Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Opposing Roles of Antimicrobial Peptides in Skin Cancers

Author(s): Chanisa Kiatsurayanon, Ge Peng and François Niyonsaba*

Volume 28, Issue 3, 2022

Published on: 30 November, 2021

Page: [248 - 258] Pages: 11

DOI: 10.2174/1381612827666211021163318

Price: $65

Abstract

Antimicrobial peptides (AMPs), also known as host defense peptides, are ubiquitous naturally occurring molecules secreted by various cell types of the body. In the skin, AMPs serve as a first-line innate immune defense against exogenous microorganisms, and they orchestrate adaptive immune responses to exert several immunomodulatory functions. Emerging evidence indicates that AMPs not only contribute to certain inflammatory skin diseases but also play a role in skin tumor carcinogenesis. Available data support the hypothesis that AMPs possess both pro-tumor and anti-neoplastic properties. Although inconsistent observations reported by multiple studies make it challenging to summarize the precise roles of AMPs in cancer, the differential expression of AMPs in skin cancers, such as the increased expression of human beta-defensins in squamous cell carcinoma and the ability of cathelicidin LL-37 to induce malignant melanoma cell invasion, implies they have procancer activities. On the other hand, the observation that certain AMPs show cytotoxic activity against cancer cells of the colon and kidney suggests their inherent antitumor properties. In this review, we describe the roles and mechanisms of AMPs in skin cancer development. We believe that further research is needed to elucidate the impact of these AMPs in skin cancer biology and to explore their potential roles as diagnostic/prognostic biomarkers and as novel therapeutic targets.

Keywords: Antimicrobial peptide, skin cancer, defensin, LL-37, psoriasin, malignant melanoma, squamous cell carcinoma, basal cell carcinoma.

« Previous
[1]
Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 2010; 135(1): 1-11.
[http://dx.doi.org/10.1016/j.clim.2009.12.004] [PMID: 20116332]
[2]
Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol 2017; 26(11): 989-98.
[http://dx.doi.org/10.1111/exd.13314] [PMID: 28191680]
[3]
Jin G, Weinberg A. Human antimicrobial peptides and cancer. Semin Cell Dev Biol 2019; 88: 156-62.
[http://dx.doi.org/10.1016/j.semcdb.2018.04.006] [PMID: 29694838]
[4]
Chen X, Zou X, Qi G, et al. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell Physiol Biochem 2018; 47(3): 1060-73.
[http://dx.doi.org/10.1159/000490183] [PMID: 29843147]
[5]
Emelianov VU. Are antimicrobial peptides new players in skin cancer development? Br J Dermatol 2012; 167(3): 465.
[http://dx.doi.org/10.1111/j.1365-2133.2012.11188.x] [PMID: 22924946]
[6]
Manarang JC, Otteson DC, McDermott AM. Expression of antimicrobial peptides by uveal and cutaneous melanoma cells and investigation of their role in tumor cell migration and vasculogenic mimicry. Curr Eye Res 2017; 42(11): 1474-81.
[http://dx.doi.org/10.1080/02713683.2017.1339806] [PMID: 28910167]
[7]
Moubayed N, Weichenthal M, Harder J, Wandel E, Sticherling M, Gläser R. Psoriasin (S100A7) is significantly up-regulated in human epithelial skin tumours. J Cancer Res Clin Oncol 2007; 133(4): 253-61.
[http://dx.doi.org/10.1007/s00432-006-0164-y] [PMID: 17136347]
[8]
Zidlik V, Brychtova S, Uvirova M, Ziak D, Dvorackova J. The changes of angiogenesis and immune cell infiltration in the intra- and peri-tumoral melanoma microenvironment. Int J Mol Sci 2015; 16(4): 7876-89.
[http://dx.doi.org/10.3390/ijms16047876] [PMID: 25913374]
[9]
Kiatsurayanon C, Niyonsaba F, Smithrithee R, et al. Host defense (Antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol 2014; 134(8): 2163-73.
[http://dx.doi.org/10.1038/jid.2014.143] [PMID: 24633129]
[10]
Okumura K, Itoh A, Isogai E, et al. C-terminal domain of human CAP18 antimicrobial peptide induces apoptosis in oral squamous cell carcinoma SAS-H1 cells. Cancer Lett 2004; 212(2): 185-94.
[http://dx.doi.org/10.1016/j.canlet.2004.04.006] [PMID: 15279899]
[11]
Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 2005; 62(7-8): 784-90.
[http://dx.doi.org/10.1007/s00018-005-4560-2] [PMID: 15868403]
[12]
Klotman ME, Chang TL. Defensins in innate antiviral immunity. Nat Rev Immunol 2006; 6(6): 447-56.
[http://dx.doi.org/10.1038/nri1860] [PMID: 16724099]
[13]
Ganz T, Selsted ME, Szklarek D, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 1985; 76(4): 1427-35.
[http://dx.doi.org/10.1172/JCI112120] [PMID: 2997278]
[14]
Hazlett L, Wu M. Defensins in innate immunity. Cell Tissue Res 2011; 343(1): 175-88.
[http://dx.doi.org/10.1007/s00441-010-1022-4] [PMID: 20730446]
[15]
Nguyen TX, Cole AM, Lehrer RI. Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 2003; 24(11): 1647-54.
[http://dx.doi.org/10.1016/j.peptides.2003.07.023] [PMID: 15019196]
[16]
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3(9): 710-20.
[http://dx.doi.org/10.1038/nri1180] [PMID: 12949495]
[17]
Schutte BC, Mitros JP, Bartlett JA, et al. Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 2002; 99(4): 2129-33.
[http://dx.doi.org/10.1073/pnas.042692699] [PMID: 11854508]
[18]
McCray PB Jr, Bentley L. Human airway epithelia express a beta-defensin. Am J Respir Cell Mol Biol 1997; 16(3): 343-9.
[http://dx.doi.org/10.1165/ajrcmb.16.3.9070620] [PMID: 9070620]
[19]
Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB Jr, Ganz T. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 1998; 101(8): 1633-42.
[http://dx.doi.org/10.1172/JCI1861] [PMID: 9541493]
[20]
Yamaguchi Y, Nagase T, Makita R, et al. Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice. J Immunol 2002; 169(5): 2516-23.
[http://dx.doi.org/10.4049/jimmunol.169.5.2516] [PMID: 12193721]
[21]
Bensch KW, Raida M, Mägert HJ, Schulz-Knappe P, Forssmann WG. hBD-1: a novel beta-defensin from human plasma. FEBS Lett 1995; 368(2): 331-5.
[http://dx.doi.org/10.1016/0014-5793(95)00687-5] [PMID: 7628632]
[22]
Morizane S, Yamasaki K, Mühleisen B, et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J Invest Dermatol 2012; 132(1): 135-43.
[http://dx.doi.org/10.1038/jid.2011.259] [PMID: 21850017]
[23]
Sørensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T. Differential regulation of beta-defensin expression in human skin by microbial stimuli. J Immunol 2005; 174(8): 4870-9.
[http://dx.doi.org/10.4049/jimmunol.174.8.4870] [PMID: 15814714]
[24]
Niyonsaba F, Nagaoka I, Ogawa H, Okumura K. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr Pharm Des 2009; 15(21): 2393-413.
[http://dx.doi.org/10.2174/138161209788682271] [PMID: 19601839]
[25]
Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001; 276(8): 5707-13.
[http://dx.doi.org/10.1074/jbc.M008557200] [PMID: 11085990]
[26]
García JR, Krause A, Schulz S, et al. Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 2001; 15(10): 1819-21.
[http://dx.doi.org/10.1096/fj.00-0865fje] [PMID: 11481241]
[27]
Abiko Y, Mitamura J, Nishimura M, et al. Pattern of expression of beta-defensins in oral squamous cell carcinoma. Cancer Lett 1999; 143(1): 37-43.
[http://dx.doi.org/10.1016/S0304-3835(99)00171-8] [PMID: 10465335]
[28]
Ghosh SK, McCormick TS, Weinberg A. Human beta defensins and cancer: contradictions and common ground. Front Oncol 2019; 9: 341.
[http://dx.doi.org/10.3389/fonc.2019.00341] [PMID: 31131258]
[29]
Gambichler T, Skrygan M, Huyn J, et al. Pattern of mRNA expression of beta-defensins in basal cell carcinoma. BMC Cancer 2006; 6: 163.
[http://dx.doi.org/10.1186/1471-2407-6-163] [PMID: 16796735]
[30]
Scola N, Gambichler T, Saklaoui H, et al. The expression of antimicrobial peptides is significantly altered in cutaneous squamous cell carcinoma and precursor lesions. Br J Dermatol 2012; 167(3): 591-7.
[http://dx.doi.org/10.1111/j.1365-2133.2012.11110.x] [PMID: 22709331]
[31]
Winter J, Pantelis A, Reich R, et al. Human beta-defensin-1, -2, and -3 exhibit opposite effects on oral squamous cell carcinoma cell proliferation. Cancer Invest 2011; 29(3): 196-201.
[http://dx.doi.org/10.3109/07357907.2010.543210] [PMID: 21280982]
[32]
Kamino Y, Kurashige Y, Uehara O, et al. HBD-2 is downregulated in oral carcinoma cells by DNA hypermethylation, and increased expression of hBD-2 by DNA demethylation and gene transfection inhibits cell proliferation and invasion. Oncol Rep 2014; 32(2): 462-8.
[http://dx.doi.org/10.3892/or.2014.3260] [PMID: 24927104]
[33]
Kawsar HI, Weinberg A, Hirsch SA, et al. Overexpression of human beta-defensin-3 in oral dysplasia: potential role in macrophage trafficking. Oral Oncol 2009; 45(8): 696-702.
[http://dx.doi.org/10.1016/j.oraloncology.2008.10.016] [PMID: 19097930]
[34]
Kawsar HI, Ghosh SK, Hirsch SA, Koon HB, Weinberg A, Jin G. Expression of human beta-defensin-2 in intratumoral vascular endothelium and in endothelial cells induced by transforming growth factor beta. Peptides 2010; 31(2): 195-201.
[http://dx.doi.org/10.1016/j.peptides.2009.12.008] [PMID: 20006664]
[35]
Jin G, Kawsar HI, Hirsch SA, et al. An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS One 2010; 5(6): e10993.
[http://dx.doi.org/10.1371/journal.pone.0010993] [PMID: 20544025]
[36]
Kesting MR, Loeffelbein DJ, Hasler RJ, et al. Expression profile of human beta-defensin 3 in oral squamous cell carcinoma. Cancer Invest 2009; 27(5): 575-81.
[http://dx.doi.org/10.1080/07357900802620851] [PMID: 19219676]
[37]
Han Q, Wang R, Sun C, et al. Human beta-defensin-1 suppresses tumor migration and invasion and is an independent predictor for survival of oral squamous cell carcinoma patients. PLoS One 2014; 9(3): e91867.
[http://dx.doi.org/10.1371/journal.pone.0091867] [PMID: 24658581]
[38]
Shuyi Y, Feng W, Jing T, et al. Human beta-defensin-3 (hBD-3) upregulated by LPS via epidermal growth factor receptor (EGFR) signaling pathways to enhance lymphatic invasion of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112(5): 616-25.
[http://dx.doi.org/10.1016/j.tripleo.2011.02.053] [PMID: 22035653]
[39]
Gerashchenko O, Zhuravel E, Skachkova O, et al. Involvement of human beta-defensin-2 in regulation of malignant potential of cultured human melanoma cells. Exp Oncol 2014; 36(1): 17-23.
[PMID: 24691279]
[40]
Fernandez LP, Milne RL, Pita G, et al. Human beta-defensins (HBD1 and HBD3) and malignant melanoma susceptibility. Melanoma Res 2009; 19(5): 340-1.
[http://dx.doi.org/10.1097/CMR.0b013e328330106a] [PMID: 19741426]
[41]
Wehkamp U, Jost M, Wehkamp K, Harder J. Dysregulated expression of antimicrobial peptides in skin lesions of patients with cutaneous T-cell lymphoma. Acta Derm Venereol 2020; 100(1): adv00017.
[http://dx.doi.org/10.2340/00015555-3372] [PMID: 31742644]
[42]
Gambichler T, Skrygan M, Appelhans C, et al. Expression of human beta-defensins in patients with mycosis fungoides. Arch Dermatol Res 2007; 299(4): 221-4.
[http://dx.doi.org/10.1007/s00403-007-0749-6] [PMID: 17415576]
[43]
Suga H, Sugaya M, Miyagaki T, et al. Skin barrier dysfunction and low antimicrobial peptide expression in cutaneous T-cell lymphoma. Clin Cancer Res 2014; 20(16): 4339-48.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0077] [PMID: 24919568]
[44]
Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ. Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 2014; 12(12): 1477-86.
[http://dx.doi.org/10.1586/14787210.2014.976613] [PMID: 25371141]
[45]
Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995; 374(1): 1-5.
[http://dx.doi.org/10.1016/0014-5793(95)01050-O] [PMID: 7589491]
[46]
Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002; 169(7): 3883-91.
[http://dx.doi.org/10.4049/jimmunol.169.7.3883] [PMID: 12244186]
[47]
Mookherjee N, Wilson HL, Doria S, et al. Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. J Leukoc Biol 2006; 80(6): 1563-74.
[http://dx.doi.org/10.1189/jlb.0106048] [PMID: 16943385]
[48]
Nguyen HLT, Trujillo-Paez JV, Umehara Y, et al. Role of antimicrobial peptides in skin barrier repair in individuals with atopic dermatitis. Int J Mol Sci 2020; 21(20): 7607.
[http://dx.doi.org/10.3390/ijms21207607] [PMID: 33066696]
[49]
Piktel E, Niemirowicz K, Wnorowska U, et al. The role of cathelicidin LL-37 in cancer development. Arch Immunol Ther Exp (Warsz) 2016; 64(1): 33-46.
[http://dx.doi.org/10.1007/s00005-015-0359-5] [PMID: 26395996]
[50]
Kim JE, Kim HJ, Choi JM, et al. The antimicrobial peptide human cationic antimicrobial protein-18/cathelicidin LL-37 as a putative growth factor for malignant melanoma. Br J Dermatol 2010; 163(5): 959-67.
[http://dx.doi.org/10.1111/j.1365-2133.2010.09957.x] [PMID: 20977442]
[51]
Barlow PG, Li Y, Wilkinson TS, et al. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. J Leukoc Biol 2006; 80(3): 509-20.
[http://dx.doi.org/10.1189/jlb.1005560] [PMID: 16793910]
[52]
Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL. Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 2006; 118(4): 509-19.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02399.x] [PMID: 16895558]
[53]
Wang W, Zheng Y, Jia J, et al. Antimicrobial peptide LL-37 promotes the viability and invasion of skin squamous cell carcinoma by upregulating YB-1. Exp Ther Med 2017; 14(1): 499-506.
[http://dx.doi.org/10.3892/etm.2017.4546] [PMID: 28672959]
[54]
Mookherjee N, Lippert DN, Hamill P, et al. Intracellular receptor for human host defense peptide LL-37 in monocytes. J Immunol 2009; 183(4): 2688-96.
[http://dx.doi.org/10.4049/jimmunol.0802586] [PMID: 19605696]
[55]
Sainz B Jr, Alcala S, Garcia E, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut 2015; 64(12): 1921-35.
[http://dx.doi.org/10.1136/gutjnl-2014-308935] [PMID: 25841238]
[56]
Di Virgilio F, Falzoni S, Giuliani AL, Adinolfi E. P2 receptors in cancer progression and metastatic spreading. Curr Opin Pharmacol 2016; 29: 17-25.
[http://dx.doi.org/10.1016/j.coph.2016.05.001] [PMID: 27262778]
[57]
Muñoz M, Craske M, Severino P, et al. Antimicrobial peptide LL-37 participates in the transcriptional regulation of melanoma cells. J Cancer 2016; 7(15): 2341-5.
[http://dx.doi.org/10.7150/jca.16947] [PMID: 27994673]
[58]
Balda MS, Matter K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 2000; 19(9): 2024-33.
[http://dx.doi.org/10.1093/emboj/19.9.2024] [PMID: 10790369]
[59]
Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M. The pleiotropic functions of the Y-box-binding protein, YB-1. BioEssays 2003; 25(7): 691-8.
[http://dx.doi.org/10.1002/bies.10300] [PMID: 12815724]
[60]
Coffelt SB, Marini FC, Watson K, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci USA 2009; 106(10): 3806-11.
[http://dx.doi.org/10.1073/pnas.0900244106] [PMID: 19234121]
[61]
Wang W, Jia J, Li C, et al. Antimicrobial peptide LL-37 promotes the proliferation and invasion of skin squamous cell carcinoma by upregulating DNA-binding protein A. Oncol Lett 2016; 12(3): 1745-52.
[http://dx.doi.org/10.3892/ol.2016.4865] [PMID: 27588122]
[62]
Uramoto H, Izumi H, Ise T, et al. p73 Interacts with c-Myc to regulate Y-box-binding protein-1 expression. J Biol Chem 2002; 277(35): 31694-702.
[http://dx.doi.org/10.1074/jbc.M200266200] [PMID: 12080043]
[63]
Sourisseau T, Georgiadis A, Tsapara A, et al. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol Cell Biol 2006; 26(6): 2387-98.
[http://dx.doi.org/10.1128/MCB.26.6.2387-2398.2006] [PMID: 16508013]
[64]
Coffelt SB, Waterman RS, Florez L, et al. Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion. Int J Cancer 2008; 122(5): 1030-9.
[http://dx.doi.org/10.1002/ijc.23186] [PMID: 17960624]
[65]
Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 2006; 11: 1696-701.
[http://dx.doi.org/10.2741/1915] [PMID: 16368548]
[66]
Lazennec G, Lam PY. Recent discoveries concerning the tumor - mesenchymal stem cell interactions. Biochim Biophys Acta 2016; 1866(2): 290-9.
[PMID: 27750042]
[67]
Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P. Unique features of human cathelicidin LL-37. Biofactors 2015; 41(5): 289-300.
[http://dx.doi.org/10.1002/biof.1225] [PMID: 26434733]
[68]
Takazawa Y, Kiniwa Y, Ogawa E, et al. Toll-like receptor 4 signaling promotes the migration of human melanoma cells. Tohoku J Exp Med 2014; 234(1): 57-65.
[http://dx.doi.org/10.1620/tjem.234.57] [PMID: 25175033]
[69]
Mookherjee N, Brown KL, Bowdish DM, et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 2006; 176(4): 2455-64.
[http://dx.doi.org/10.4049/jimmunol.176.4.2455] [PMID: 16456005]
[70]
Jia J, Zheng Y, Wang W, et al. Antimicrobial peptide LL-37 promotes YB-1 expression, and the viability, migration and invasion of malignant melanoma cells. Mol Med Rep 2017; 15(1): 240-8.
[http://dx.doi.org/10.3892/mmr.2016.5978] [PMID: 27922666]
[71]
Chen X, Qi G, Qin M, et al. DNA methylation directly downregulates human cathelicidin antimicrobial peptide gene (CAMP) promoter activity. Oncotarget 2017; 8(17): 27943-52.
[http://dx.doi.org/10.18632/oncotarget.15847] [PMID: 28427192]
[72]
Büchau AS, Morizane S, Trowbridge J, et al. The host defense peptide cathelicidin is required for NK cell-mediated suppression of tumor growth. J Immunol 2010; 184(1): 369-78.
[http://dx.doi.org/10.4049/jimmunol.0902110] [PMID: 19949065]
[73]
Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 2005; 17(4): 359-65.
[http://dx.doi.org/10.1016/j.coi.2005.06.002] [PMID: 15955682]
[74]
Burton MF, Steel PG. The chemistry and biology of LL-37. Nat Prod Rep 2009; 26(12): 1572-84.
[http://dx.doi.org/10.1039/b912533g] [PMID: 19936387]
[75]
Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 1998; 273(6): 3718-24.
[http://dx.doi.org/10.1074/jbc.273.6.3718] [PMID: 9452503]
[76]
Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 1999; 341(Pt 3): 501-13.
[http://dx.doi.org/10.1042/bj3410501] [PMID: 10417311]
[77]
Heizmann CW, Fritz G, Schäfer BW. S100 proteins: structure, functions and pathology. Front Biosci 2002; 7: d1356-68.
[PMID: 11991838]
[78]
Madsen P, Rasmussen HH, Leffers H, et al. Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J Invest Dermatol 1991; 97(4): 701-12.
[http://dx.doi.org/10.1111/1523-1747.ep12484041] [PMID: 1940442]
[79]
Schröder JM, Harder J. Antimicrobial skin peptides and proteins. Cell Mol Life Sci 2006; 63(4): 469-86.
[http://dx.doi.org/10.1007/s00018-005-5364-0] [PMID: 16416029]
[80]
Niyonsaba F, Hattori F, Maeyama K, Ogawa H, Okamoto K. Induction of a microbicidal protein psoriasin (S100A7), and its stimulatory effects on normal human keratinocytes. J Dermatol Sci 2008; 52(3): 216-9.
[http://dx.doi.org/10.1016/j.jdermsci.2008.07.003] [PMID: 18706788]
[81]
Gläser R, Harder J, Lange H, Bartels J, Christophers E, Schröder JM. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 2005; 6(1): 57-64.
[http://dx.doi.org/10.1038/ni1142] [PMID: 15568027]
[82]
Gläser R, Meyer-Hoffert U, Harder J, et al. The antimicrobial protein psoriasin (S100A7) is upregulated in atopic dermatitis and after experimental skin barrier disruption. J Invest Dermatol 2009; 129(3): 641-9.
[http://dx.doi.org/10.1038/jid.2008.268] [PMID: 18754038]
[83]
Abtin A, Eckhart L, Mildner M, Gruber F, Schröder JM, Tschachler E. Flagellin is the principal inducer of the antimicrobial peptide S100A7c (psoriasin) in human epidermal keratinocytes exposed to Escherichia coli. FASEB J 2008; 22(7): 2168-76.
[http://dx.doi.org/10.1096/fj.07-104117] [PMID: 18263703]
[84]
Celis JE, Rasmussen HH, Vorum H, et al. Bladder squamous cell carcinomas express psoriasin and externalize it to the urine. J Urol 1996; 155(6): 2105-12.
[http://dx.doi.org/10.1016/S0022-5347(01)66118-4] [PMID: 8618345]
[85]
Al-Haddad S, Zhang Z, Leygue E, et al. Psoriasin (S100A7) expression and invasive breast cancer. Am J Pathol 1999; 155(6): 2057-66.
[http://dx.doi.org/10.1016/S0002-9440(10)65524-1] [PMID: 10595935]
[86]
Emberley ED, Niu Y, Njue C, Kliewer EV, Murphy LC, Watson PH. Psoriasin (S100A7) expression is associated with poor outcome in estrogen receptor-negative invasive breast cancer. Clin Cancer Res 2003; 9(7): 2627-31.
[PMID: 12855640]
[87]
van Ruissen F, Jansen BJ, de Jongh G, van Vlijmen-Willems IM, Schalkwijk J. Differential gene expression in premalignant human epidermis revealed by cluster analysis of serial analysis of gene expression (SAGE) libraries. FASEB J 2002; 16(2): 246-8.
[http://dx.doi.org/10.1096/fj.01-0618fje] [PMID: 11772949]
[88]
Alowami S, Qing G, Emberley E, Snell L, Watson PH. Psoriasin (S100A7) expression is altered during skin tumorigenesis. BMC Dermatol 2003; 3: 1.
[http://dx.doi.org/10.1186/1471-5945-3-1] [PMID: 12600274]
[89]
Zhang J, Dyer KD, Rosenberg HF. Human RNase 7: a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res 2003; 31(2): 602-7.
[http://dx.doi.org/10.1093/nar/gkg157] [PMID: 12527768]
[90]
Boix E, Nogués MV. Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst 2007; 3(5): 317-35.
[http://dx.doi.org/10.1039/b617527a] [PMID: 17460791]
[91]
Harder J, Schroder JM. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 2002; 277(48): 46779-84.
[http://dx.doi.org/10.1074/jbc.M207587200] [PMID: 12244054]
[92]
Yang D, Chen Q, Rosenberg HF, et al. Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 2004; 173(10): 6134-42.
[http://dx.doi.org/10.4049/jimmunol.173.10.6134] [PMID: 15528350]
[93]
Sorrentino S. The eight human “canonical” ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett 2010; 584(11): 2194-200.
[http://dx.doi.org/10.1016/j.febslet.2010.04.018] [PMID: 20388512]
[94]
Niyonsaba F, Suzuki A, Ushio H, Nagaoka I, Ogawa H, Okumura K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br J Dermatol 2009; 160(2): 243-9.
[http://dx.doi.org/10.1111/j.1365-2133.2008.08925.x] [PMID: 19014393]
[95]
Minami Y, Uede K, Sagawa K, Kimura A, Tsuji T, Furukawa F. Immunohistochemical staining of cutaneous tumours with G-81, a monoclonal antibody to dermcidin. Br J Dermatol 2004; 151(1): 165-9.
[http://dx.doi.org/10.1111/j.1365-2133.2004.06079.x] [PMID: 15270886]
[96]
Porter D, Weremowicz S, Chin K, et al. A neural survival factor is a candidate oncogene in breast cancer. Proc Natl Acad Sci USA 2003; 100(19): 10931-6.
[http://dx.doi.org/10.1073/pnas.1932980100] [PMID: 12953101]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy