Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-proliferative, c-Met Inhibitions, and PAINS Evaluations of New Thiophene, Thiazole, Coumarin, Pyran, and Pyridine Derivatives

Author(s): Rafat M. Mohareb*, Nadia Y. Megally Abdo, Rehab A. Ibrahim and Eman M. Samir

Volume 22, Issue 11, 2022

Published on: 12 January, 2022

Page: [2125 - 2141] Pages: 17

DOI: 10.2174/1871520621666211103104408

Price: $65

Abstract

Background: 1,3-Diones are versatile reagents used for many heterocyclic transformations. Among such groups of compounds, cyclohexane-1,3-dione is widely used in organic synthesis to produce biologically active compounds.

Objective: In this work, target molecules were synthesized from tetrahydrobenzo[b]thiophen-3- carboxamide derivative with different substituents, and their structure-activity relationships were discussed in detail.

Methods: Cyclohexane-1,3-dione underwent different multi-component reactions to produce fused thiophene, thiazole, coumarin, pyran, and pyridine derivatives. The anti-proliferative activity of the newly synthesized compounds toward the six cancer cell lines, namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. In addition, inhibitions of the most active compounds toward cancer cell lines classified according to the disease were also studied. Furthermore, Pan Assay Interference compounds (PAINS) of the selected compounds were analyzed, along with the c- Met inhibitions.

Results: Anti-proliferative evaluations were performed for all of the synthesized compounds, in which the varieties of substituents through the aryl ring and the heterocyclic ring afforded compounds with high activities. Inhibition activity against the cancer cell lines classified according to the disease, c-Met, and PAINS of the synthesized compounds were measured.

Conclusion: Compounds 3, 13a, 13b, 14a, 16f, 17a, 28, 30a, and 31were the most cytotoxic compounds toward the six cancer cell lines. Inhibition toward cancer cell lines classified according to the disease showed that, in most cases, the presence of the electronegative CN and or Cl groups within the molecule was responsible for its high activity.

Keywords: Cyclohexane-1, 3-dione, thiazole, coumarin, pyran, pyridine, anti-proliferative.

Graphical Abstract

[1]
Chen, L.S.; Redkar, S.; Bearss, D.; Wierda, W.G.; Gandhi, V. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood, 2009, 114(19), 4150-4157.
[http://dx.doi.org/10.1182/blood-2009-03-212852] [PMID: 19734450]
[2]
Sevenard, D.V.; Vorobyev, M.; Sosnovskikh, V.Y.; Wessel, H.; Kazakova, O.; Vogel, V.; Shevchenko, N.E.; Nenajdenko, V.G.; Lork, E.; Röschenthaler, G.V. Halogenation of fluorinated cyclic 1,3-dicarbonyl compounds: new aspects of synthesis application. Tetrahedron, 2009, 65(36), 7538-7552.
[http://dx.doi.org/10.1016/j.tet.2009.06.122]
[3]
Ohtsuka, Y.; Uraguchi, D.; Yamamoto, K.; Tokuhisa, K.; Yamakawa, T. Syntheses of 2-(trifluouromethyl)-1,3-dicarbonyl compounds through direct trifluoromethylation with CF3I and their application to fluorinated pyrazoles syntheses. Tetrahedron, 2012, 68(12), 2636-2649.
[http://dx.doi.org/10.1016/j.tet.2012.01.075]
[4]
Antonioletti, R.; Bovicelli, P.; Malancona, S. A new route to 2-alkenyl-1,3-dicarbonyl compounds, intermediates in the synthesis of dihydrofurans. Tetrahedron, 2002, 58(3), 589-596.
[http://dx.doi.org/10.1016/S0040-4020(01)01173-5]
[5]
Chatterjee, P.N.; Roy, S. Alkylation of 1,3-dicarbonyl compounds with benzylic and propargylic alcohols using Ir-bimetallic catalyst: synthesis of fully decorated furans and pyrroles. Tetrahedron, 2011, 67(25), 4569-4577.
[http://dx.doi.org/10.1016/j.tet.2011.04.092]
[6]
Narayanaperumal, S.; Silva, R.C.; Feu, K.S.; Torre, A.F.; Corrêa, A.G.; Paixão, M.W. Basic-functionalized recyclable ionic liquid catalyst: a solvent-free approach for Michael addition of 1,3-dicarbonyl compounds tonitroalkenes under ultrasound irradiation. UltrasomicSono Chem., 2013, 20(3), 793-798.
[http://dx.doi.org/10.1016/j.ultsonch.2012.11.002] [PMID: 23218731]
[7]
Cele, Z.E.; Sosibo, S.C.; Andersson, P.G.; Kruger, H.G.; Maguire, G.E.; Govender, T. Catalytic asymmetric carbon-carbon bond forming reactions catalyzed by tetrahydroisoquinoline (TIQ) N,N'-dioxide ligands. Tetrahedron : Asymmetry, 2013, 24(4), 191-195.
[http://dx.doi.org/10.1016/j.tetasy.2013.01.004]
[8]
Sato, S.; Naito, Y.; Aoki, K. Scandium cation-exchanged montmorillonite catalyzed direct C-glycosylation of a 1,3-diketone, dimedone, with unprotected sugars in aqueous solution. Carbohydr. Res., 2007, 342(7), 913-918.
[http://dx.doi.org/10.1016/j.carres.2007.01.013] [PMID: 17306239]
[9]
Kozlov, N.G.; Kadutskii, A.P. A novel three-component reaction of anilines, formaldehyde and dimedone: simple synthesis of spirosubstituted piperidines. Tetrahedron Lett., 2008, 49(29-30), 4560-4562.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.160]
[10]
Kantevari, S.; Bantu, R.; Nagarapu, L. HCIO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation andaldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. J. Mol. Catal. Chem., 2007, 269(1-2), 53-57.
[http://dx.doi.org/10.1016/j.molcata.2006.12.039]
[11]
Martins, L.; Bonagamba, T.L.; Eduardo, R.; Azevedo, E.R.; Bargiela, P.; Cardoso, D. Surfactant containing Si-MCM-41: an efficient basic catalyst for the Knoevenagel condensation. Appl. Catal. A Gen., 2006, 312, 77-65.
[http://dx.doi.org/10.1016/j.apcata.2006.06.035]
[12]
Jiao, C.; Jian, S.; Chao-guo, Y. Synthesis of spiro dihydrofurans and 1,8-dioxo-xanthenes via DABCO catalyzed tandem reaction of aldehyde with cyclohexane-1,3-dione and dimedone. Chem. Res. Chin. Univ., 2011, 27(1), 49-53.
[13]
Zhang, Z.; Zgang, P.; Yang, S.H.; Wang, H.J.; Deng, J. Multicomponent, solvent-free synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]-xanthen-11-one derivatives catalysedbycyanuric chloride. J. Chem. Sci., 2010, 122(3), 427-432.
[http://dx.doi.org/10.1007/s12039-010-0049-0]
[14]
Kokkirala, S.; Sabbavarapu, M.M.; Yadavalli, V.D.J. β-Cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water. Eur. J. Chem., 2011, 2(2), 272-275.
[http://dx.doi.org/10.5155/eurjchem.2.2.272-275.359]
[15]
Mohamed, S.K.; Abdelhamid, A.A.; Maharramov, A.M.; Khalilov, A.N.; Gurbanov, A.V.; Allahverdiev, M.A. Trizma: effiecient catalyst and reactant in Knoevenagel condensation reaction under conventional heat and microwave irradiation conditions. J. Chem. Pharm. Res., 2012, 4(3), 1787-1793.
[16]
Rohr, K.; Mahrwald, R. Catalyst-free tandem aldol condensation/Michael addition of 1,3-cyclohexanediones with enolizable aldehydes. Bioorg. Med. Chem. Lett., 2009, 19(14), 3949-3951.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.040] [PMID: 19328691]
[17]
Khurana, J.M.; Magoo, D. Efficient one-pot syntheses of 2H-indazolo[2,1-b] phthalazine-triones by catalytic H2SO4 in water–ethanol or ionic liquid. Tetrahedron Lett., 2009, 50(52), 7300-7303.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.032]
[18]
Verma, G.K.; Raghuvanshi, K.; Verma, R.K.; Dwivedi, P.; Singh, M.S. An efficient one-pot solvent-free synthesis and photophysical properties of 9-aryl/alkyl-octahydroxanthene-1,8-diones. Tetrahedron, 2011, 67(18), 3698-3704.
[http://dx.doi.org/10.1016/j.tet.2011.03.078]
[19]
Mohareb, R.M.; Wardakhan, W.W.; Abbas, N.S. Synthesis of tetrahydrobenzo[b]thiophene-3-carbohydrazide derivatives as potential anti-cancer agents and Pim-1 kinase inhibitors. Anti-Cancer Agent Med Chem, 2019, 19(14), 1737-1753.
[http://dx.doi.org/10.2174/1871520619666190402153429] [PMID: 30947678]
[20]
Quiroga, J.; Trilleras, J.; Pantoja, D.; Abonía, R.; Insuasty, B. NoguerasCobo, J.Microwave-assisted synthesis of pyrazolo[3,4-b]pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic β-diketones. Tetrahedron Lett., 2010, 51(36), 4717-4719.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.009]
[21]
Kamel, M.M.; El-Ansary, A.K.; Milad, Y.R. Design, synthesis and cytotoxicity of pyridine, pyrazole and thiazole derivatives derived from N-alkyl-4,5,6,7-tetrahydro-1-benzothiophene. Chem. Heterocycl. Compd., 2013, 49(3), 392-403.
[http://dx.doi.org/10.1007/s10593-013-1259-4]
[22]
Mohareb, R.M.; Al-Omran, F. Reaction of pregnenolone with cyanoacetylhydrazine: novel synthesis of hydrazide-hydrazone, pyrazole, pyridine, thiazole, thiophene derivatives and their cytotoxicity evaluations. Steroids, 2012, 77(14), 1551-1559.
[http://dx.doi.org/10.1016/j.steroids.2012.09.007] [PMID: 23064008]
[23]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Cambell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[24]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the National cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[25]
Boyd, M.R. The NCI In Vitro Anticancer Drug Discovery Screen. Concept, Implementation, and Operation, 1985-1995. In: Anticancer Drug Discovery Development Guide. Preclinical Screening, Clinical Trials, and Approval; Teicher, B.A., Ed.; Humana Press: Totowa, NJ, 1997; pp. 23-43.
[http://dx.doi.org/10.1007/978-1-4615-8152-9_2]
[26]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[27]
McGovern, S.L.; Shoichet, B.K. Kinase inhibitors: Not just for kinases anymore. J. Med. Chem., 2003, 46(8), 1478-1483.
[http://dx.doi.org/10.1021/jm020427b] [PMID: 12672248]
[28]
Feng, B.Y.; Shelat, A.; Doman, T.N.; Guy, R.K.; Shoichet, B.K. High-throughput assays for promiscuous inhibitors. Nat. Chem. Biol., 2005, 1(3), 146-148.
[http://dx.doi.org/10.1038/nchembio718] [PMID: 16408018]
[29]
Feng, B.Y.; Shoichet, B.K. Synergy and antagonism of promiscuous inhibition in multiple-compound mixtures. J. Med. Chem., 2006, 49(7), 2151-2154.
[http://dx.doi.org/10.1021/jm060029z] [PMID: 16570910]
[30]
Metz, J.T.; Huth, J.R.; Hajduk, P.J. Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. J. Comput. Aided Mol. Des., 2007, 21(1-3), 139-144.
[http://dx.doi.org/10.1007/s10822-007-9109-z] [PMID: 17340041]
[31]
Huth, J.R.; Song, D.; Mendoza, R.R.; Black-Schaefer, C.L.; Mack, J.C.; Dorwin, S.A.; Ladror, U.S.; Severin, J.M.; Walter, K.A.; Bartley, D.M.; Hajduk, P.J. Toxicological evaluation of thiol-reactive compounds identified using a la assay to detect reactive molecules by nuclear magnetic resonance. Chem. Res. Toxicol., 2007, 20(12), 1752-1759.
[http://dx.doi.org/10.1021/tx700319t] [PMID: 18001056]
[32]
Baell, J.; Walters, M.A. Chemistry: chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483.
[http://dx.doi.org/10.1038/513481a] [PMID: 25254460]
[33]
Dahlin, J.L.; Walters, M.A. The essential roles of chemistry in high-throughput screening triage. Future Med. Chem., 2014, 6(11), 1265-1290.
[http://dx.doi.org/10.4155/fmc.14.60] [PMID: 25163000]
[34]
Pouliot, M.; Jeanmart, S. Pan assay interference compounds (PAINS) and other promiscuous compounds in antifungal research. J. Med. Chem., 2016, 59(2), 497-503.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00361] [PMID: 26313340]
[35]
Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855.
[http://dx.doi.org/10.1016/j.bmc.2013.04.013] [PMID: 23628470]
[36]
Verma, G.; Marella, A.; Shaquiquzzaman, M.; Akhtar, M.; Ali, M.R.; Alam, M.M. A review exploring biological activities of hydrazones. J. Pharm. Bioallied Sci., 2014, 6(2), 69-80.
[http://dx.doi.org/10.4103/0975-7406.129170] [PMID: 24741273]
[37]
Rollas, S.; Küçükgüzel, S.G. Biological activities of hydrazone derivatives. Molecules, 2007, 12(8), 1910-1939.
[http://dx.doi.org/10.3390/12081910] [PMID: 17960096]
[38]
de Miranda, A.S.; Bispo Júnior, W.; da Silva, Y.K.; Alexandre-Moreira, M.S. Castro, Rde.P.; Sabino, J.R.; Lião, L.M.; Lima, L.M.; Barreiro, E.J. Design, synthesis, antinociceptive and anti-inflammatory activities of novel piroxicam analogues. Molecules, 2012, 17(12), 14126-14145.
[http://dx.doi.org/10.3390/molecules171214126] [PMID: 23192189]
[39]
Gökçe, M.; Utku, S.; Küpeli, E. Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal)hydrazone derivatives. Eur. J. Med. Chem., 2009, 44(9), 3760-3764.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.048] [PMID: 19535179]
[40]
Mohareb, R.M.; Hilmy, K.M.; Elshehawy, Y.A. Discovery of new thiophene, pyrazole, isoxazole derivatives as antitumor, c-Met, tyrpsine kinase and Pim-1 kinase inhibitors. Bull. Chem. Soc. Ethiop., 2018, 32(2), 285-308.
[http://dx.doi.org/10.4314/bcse.v32i2.9]
[41]
Mohareb, R.M.; El-Sayed, N.E.; Abdelaziz, M.A. The Knoevenagel reactions of pregnenolone with cyanomethylene reagents: Synthesis of thiophene, thieno[2,3-b]pyridine, thieno[3,2-d]isoxazole derivatives of pregnenolone and their in vitro cytotoxicity towards tumor and normal cell lines. Steroids, 2013, 78(12-13), 1209-1219.
[http://dx.doi.org/10.1016/j.steroids.2013.08.007] [PMID: 24012739]
[42]
Hang, Y.; Tang, W.Q.; Yan, C.G. Gewald-type reaction of double activated 2,3-diarylcyclopropanes with elemental sulfur for synthesis of polysubstituted 2-aminothiophenes. Tetrahedron Lett., 2014, 55(8), 1441-1443.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.043]
[43]
Javadi, F.; Tayebee, R. Preparation and characterization of ZnO/nanoclinoptilolite as a new nanocomposite and studying its catalytic performance in the synthesis of 2-aminothiophenes via Gewald reaction. Microporous Mesoporous Mater., 2016, 231, 100-109.
[http://dx.doi.org/10.1016/j.micromeso.2016.05.025]
[44]
Fu, T.L.; Wang, I.J. Synthesis and characterization of some novel polyfunctionally substituted indeno[2,1-b]thiophene compounds derived from indanones. Dyes Pigm., 2008, 76(3), 590-595.
[http://dx.doi.org/10.1016/j.dyepig.2007.02.007]
[45]
Tayebee, R.; Javadi, F.; Argi, G. Easy single-step preparation of ZnOnano-particles by sedimentation method and studying their catalytic performance in the synthesis of 2-aminothiophenes via Gewald reaction. J. Mol. Cat. A Chem, 2012, 368-369, 16-23.
[http://dx.doi.org/10.1016/j.molcata.2012.11.011]
[46]
Vatansever, E.C.; Kilic, K.; Ozer, M.S.; Koza, G.; Menges, N.; Balci, M. Intermolecular heterocyclization of alkynones with 2-mercaptoacetaldehyde under metal-free conditions: synthesis of 2,3-disubstituted thiophenes. Tetrahedron Lett., 2015, 56(40), 5386-5389.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.090]
[47]
Ding, J.; Fan, M.; Zhong, Q.; Russell, A.G. Single-atom silver-manganese nanocatalysts based on atom-economy design for reaction temperature-controlled selective hydrogenation of bioresources-derivable diethyl oxalate to ethyl glycolate and acetaldehyde diethyl acetal. Appl. Catal. B, 2018, 232, 348-354.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.058]
[48]
Maddila, S.N.; Maddila, S.; Khumalo, M.; Bhaskruni, S.V.H.; Jonnalagadda, S.B. An eco-friendly approach for synthesis of novel substituted 4H-chromenes in aqueous ethanol under ultra-sonication with 94% atom economy. J. Mol. Struct., 2019, 1185, 357-360.
[http://dx.doi.org/10.1016/j.molstruc.2019.03.006]
[49]
Arepalli, S.K.; Park, B.; Jung, J.K.; Lee, K.; Lee, H. A facile one-pot regioselective synthesis of functionalized novel benzo[f]chromeno[4,3-b][1,7]naphthyridines and benzo[f][1,7]naphthyridines via an imino Diels-Alder reaction. Tetrahedron Lett., 2017, 58, 449-454.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.050]
[50]
Sugita, S.; Ueda, M.; Doi, N.; Takeda, N.; Miyata, O. Gold-catalyzed sequential cyclization/rearrangement reaction of O-allyl hydroxamates: atom economical synthesis of 3-hydroxyisoxazoles. Tetrahedron Lett., 2016, 57(16), 1786-1789.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.032]
[51]
Yufeng, L.; Jie, S.; Wu, J.; Zhengguang, W.; Xinglong, W.; Xiaowei, W.; Jiachao, G.; Hongzhong, B.; Hongfei, M. An atom-economic synthesis of functionalized pyrroles via a sequential metal-catalyzed three-component reaction. Tetrahedron, 2014, 70(14), 2472-2477.
[http://dx.doi.org/10.1016/j.tet.2014.01.037]
[52]
Nazeri, M.T.; Hassan, R.M.; Shaabani, F.A.; Notash, B. An efficient pseudo-seven component reaction for the synthesis of fully-substituted furans containing pseudopeptide based on the union of multicomponent reactions. Tetrahedron Lett., 2020, 61(3), 151408.
[http://dx.doi.org/10.1016/j.tetlet.2019.151408]
[53]
Munaretto, L.S.; Ferreira, M.; Gouvea, D.; Bortoluzzi, A.J.; Assuncao, L.S.; Inaba, J.; Creczynski-Pasa, T.; Sa, M.M. Synthesis of isothiosemicarbazones of potential antitumoral activity through a multicomponent reaction involving allylic bromides, carbonyl compounds and thiosemicarbazide. Tetrahedron, 2020, 76(23), 131231.
[http://dx.doi.org/10.1016/j.tet.2020.131231]
[54]
Koopal, L.; Tan, W.; Avena, M. Equilibrium mono- and multicomponent adsorption models: from homogeneous ideal to heterogeneous non-ideal binding. Adv. Colloid Interface Sci., 2020, 280, 102138.
[http://dx.doi.org/10.1016/j.cis.2020.102138] [PMID: 32387754]
[55]
Asha, T.M.; Kurup, M.R.P. Synthesis and characterization of homobimetallic molybdenum(VI) complexes of a dihydrazone as efficient catalysts for the synthesis of hexahydroxyquinolines via multicomponent Hantzsch reaction. J. Mol. Struct., 2020, 1204, 127553.
[http://dx.doi.org/10.1016/j.molstruc.2019.127553]
[56]
Arumugam, A.; Almansour, A.I.; Kumar, R.S.; Altaf, M.; Mhalingam, S.M.; Periyasami, G.; Menendez, J.C.; Al-Aizari, A.J. Multicomponent domino protocol for the stereoselective synthesis of novel pyrrolo[3,2-c]quinolinone hybrid heterocycles. Tetrahedron Lett., 2019, 60(8), 602-605.
[http://dx.doi.org/10.1016/j.tetlet.2019.01.035]
[57]
Vincetti, P.; Brianza, A.; Scalacci, N.; Costantino, G.; Castagnolo, D.; Radi, M. A microwave-assisted multicomponent protocol for the synthesis of benzofuran-2-carboxamides. Tetrahedron Lett., 2016, 57(13), 1464-1467.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.068]
[58]
Nakhi, A.; Adepu, R.; Rambabu, D.; Kishore, R.; Vanaja, G.R.; Kalle, A.M.; Pal, M. Thieno[3,2-c]pyran-4-one based novel small molecules: their synthesis, crystal structure analysis and in vitro evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(13), 4418-4427.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.109] [PMID: 22632935]
[59]
Ahmed, M.F.; Belal, A. Synthesis, characterization, and biological evaluation of new quinazolin-4-one derivatives hybridized with pyridine or pyran moiety. Res. Chem. Int., 2016, 42(2), 659-671.
[http://dx.doi.org/10.1007/s11164-015-2048-8]
[60]
Mohareb, R.M.; Mikhail, I.R. Synthesis of thiazole, thiophene, pyran and pyridine derivatives derived from 3-phenyl-1H-pyrazol-5(4H)-one with anti-proliferative, tyrosine kinase and PIM-1 kinase inhibitions. Lett. Drug Des. Discov., 2020, 17(4), 485-501.
[http://dx.doi.org/10.2174/1570180816666190618105907]
[61]
Mohareb, R.M.; Mostafa, B.M. Uses of ethyl benzoylacetate for the synthesis of thiophene, thiazole, pyridine, and pyran derivatives with antitumor activities. J. Het. Chem., 2020, 57(3), 1275-1290.
[http://dx.doi.org/10.1002/jhet.3865]
[62]
Chang, L.; Hu, Y.; Fu, Y.; Zhou, T.; You, J.; Du, J.; Zheng, L.; Cao, J.; Ying, M.; Dai, X.; Su, D.; He, Q.; Zhu, H.; Yang, B. Targeting slug-mediated non-canonical activation of c-Met to overcome chemo-resistance in metastatic ovarian cancer cells. Acta Pharm. Sin. B, 2019, 9(3), 484-495.
[http://dx.doi.org/10.1016/j.apsb.2019.03.001] [PMID: 31193822]
[63]
Clarke, E.E.; Shearman, M.S. Quantitation of amyloid-β peptides in biological milieu using a novel homogeneous time-resolved fluorescence (HTRF) assay. J. Neurosci. Methods, 2000, 102(1), 61-68.
[http://dx.doi.org/10.1016/S0165-0270(00)00280-6] [PMID: 11000412]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy