[1]
Qian, H.; Kang, X.; Hu, J.; Zhang, D.; Liang, Z.; Meng, F.; Zhang, X.; Xue, Y.; Maimon, R.; Dowdy, S.F.; Devaraj, N.K.; Zhou, Z.; Mobley, W.C.; Cleveland, D.W.; Fu, X.D. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature, 2020, 582(7813), 550-556.
[http://dx.doi.org/10.1038/s41586-020-2388-4] [PMID: 32581380]
[http://dx.doi.org/10.1038/s41586-020-2388-4] [PMID: 32581380]
[2]
Wu, Z.; Parry, M.; Hou, X.Y.; Liu, M.H.; Wang, H.; Cain, R.; Pei, Z.F.; Chen, Y.C.; Guo, Z.Y.; Abhijeet, S.; Chen, G. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat. Commun., 2020, 11(1), 1105.
[http://dx.doi.org/10.1038/s41467-020-14855-3] [PMID: 32107381]
[http://dx.doi.org/10.1038/s41467-020-14855-3] [PMID: 32107381]
[3]
Zhou, H.; Su, J.; Hu, X.; Zhou, C.; Li, H.; Chen, Z.; Xiao, Q.; Wang, B.; Wu, W.; Sun, Y.; Zhou, Y.; Tang, C.; Liu, F.; Wang, L.; Feng, C.; Liu, M.; Li, S.; Zhang, Y.; Xu, H.; Yao, H.; Shi, L.; Yang, H. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell, 2020, 181(3), 590-603.e16.
[http://dx.doi.org/10.1016/j.cell.2020.03.024] [PMID: 32272060]
[http://dx.doi.org/10.1016/j.cell.2020.03.024] [PMID: 32272060]
[4]
Barker, R.A.; Götz, M.; Parmar, M. New approaches for brain repair-from rescue to reprogramming. Nature, 2018, 557(7705), 329-334.
[http://dx.doi.org/10.1038/s41586-018-0087-1] [PMID: 29769670]
[http://dx.doi.org/10.1038/s41586-018-0087-1] [PMID: 29769670]
[5]
Nott, A.; Holtman, I.R.; Coufal, N.G.; Schlachetzki, J.C.M.; Yu, M.; Hu, R.; Han, C.Z.; Pena, M.; Xiao, J.; Wu, Y.; Keulen, Z.; Pasillas, M.P.; O’Connor, C.; Nickl, C.K.; Schafer, S.T.; Shen, Z.; Rissman, R.A.; Brewer, J.B.; Gosselin, D.; Gonda, D.D.; Levy, M.L.; Rosenfeld, M.G.; McVicker, G.; Gage, F.H.; Ren, B.; Glass, C.K. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science, 2019, 366(6469), 1134-1139.
[http://dx.doi.org/10.1126/science.aay0793] [PMID: 31727856]
[http://dx.doi.org/10.1126/science.aay0793] [PMID: 31727856]
[6]
Nave, K.A.; Werner, H.B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol., 2014, 30, 503-533.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013101] [PMID: 25288117]
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013101] [PMID: 25288117]
[7]
Emery, B.; Lu, Q.R. Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb. Perspect. Biol., 2015, 7(9)a020461
[http://dx.doi.org/10.1101/cshperspect.a020461] [PMID: 26134004]
[http://dx.doi.org/10.1101/cshperspect.a020461] [PMID: 26134004]
[8]
Zuchero, J.B.; Barres, B.A. Intrinsic and extrinsic control of oligodendrocyte development. Curr. Opin. Neurobiol., 2013, 23(6), 914-920.
[http://dx.doi.org/10.1016/j.conb.2013.06.005] [PMID: 23831087]
[http://dx.doi.org/10.1016/j.conb.2013.06.005] [PMID: 23831087]
[9]
Gregath, A.; Lu, Q.R. Epigenetic modifications-insight into oligodendrocyte lineage progression, regeneration, and disease. FEBS Lett., 2018, 592(7), 1063-1078.
[http://dx.doi.org/10.1002/1873-3468.12999] [PMID: 29427507]
[http://dx.doi.org/10.1002/1873-3468.12999] [PMID: 29427507]
[10]
Liu, J.; Moyon, S.; Hernandez, M.; Casaccia, P. Epigenetic control of oligodendrocyte development: adding new players to old keepers. Curr. Opin. Neurobiol., 2016, 39, 133-138.
[http://dx.doi.org/10.1016/j.conb.2016.06.002] [PMID: 27308779]
[http://dx.doi.org/10.1016/j.conb.2016.06.002] [PMID: 27308779]
[11]
Lu, G.; Zhang, M.; Wang, J.; Zhang, K.; Wu, S.; Zhao, X. Epigenetic regulation of myelination in health and disease. Eur. J. Neurosci., 2019, 49(11), 1371-1387.
[http://dx.doi.org/10.1111/ejn.14337] [PMID: 30633380]
[http://dx.doi.org/10.1111/ejn.14337] [PMID: 30633380]