tocilizumab reduces vasospasms, neuronal cell death, and microclot formation in a rabbit model of subarachnoid hemorrhage. Transl Stroke Res 2021; 12(5): 894-904.
[http://dx.doi.org/10.1007/s12975-020-00880-3] [PMID: 33409731]
[57]
Croci D, Nevzati E, Danura H, et al. The relationship between IL-6, ET-1 and cerebral vasospasm, in experimental rabbit subarachnoid hemorrhage. J Neurosurg Sci 2019; 63(3): 245-50.
[http://dx.doi.org/10.23736/S0390-5616.16.03876-5] [PMID: 27759738]
[58]
Freeman BD, Martins YC, Akide-Ndunge OB, et al. Endothelin-1 mediates brain microvascular dysfunction leading to long-term cognitive impairment in a model of experimental cerebral malaria. PLoS Pathog 2016; 12(3): e1005477.
[http://dx.doi.org/10.1371/journal.ppat.1005477] [PMID: 27031954]
[59]
Fan LF, He PY, Peng YC, et al. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med 2017; 112: 336-49.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.003] [PMID: 28790012]
[60]
Larysz-Brysz M, Lewin-Kowalik J, Czuba Z, et al. Interleukin-1β increases release of endothelin-1 and tumor necrosis factor as well as reactive oxygen species by peripheral leukocytes during experimental subarachnoid hemorrhage. Curr Neurovasc Res 2012; 9(3): 159-66.
[http://dx.doi.org/10.2174/156720212801619045] [PMID: 22621234]
[61]
Matsumoto A, Nakamura T, Shinomiya A, et al. Histidine-rich glycoprotein could be an early predictor of vasospasm after aneurysmal subarachnoid hemorrhage. Acta Med Okayama 2019; 73(1): 29-39.
[PMID: 30820052]
[62]
Van Wagoner NJ, Oh JW, Repovic P, Benveniste EN. Interleukin-6 (IL-6) production by astrocytes: Autocrine regulation by IL-6 and the soluble IL-6 receptor. J Neurosci 1999; 19(13): 5236-44.
[http://dx.doi.org/10.1523/JNEUROSCI.19-13-05236.1999] [PMID: 10377335]
[63]
Luo Y, Fang Y, Kang R, et al. Inhibition of EZH2 (Enhancer of Zeste Homolog 2) attenuates neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (Trimethylation of Histone 3 Lysine 27/suppressor of Cytokine Signaling 3/tumor necrosis factor receptor family 6/Nuclear Factor-κB) in a rat model of subarachnoid hemorrhage. Stroke 2020; 51(11): 3320-31.
[http://dx.doi.org/10.1161/STROKEAHA.120.029951] [PMID: 32933418]
[64]
Wang Z, Wu L, You W, Ji C, Chen G. Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage: Possible involvement of TLR4-mediated inflammatory pathway. J Pineal Res 2013; 55(4): 399-408.
[http://dx.doi.org/10.1111/jpi.12087] [PMID: 24007200]
[65]
Cuff SM, Merola JP, Twohig JP, Eberl M, Gray WP. Toll-like receptor linked cytokine profiles in cerebrospinal fluid discriminate neurological infection from sterile inflammation. Brain Commun 2020; 2(2): fcaa218.
[66]
Ma C, Zhou W, Yan Z, Qu M, Bu X. Toll-like receptor 4 (TLR4) is correlated with delayed cerebral ischemia (DCI) and poor prognosis in aneurysmal subarachnoid hemorrhage. J Neurol Sci 2015; 359(1-2): 67-71.
[http://dx.doi.org/10.1016/j.jns.2015.10.018] [PMID: 26671088]
[67]
Simon M, Grote A. Interleukin 6 and aneurysmal subarachnoid hemorrhage. A narrative review. Int J Mol Sci 2021; 22(8): 4133.
[http://dx.doi.org/10.3390/ijms22084133] [PMID: 33923626]
[68]
Giorgi-Coll S, Marín MJ, Sule O, Hutchinson PJ, Carpenter KLH. Aptamer-modified gold nanoparticles for rapid aggregation-based detection of inflammation: An optical assay for interleukin-6. Mikrochim Acta 2019; 187(1): 13.
[http://dx.doi.org/10.1007/s00604-019-3975-7] [PMID: 31802241]
[69]
Dengler J, Schefold JC, Graetz D, et al. Point-of-care testing for interleukin-6 in cerebro spinal fluid (CSF) after subarachnoid haemorrhage. Med Sci Monit 2008; 14(12): BR265-8.
[PMID: 19043359]
[70]
Yao Y, Fang X, Yuan J, et al. Interleukin-6 in cerebrospinal fluid small extracellular vesicles as a potential biomarker for prognosis of aneurysmal subarachnoid haemorrhage. Neuropsychiatr Dis Treat 2021; 17: 1423-31.
[http://dx.doi.org/10.2147/NDT.S304394] [PMID: 34012263]
[71]
Schiefecker AJ, Rass V, Gaasch M, et al. Brain extracellular Interleukin-6 levels decrease following antipyretic therapy with diclofenac in patients with spontaneous subarachnoid hemorrhage. Ther Hypothermia Temp Manag 2019; 9(1): 48-55.
[http://dx.doi.org/10.1089/ther.2018.0001] [PMID: 30074854]
[72]
Kiiski H, Långsjö J, Tenhunen J, et al. Time-courses of plasma IL-6 and HMGB-1 reflect initial severity of clinical presentation but do not predict poor neurologic outcome following subarachnoid hemorrhage. eNeurologicalSci 2016; 6: 55-62.
[http://dx.doi.org/10.1016/j.ensci.2016.11.010] [PMID: 29260012]
[73]
Muroi C, Fujioka M, Marbacher S, et al. Mouse model of subarachnoid hemorrhage: Technical note on the filament perforation model. Acta Neurochir Suppl (Wien) 2015; 120: 315-20.
[http://dx.doi.org/10.1007/978-3-319-04981-6_54] [PMID: 25366644]
[74]
Parra A, McGirt MJ, Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: Methodological analysis. Neurol Res 2002; 24(5): 510-6.
[http://dx.doi.org/10.1179/016164102101200276] [PMID: 12117325]
[75]
Stefely JA, Theisen E, Hanewall C, et al. A physician-scientist preceptorship in clinical and translational research enhances training and mentorship. BMC Med Educ 2019; 19(1): 89.
[http://dx.doi.org/10.1186/s12909-019-1523-0] [PMID: 30917818]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy