Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis, Molecular Docking, and Biological Evaluation of 2,3-Diphenylquinoxaline Derivatives as a Tubulin’s Colchicine Binding Site Inhibitor Based on Primary Virtual Screening

Author(s): Zahra Rezaei, Mehdi Asadi, Mohammad Nazari Montazer, Elnaz Rezaeiamiri, Saeed Bahadorikhalili, Mohsen Amini and Massoud Amanlou*

Volume 22, Issue 10, 2022

Published on: 13 January, 2022

Page: [2011 - 2025] Pages: 15

DOI: 10.2174/1871520621666211026102307

Price: $65

Abstract

Background: Tubulin inhibitors have proved to be a promising treatment against cancer. Tubulin inhibitors target different areas in microtubule structure to exert their effects. The colchicine binding site (CBS) is one of them for which there is no FDA-approved drug yet. This makes CBS a desirable target for drug design.

Methods: Primary virtual screening is done by developing a possible pharmacophore model of colchicine binding site inhibitors of tubulins, and 2,3-diphenylquinoxaline is chosen as a lead compound to synthesis. In this study, 28 derivatives of 2,3-diphenylquinoxalines are synthesized, and their cytotoxicity is evaluated by the MTT assay in different human cancer cell lines, including AGS (Adenocarcinoma gastric cell line), HT-29 (Human colorectal adenocarcinoma cell line), NIH3T3 (Fibroblast cell line), and MCF-7 (Human breast cancer cell).

Results: Furthermore, the activity of the studied compounds was investigated using computational methods involving molecular docking of the 2,3-diphenylquinoxaline derivatives to β-tubulin. The results showed that the compounds with electron donor functionalities in positions 2 and 3 and electron-withdrawing groups in position 6 are the most active tubulin inhibitors.

Conclusion: Apart from the high activity of the synthesized compounds, the advantage of this report is the ease of the synthesis, work-up, and isolation of the products in safe, effective, and high-quality isolated yields.

Keywords: Diphenyl quinoxaline, tubulin inhibitors, colchicine binding site, combretastatin, virtual screening, MTT assay.

Graphical Abstract

[1]
Downing, K.H.; Nogales, E. Tubulin and microtubule structure. Curr. Opin. Cell Biol., 1998, 10(1), 16-22.
[http://dx.doi.org/10.1016/S0955-0674(98)80082-3] [PMID: 9484591]
[2]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[3]
Gangjee, A.; Zhao, Y.; Lin, L.; Raghavan, S.; Roberts, E.G.; Risinger, A.L.; Hamel, E.; Mooberry, S.L. Synthesis and discovery of water-soluble microtubule targeting agents that bind to the colchicine site on tubulin and circumvent Pgp mediated resistance. J. Med. Chem., 2010, 53(22), 8116-8128.
[http://dx.doi.org/10.1021/jm101010n] [PMID: 20973488]
[4]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202.
[http://dx.doi.org/10.1038/nature02393] [PMID: 15014504]
[5]
Mikstacka, R.; Stefański, T.; Różański, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett., 2013, 18(3), 368-397.
[http://dx.doi.org/10.2478/s11658-013-0094-z] [PMID: 23818224]
[6]
Piekuś-Słomka, N.; Mikstacka, R.; Ronowicz, J.; Sobiak, S. Hybrid cis-stilbene molecules: Novel anticancer agents. Int. J. Mol. Sci., 2019, 20(6), 1300.
[http://dx.doi.org/10.3390/ijms20061300] [PMID: 30875859]
[7]
Li, W.; Sun, H.; Xu, S.; Zhu, Z.; Xu, J. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med. Chem., 2017, 9(15), 1765-1794.
[http://dx.doi.org/10.4155/fmc-2017-0100] [PMID: 28929799]
[8]
Tron, G.C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A.A. Medicinal chemistry of combretastatin A4: present and future directions. J. Med. Chem., 2006, 49(11), 3033-3044.
[http://dx.doi.org/10.1021/jm0512903] [PMID: 16722619]
[9]
Massarotti, A.; Coluccia, A.; Silvestri, R.; Sorba, G.; Brancale, A. The tubulin colchicine domain: A molecular modeling perspective. ChemMedChem, 2012, 7(1), 33-42.
[http://dx.doi.org/10.1002/cmdc.201100361] [PMID: 21990124]
[10]
Hassanzadeh, M.; Bagherzadeh, K.; Amanlou, M. A comparative study based on docking and molecular dynamics simulations over HDAC-tubulin dual inhibitors. J. Mol. Graph. Model., 2016, 70, 170-180.
[http://dx.doi.org/10.1016/j.jmgm.2016.10.007] [PMID: 27750186]
[11]
Álvarez, R.; Aramburu, L.; Puebla, P.; Caballero, E.; González, M.; Vicente, A.; Medarde, M.; Peláez, R. Pyridine based antitumour compounds acting at the colchicine site. Curr. Med. Chem., 2016, 23(11), 1100-1130.
[http://dx.doi.org/10.2174/092986732311160420104823] [PMID: 27117490]
[12]
Nakagawa-Goto, K.; Oda, A.; Hamel, E.; Ohkoshi, E.; Lee, K.H.; Goto, M. Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring. J. Med. Chem., 2015, 58(5), 2378-2389.
[http://dx.doi.org/10.1021/jm501859j] [PMID: 25695315]
[13]
Wang, X-F.; Ohkoshi, E.; Wang, S-B.; Hamel, E.; Bastow, K-F.; Morris-Natschke, S.L.; Lee, K-H.; Xie, L. Synthesis and biological evaluation of N-alkyl-N-(4-methoxyphenyl)pyridin-2-amines as a new class of tubulin polymerization inhibitors. Bioorg. Med. Chem., 2013, 21(3), 632-642.
[http://dx.doi.org/10.1016/j.bmc.2012.11.047] [PMID: 23274123]
[14]
Wang, X-F.; Guan, F.; Ohkoshi, E.; Guo, W.; Wang, L.; Zhu, D-Q.; Wang, S-B.; Wang, L-T.; Hamel, E.; Yang, D.; Li, L.; Qian, K.; Morris-Natschke, S.L.; Yuan, S.; Lee, K.H.; Xie, L. Optimization of 4-(N-cycloamino)phenylquinazolines as a novel class of tubulin-polymerization inhibitors targeting the colchicine site. J. Med. Chem., 2014, 57(4), 1390-1402.
[http://dx.doi.org/10.1021/jm4016526] [PMID: 24502232]
[15]
Saravani, F.; Moghadam, E.S.; Salehabadi, H.; Ostad, S.; Hamedani, M.P.; Amanlou, M.; Faramarzi, M.A.; Amini, M. Synthesis, anti-proliferative evaluation, and molecular docking studies of 3-(alkylthio)-5, 6-diaryl-1, 2, 4-triazines as tubulin polymerization inhibitors. Lett. Drug Des. Discov., 2019, 16(11), 1194-1201.
[http://dx.doi.org/10.2174/1570180815666180727114216]
[16]
Qi, J.; Dong, H.; Huang, J.; Zhang, S.; Niu, L.; Zhang, Y.; Wang, J. Synthesis and biological evaluation of N-substituted 3-oxo-1,2,3,4-tetrahydro-quinoxaline-6-carboxylic acid derivatives as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2018, 143, 8-20.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.018] [PMID: 29172084]
[17]
Soussi, M.A.; Provot, O.; Bernadat, G.; Bignon, J.; Desravines, D.; Dubois, J.; Brion, J.D.; Messaoudi, S.; Alami, M. Isocombretaquinazolines: Potent cytotoxic agents with antitubulin activity. ChemMedChem, 2015, 10(8), 1392-1402.
[http://dx.doi.org/10.1002/cmdc.201500069] [PMID: 26076053]
[18]
Khelifi, I.; Naret, T.; Renko, D.; Hamze, A.; Bernadat, G.; Bignon, J.; Lenoir, C.; Dubois, J.; Brion, J-D.; Provot, O.; Alami, M. Design, synthesis and anticancer properties of isocombretaquinolines as potent tubulin assembly inhibitors. Eur. J. Med. Chem., 2017, 127, 1025-1034.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.012] [PMID: 28166995]
[19]
Parhi, A.K.; Zhang, Y.; Saionz, K.W.; Pradhan, P.; Kaul, M.; Trivedi, K.; Pilch, D.S.; LaVoie, E.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines. Bioorg. Med. Chem. Lett., 2013, 23(17), 4968-4974.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.048] [PMID: 23891185]
[20]
El-Hawash, S.A.; Wahab, A.E.A. Synthesis and in vitro-anticancer and antimicrobial evaluation of some novel quinoxalines derived from 3-phenylquinoxaline-2(1H)-thione. Arch. Pharm. (Weinheim), 2006, 339(8), 437-447.
[http://dx.doi.org/10.1002/ardp.200600012] [PMID: 16881038]
[21]
Zhang, H.; Zhang, J.; Qu, W.; Xie, S.; Huang, L.; Chen, D.; Tao, Y.; Liu, Z.; Pan, Y.; Yuan, Z. Design, synthesis, and biological evaluation of novel thiazolidinone-containing quinoxaline-1,4-di-N-oxides as antimycobacterial and antifungal agents. Front Chem., 2020, 8, 598.
[http://dx.doi.org/10.3389/fchem.2020.00598] [PMID: 32850634]
[22]
Bonilla-Ramirez, L.; Rios, A.; Quiliano, M.; Ramirez-Calderon, G.; Beltrán-Hortelano, I.; Franetich, J.F.; Corcuera, L.; Bordessoulles, M.; Vettorazzi, A.; López de Cerain, A.; Aldana, I.; Mazier, D.; Pabón, A.; Galiano, S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: Design, synthesis, plasmodium life cycle stage profile, and preliminary toxicity studies. Eur. J. Med. Chem., 2018, 158, 68-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.063] [PMID: 30199706]
[23]
Patel, S.B.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117, 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[24]
Fabian, L.; Taverna Porro, M.; Gómez, N.; Salvatori, M.; Turk, G.; Estrin, D.; Moglioni, A. Design, synthesis and biological evaluation of quinoxaline compounds as anti-HIV agents targeting reverse transcriptase enzyme. Eur. J. Med. Chem., 2020, 188111987
[http://dx.doi.org/10.1016/j.ejmech.2019.111987] [PMID: 31893549]
[25]
El Newahie, A.M.; Ismail, N.S.; Abou El Ella, D.A.; Abouzid, K.A. Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity. Arch. Pharm. (Weinheim), 2016, 349(5), 309-326.
[http://dx.doi.org/10.1002/ardp.201500468] [PMID: 27062086]
[26]
El-Hawash, S.A.; Habib, N.S.; Kassem, M.A. Synthesis of some new quinoxalines and 1,2,4-triazolo[4,3-a]-quinoxalines for evaluation of in vitro antitumor and antimicrobial activities. Arch. Pharm. (Weinheim), 2006, 339(10), 564-571.
[http://dx.doi.org/10.1002/ardp.200600061] [PMID: 17009301]
[27]
Rajule, R.; Bryant, V.C.; Lopez, H.; Luo, X.; Natarajan, A. Perturbing pro-survival proteins using quinoxaline derivatives: A structure-activity relationship study. Bioorg. Med. Chem., 2012, 20(7), 2227-2234.
[http://dx.doi.org/10.1016/j.bmc.2012.02.022] [PMID: 22386982]
[28]
Ingle, R.; Marathe, R.; Magar, D.; Patel, H.M.; Surana, S.J. Sulphonamido-quinoxalines: search for anticancer agent. Eur. J. Med. Chem., 2013, 65, 168-186.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.028] [PMID: 23708011]
[29]
Qi, J.; Huang, J.; Zhou, X.; Luo, W.; Xie, J.; Niu, L.; Yan, Z.; Luo, Y.; Men, Y.; Chen, Y.; Zhang, Y.; Wang, J. Synthesis and biological evaluation of quinoxaline derivatives as tubulin polymerization inhibitors that elevate intracellular ROS and triggers apoptosis via mitochondrial pathway. Chem. Biol. Drug Des., 2019, 93(4), 617-627.
[http://dx.doi.org/10.1111/cbdd.13459] [PMID: 30635972]
[30]
Mamedov, V.A. Quinoxalines: Synthesis, Reactions, Mechanisms and Structure; Springer: Cham, 2016.
[http://dx.doi.org/10.1007/978-3-319-29773-6]
[31]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: a state of the art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[32]
Antoniotti, S.; Duñach, E. Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1, 2-diamines. Tetrahedron Lett., 2002, 43(22), 3971-3973.
[http://dx.doi.org/10.1016/S0040-4039(02)00715-3]
[33]
Brown, D.J.; Ellman, J.A.; Taylor, E.C. Cinnolines and Phthalazines, Supplement 2; John Wiley & Sons: New York, 2005, Vol. 64, .
[34]
Aparicio, D.; Attanasi, O.A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; de Los Santos, J.M. Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza-1,3-butadienes with 1,2-diamines under solution, solvent-free, or solid-phase conditions. J. Org. Chem., 2006, 71(16), 5897-5905.
[http://dx.doi.org/10.1021/jo060450v] [PMID: 16872170]
[35]
Shi, D.Q.; Dou, G.L.; Ni, S.N.; Shi, J.W.; Li, X.Y. An Efficient Synthesis of Quinoxaline derivatives mediated by stannous chloride. J. Heterocycl. Chem., 2008, 45(6), 1797-1801.
[http://dx.doi.org/10.1002/jhet.5570450637]
[36]
Cai, J-J.; Zou, J-P.; Pan, X-Q.; Zhang, W. Gallium (III) triflate-catalyzed synthesis of quinoxaline derivatives. Tetrahedron Lett., 2008, 49(52), 7386-7390.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.058]
[37]
Thakuria, H.; Das, G. One-pot efficient green synthesis of 1, 4-dihydro-quinoxaline-2, 3-dione derivatives. J. Chem. Sci., 2006, 118(5), 425-428.
[http://dx.doi.org/10.1007/BF02711453]
[38]
Gris, J.; Glisoni, R.; Fabian, L.; Fernández, B.; Moglioni, A.G. Synthesis of potential chemotherapic quinoxalinone derivatives by biocatalysis or microwave-assisted Hinsberg reaction. Tetrahedron Lett., 2008, 49(6), 1053-1056.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.204]
[39]
Rostamizadeh, S.; Jafari, S. The synthesis of quinoxalines under microwave irradiation. Indian J. Heterocycl. Chem., 2001, 10(4), 303-304.
[40]
Akkilagunta, V.K.; Reddy, V.P.; Kakulapati, R.R. Aqueous-phase aerobic oxidation of alcohols by ru/c in the presence of cyclodextrin: one-pot biomimetic approach to quinoxaline synthesis. Synlett, 2010, 2010(17), 2571-2574.
[http://dx.doi.org/10.1055/s-0030-1258775]
[41]
Xie, C.; Zhang, Z.; Yang, B.; Song, G.; Gao, H.; Wen, L.; Ma, C. An efficient iodine–DMSO catalyzed synthesis of quinoxaline derivatives. Tetrahedron, 2015, 71(12), 1831-1837.
[http://dx.doi.org/10.1016/j.tet.2015.02.003]
[42]
Yu, J-W.; Mao, S.; Wang, Y-Q. Copper-catalyzed base-accelerated direct oxidation of C–H bond to synthesize benzils, isatins, and quinoxalines with molecular oxygen as terminal oxidant. Tetrahedron Lett., 2015, 56(12), 1575-1580.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.019]
[43]
Kaupp, G.; Naimi‐Jamal, M.R. Quantitative cascade condensations between o‐phenylenediamines and 1, 2‐dicarbonyl compounds without production of wastes. Eur. J. Org. Chem., 2002, 2002(8), 1368-1373.
[http://dx.doi.org/10.1002/1099-0690(200204)2002:8<1368:AID-EJOC1368>3.0.CO;2-6]
[44]
Gao, L.; Liu, R.; Yu, C.; Yao, C.; Li, T.; Xiao, Z. NHC-initiated cascade, metal-free synthesis of quinoxaline derivatives under solvent-free conditions. Res. Chem. Intermed., 2014, 40(5), 2131-2138.
[http://dx.doi.org/10.1007/s11164-013-1108-1]
[45]
Chandra Shekhar, A.; Ravi Kumar, A.; Sathaiah, G.; Raju, K.; Srinivas, P.; Shanthan Rao, P.; Narsaiah, B. Aqueous hydrofluoric acid catalyzed facile synthesis of 2, 3, 6‐substituted quinoxalines. J. Heterocycl. Chem., 2014, 51(5), 1504-1508.
[http://dx.doi.org/10.1002/jhet.1753]
[46]
Aghapoor, K.; Darabi, H.R.; Mohsenzadeh, F.; Balavar, Y.; Daneshyar, H. Zirconium (IV) chloride as versatile catalyst for the expeditious synthesis of quinoxalines and pyrido [2, 3-b] pyrazines under ambient conditions. Trans. Met. Chem. (Weinh.), 2010, 35(1), 49-53.
[http://dx.doi.org/10.1007/s11243-009-9294-9]
[47]
Cogo, J.; Kaplum, V.; Sangi, D.P.; Ueda-Nakamura, T.; Corrêa, A.G.; Nakamura, C.V. Synthesis and biological evaluation of novel 2,3-disubstituted quinoxaline derivatives as antileishmanial and antitrypanosomal agents. Eur. J. Org. Chem., 2015, 90, 107-123.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.018] [PMID: 25461316]
[48]
Suzuki, Y.; Murofushi, M.; Manabe, K. One-pot synthesis of unsymmetrical benzils and N-heteroarenes through nucleophilic aroylation catalyzed by N-heterocyclic carbene. Tetrahedron, 2013, 69(2), 470-473.
[http://dx.doi.org/10.1016/j.tet.2012.11.039]
[49]
Niesobski, P.; Martínez, I.S.; Kustosz, S.; Müller, T.J. Sequentially Pd/Cu‐catalyzed alkynylation‐oxidation synthesis of 1, 2‐ diketones and consecutive one‐pot generation of quinoxalines. Eur. J. Org. Chem., 2019, 2019(31-32), 5214-5218..
[http://dx.doi.org/10.1002/ejoc.201900783]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy