Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Status, Synthesis and Clinical Application of Recently Marketed and Clinical BCR-ABL Inhibitors

Author(s): Xiao-Liang Xu, Yu-Jing Cao , Wen Zhang and Guo-Wu Rao *

Volume 29, Issue 17, 2022

Published on: 13 January, 2022

Page: [3050 - 3078] Pages: 29

DOI: 10.2174/0929867328666211012093423

Price: $65

Abstract

Tyrosine kinases expressed by BCR-ABL fusion genes can cause changes in cell proliferation, adhesion, and survival properties, which are the main causes of chronic myelogenous leukemia (CML). Inhibiting the activity of BCR-ABL tyrosine kinase has become one of the effective methods for the treatment of chronic myelogenous leukemia. Initially, imatinib was the first small molecule of BCR-ABL tyrosine kinases inhibitors (TKIs) for the effective treatment of chronic myelogenous leukemia. Later, due to the emergence of various BCR-ABL mutations, especially T315I mutation, imatinib developed strong resistance. The second-generation kinase inhibitors dasatinib and nilotinib were able to overcome most of the mutation resistance but not T315I mutations. Therefore, in order to further overcome the problem of drug resistance, new types of KTIs such as flumatinib and radotinib have been developed, providing more options for clinical treatment. Some new drugs have entered clinical trials. In this review, two new BCRABL inhibitors (flumatinib and radotinib) and five new BCR-ABL inhibitors have been introduced into the clinical market in recent years. We reviewed their research status, synthesis methods, and clinical applications.

Keywords: Chronic myelogenous leukemia (CML), BCR-ABL, tyrosine kinase inhibitors (TKIs), research status, synthesis, clinical applications.

[1]
Jondreville, L.; Krzisch, D.; Chapiro, E.; Nguyen-Khac, F. The complex karyotype and chronic lym-phocytic leukemia: prognostic value and diagnostic recommendations. Am. J. Hematol., 2020, 95(11), 1361-1367.
[http://dx.doi.org/10.1002/ajh.25956] [PMID: 32777106]
[2]
Mishra, S.; Lee, Y.; Park, J.W. Direct quantification of trace amounts of a chronic myeloid leukemia biomarker using locked nucleic acid capture probes. Anal. Chem., 2018, 90(21), 12824-12831.
[http://dx.doi.org/10.1021/acs.analchem.8b03350] [PMID: 30272952]
[3]
Shah, N.P.; Nicoll, J.M.; Nagar, B.; Gorre, M.E.; Paquette, R.L.; Kuriyan, J.; Sawyers, C.L. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell, 2002, 2(2), 117-125.
[http://dx.doi.org/10.1016/S1535-6108(02)00096-X] [PMID: 12204532]
[4]
Melo, J.V. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood, 1996, 88(7), 2375-2384.
[http://dx.doi.org/10.1182/blood.V88.7.2375.bloodjournal8872375] [PMID: 8839828]
[5]
Giles, F.J.; Abruzzese, E.; Rosti, G.; Kim, D.W.; Bhatia, R.; Bosly, A.; Goldberg, S.; Kam, G.L.S.; Ja-gasia, M.; Mendrek, W.; Fischer, T.; Facon, T.; Dünzinger, U.; Marin, D.; Mueller, M.C.; Shou, Y.; Gallagher, N.J.; Larson, R.A.; Mahon, F.X.; Baccarani, M.; Cortes, J.; Kantarjian, H.M. Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia, 2010, 24(7), 1299-1301.
[http://dx.doi.org/10.1038/leu.2010.110] [PMID: 20520639]
[6]
Ohyashiki, K.; Ohyashiki, J.H.; Iwabuchi, H.; Tauchi, T.; Iwabuchi, A.; Toyama, K. Presence of Phil-adelphia (Ph) chromosome-negative cells in Ph-positive chronic myelogenous leukemia. Jpn. J. Med., 1990, 29(1), 7-12.
[http://dx.doi.org/10.2169/internalmedicine1962.29.7] [PMID: 2214350]
[7]
Kuwabara, T.; Hamada, M.; Warashina, M.; Taira, K. Allosterically controlled single-chained maxizymes with extremely high and specific activity. Biomacromolecules, 2001, 2(3), 788-799.
[http://dx.doi.org/10.1021/bm010054g] [PMID: 11710033]
[8]
Arthanari, Y.; Pluen, A.; Rajendran, R.; Aojula, H.; Demonacos, C. Delivery of therapeutic shRNA and siRNA by tat fusion peptide targeting BCR-ABL fusion gene in chronic myeloid leukemia cells. J. Control. Release, 2010, 145(3), 272-280.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.011] [PMID: 20403398]
[9]
Yuda, J.; Miyamoto, T.; Odawara, J.; Ohkawa, Y.; Semba, Y.; Hayashi, M.; Miyamura, K.; Tanimoto, M.; Yamamoto, K.; Taniwaki, M.; Akashi, K. Persistent detection of alternatively spliced BCR-ABL variant results in a failure to achieve deep molecular response. Cancer Sci., 2017, 108(11), 2204-2212.
[http://dx.doi.org/10.1111/cas.13353] [PMID: 28801986]
[10]
Gamas, P.; Marchetti, S.; Puissant, A.; Grosso, S.; Jacquel, A.; Colosetti, P.; Pasquet, J.M.; Mahon, F.X.; Cassuto, J.P.; Auberger, P. Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells. Leukemia, 2009, 23(8), 1500-1506.
[http://dx.doi.org/10.1038/leu.2009.60] [PMID: 19340007]
[11]
Lambert, G.K.; Duhme-Klair, A.K.; Morgan, T.; Ramjee, M.K. The background, discovery and clini-cal development of BCR-ABL inhibitors. Drug Discov. Today, 2013, 18(19-20), 992-1000.
[http://dx.doi.org/10.1016/j.drudis.2013.06.001] [PMID: 23769978]
[12]
Hassan, A.Q.; Sharma, S.V.; Warmuth, M. Allosteric inhibition of BCR-ABL. Cell Cycle, 2010, 9(18), 3710-3714.
[http://dx.doi.org/10.4161/cc.9.18.13232] [PMID: 20930519]
[13]
Ross, D.M.; O’Hely, M.; Bartley, P.A.; Dang, P.; Score, J.; Goyne, J.M.; Sobrinho-Simoes, M.; Cross, N.C.; Melo, J.V.; Speed, T.P.; Hughes, T.P.; Morley, A.A. Distribution of genomic breakpoints in chronic myeloid leukemia: Analysis of 308 patients. Leukemia, 2013, 27(10), 2105-2107.
[http://dx.doi.org/10.1038/leu.2013.116] [PMID: 23588714]
[14]
Kurzrock, R.; Kantarjian, H.M.; Druker, B.J.; Talpaz, M. Philadelphia chromosome-positive leukemi-as: From basic mechanisms to molecular therapeutics. Ann. Intern. Med., 2003, 138(10), 819-830.
[http://dx.doi.org/10.7326/0003-4819-138-10-200305200-00010] [PMID: 12755554]
[15]
Rowley, J.D.; Hurych, J.; Rezacova, D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973, 243(5405), 290-293.
[http://dx.doi.org/10.1038/243290a0] [PMID: 4126434]
[16]
Chen, Z.; Cortes, J.E.; Jorgensen, J.L.; Wang, W.; Yin, C.C.; You, M.J.; Jabbour, E.; Kantarjian, H.M.; Medeiros, L.J.; Hu, S. Differential impact of additional chromosomal abnormalities in myeloid vs lymphoid blast phase of chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia, 2016, 30(7), 1606-1609.
[http://dx.doi.org/10.1038/leu.2016.6] [PMID: 26837843]
[17]
Van Etten, R.A. Cycling, stressed-out and nervous: cellular functions of c-ABL. Trends Cell Biol., 1999, 9(5), 179-186.
[http://dx.doi.org/10.1016/S0962-8924(99)01549-4] [PMID: 10322452]
[18]
Zhang, Z.; Li, N.; Liu, S.; Jiang, M.; Wan, J.; Zhang, Y.; Wan, L.; Xie, C.; Le, A. Overexpression of IFIT2 inhibits the proliferation of chronic myeloid leukemia cells by regulating the BCR ABL/AKT/mTOR pathway. Int. J. Mol. Med., 2020, 45(4), 1187-1194.
[http://dx.doi.org/10.3892/ijmm.2020.4500] [PMID: 32124954]
[19]
Deininger, M.W.N.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood, 2000, 96(10), 3343-3356.
[http://dx.doi.org/10.1182/blood.V96.10.3343] [PMID: 11071626]
[20]
Yan, Z.; Shanmugasundaram, K.; Ma, D.; Luo, J.; Luo, S.; Rao, H. The N-terminal domain of the non-receptor tyrosine kinase ABL confers protein instability and suppresses tumorigenesis. J. Biol. Chem., 2020, 295(27), 9069-9075.
[http://dx.doi.org/10.1074/jbc.RA120.012821] [PMID: 32439806]
[21]
Claus, R.B.; Annelies, D.K.; Anne, H.; Ton, V.A.; Kessel, G.V.A.; Dirk, B.; Gerard, G.; Malcolm, A.; Ferguson, S.; Teresa, D.; Marion, S. Translocation of c-ABL oncogene correlates with the presence of a Phil-adelphia chromosome in chronic myelocytic leukaemia. Nature, 1983, 306(17), 277-280S.
[22]
Groffen, J.; Stephenson, J.R.; Heisterkamp, N.; de Klein, A.; Bartram, C.R.; Grosveld, G. Philadelph-ia chromosomal breakpoints are clustered within a limited region, BCR, on chromosome 22. Cell, 1984, 36(1), 93-99.
[http://dx.doi.org/10.1016/0092-8674(84)90077-1] [PMID: 6319012]
[23]
Lugo, T.G.; Pendergast, A.M.; Muller, A.J.; Witte, O.N. Tyrosine kinase activity and transformation potency of BCR-ABL oncogene products. Science, 1990, 247(4946), 1079-1082.
[http://dx.doi.org/10.1126/science.2408149] [PMID: 2408149]
[24]
Daley, G.Q.; Van Etten, R.A.; Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210BCR-ABL gene of the Philadelphia chromosome. Science, 1990, 247(4944), 824-830.
[http://dx.doi.org/10.1126/science.2406902] [PMID: 2406902]
[25]
Druker, B.J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G.M.; Fanning, S.; Zimmermann, J.; Lydon, N.B. Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med., 1996, 2(5), 561-566.
[http://dx.doi.org/10.1038/nm0596-561] [PMID: 8616716]
[26]
Deininger, M.W.N.; Goldman, J.M.; Lydon, N.; Melo, J.V. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood, 1997, 90(9), 3691-3698.
[http://dx.doi.org/10.1182/blood.V90.9.3691] [PMID: 9345054]
[27]
Clark, S.S.; McLaughlin, J.; Timmons, M.; Pendergast, A.M.; Ben-Neriah, Y.; Dow, L.W.; Crist, W.; Rovera, G.; Smith, S.D.; Witte, O.N. Expression of a distinctive BCR-ABL oncogene in Ph1-positive Acute Lymphocytic Leukemia (ALL). Science, 1988, 239(4841 Pt 1), 775-777.
[http://dx.doi.org/10.1126/science.3422516] [PMID: 3422516]
[28]
Sawyers, C.L. Disabling ABL-perspectives on ABL kinase regulation and cancer therapeutics. Cancer Cell, 2002, 1(1), 13-15.
[http://dx.doi.org/10.1016/S1535-6108(02)00022-3] [PMID: 12086882]
[29]
Leong, D.; Aghel, N.; Hillis, C.; Siegal, D.; Karampatos, S.; Rangarajan, S.; Pond, G.; Seow, H. Tyro-sine kinase inhibitors in chronic myeloid leukaemia and emergent cardiovascular disease. Heart, 2021, 107(8), 667-673.
[http://dx.doi.org/10.1136/heartjnl-2020-318251] [PMID: 33419879]
[30]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of BCR-ABL inhibitors: From chemi-cal development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84.
[http://dx.doi.org/10.1186/s13045-018-0624-2] [PMID: 29925402]
[31]
Honma, Y.; Matsuo, Y.; Hayashi, Y.; Omura, S. Treatment of Philadelphia-chromosome-positive human leukemia in SCID mouse model with herbimycin A, BCR-ABL tyrosine kinase activity inhibitor. Int. J. Cancer, 1995, 60(5), 685-688.
[http://dx.doi.org/10.1002/ijc.2910600519] [PMID: 7860143]
[32]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[33]
Goldman, J.M.; Melo, J.V. BCR-ABL in chronic myelogenous leukemia-how does it work? Acta Haematol., 2008, 119(4), 212-217.
[http://dx.doi.org/10.1159/000140633] [PMID: 18566539]
[34]
Wang, L.Y.; Chu, S.C.; Lo, Y.; Yang, Y.Y.; Chan, K.A. Association of BCR-ABL tyrosine kinase in-hibitors with hepatitis B virus reactivation requiring antiviral treatment in Taiwan. JAMA Netw. Open, 2021, 4(4), e214132.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.4132] [PMID: 33822067]
[35]
Yaish, P.; Gazit, A.; Gilon, C.; Levitzki, A. Blocking of EGF-dependent cell proliferation by EGF re-ceptor kinase inhibitors. Science, 1988, 242(4880), 933-935.
[http://dx.doi.org/10.1126/science.3263702] [PMID: 3263702]
[36]
Levitzki, A.; Gazit, A. Tyrosine kinase inhibition: An approach to drug development. Science, 1995, 267(5205), 1782-1788.
[http://dx.doi.org/10.1126/science.7892601] [PMID: 7892601]
[37]
Kaur, G.; Gazit, A.; Levitzki, A.; Stowe, E.; Cooney, D.A.; Sausville, E.A. Tyrphostin induced growth inhibition: Correlation with effect on p210BCR-ABL autokinase activity in K562 chronic myelogenous leu-kemia. Anticancer Drugs, 1994, 5(2), 213-222.
[http://dx.doi.org/10.1097/00001813-199404000-00013] [PMID: 8049505]
[38]
Deng, X.; Okram, B.; Ding, Q.; Zhang, J.; Choi, Y.; Adrián, F.J.; Wojciechowski, A.; Zhang, G.; Che, J.; Bursulaya, B.; Cowan-Jacob, S.W.; Rummel, G.; Sim, T.; Gray, N.S. Expanding the diversity of allosteric BCR-ABL inhibitors. J. Med. Chem., 2010, 53(19), 6934-6946.
[http://dx.doi.org/10.1021/jm100555f] [PMID: 20828158]
[39]
Jain, N.; Maiti, A.; Ravandi, F.; Konopleva, M.; Daver, N.; Kadia, T.; Pemmaraju, N.; Short, N.; Ke-briaei, P.; Ning, J.; Cortes, J.; Jabbour, E.; Kantarjian, H. Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia. Am. J. Hematol., 2021, 96(8), 1000-1007.
[http://dx.doi.org/10.1002/ajh.26238] [PMID: 33991360]
[40]
Reynolds, C.R.; Islam, S.A.; Sternberg, M.J.E. EzMol: A web server wizard for the rapid visualization and image production of protein and nucleic acid structures. J. Mol. Biol., 2018, 430(15), 2244-2248.
[http://dx.doi.org/10.1016/j.jmb.2018.01.013] [PMID: 29391170]
[41]
Cutler, J.A.; Udainiya, S.; Madugundu, A.K.; Renuse, S.; Xu, Y.; Jung, J.; Kim, K.P.; Wu, X.; Pan-dey, A. Integrative phosphoproteome and interactome analysis of the role of Ubash3b in BCR-ABL signal-ing. Leukemia, 2020, 34(1), 301-305.
[http://dx.doi.org/10.1038/s41375-019-0535-4] [PMID: 31399640]
[42]
Azam, M.; Seeliger, M.A.; Gray, N.S.; Kuriyan, J.; Daley, G.Q. Activation of tyrosine kinases by mu-tation of the gatekeeper threonine. Nat. Struct. Mol. Biol., 2008, 15(10), 1109-1118.
[http://dx.doi.org/10.1038/nsmb.1486] [PMID: 18794843]
[43]
Carofiglio, F.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Nicolotti, O.; Denora, N.; Stefanachi, A.; Leonetti, F. BCR-ABL tyrosine kinase inhibitors in the treatment of pediatric CML. Int. J. Mol. Sci., 2020, 21(12), 4469.
[http://dx.doi.org/10.3390/ijms21124469] [PMID: 32586039]
[44]
Hantschel, O.; Grebien, F.; Superti-Furga, G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res., 2012, 72(19), 4890-4895.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1276] [PMID: 23002203]
[45]
Shah, N.P.; Tran, C.; Lee, F.Y.; Chen, P.; Norris, D.; Sawyers, C.L. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science, 2004, 305(5682), 399-401.
[http://dx.doi.org/10.1126/science.1099480] [PMID: 15256671]
[46]
O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.S.; Xu, Q.; Metcalf, C.A., III; Tyner, J.W.; Loriaux, M.M.; Corbin, A.S.; Wardwell, S.; Ning, Y.; Keats, J.A.; Wang, Y.; Sundaramoorthi, R.; Thomas, M.; Zhou, D.; Snodgrass, J.; Commodore, L.; Sawyer, T.K.; Dalgarno, D.C.; Deininger, M.W.; Druker, B.J.; Clackson, T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell, 2009, 16(5), 401-412.
[http://dx.doi.org/10.1016/j.ccr.2009.09.028] [PMID: 19878872]
[47]
Ting, S.; Mixue, X.; Lixia, Z.; Xueying, L.; Wanzhuo, X.; Xiujin, Y. T315I mutation exerts a dismal prognosis on adult BCR-ABL1-positive acute lymphoblastic leukemia, and salvage therapy with ponatinib or CAR-T cell and bridging to allogeneic hematopoietic stem cell transplantation can improve clinical outcomes. Ann. Hematol., 2020, 99(4), 829-834.
[http://dx.doi.org/10.1007/s00277-020-03949-z] [PMID: 32107574]
[48]
Bradeen, H.A.; Eide, C.A.; O’Hare, T.; Johnson, K.J.; Willis, S.G.; Lee, F.Y.; Druker, B.J.; Deininger, M.W. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: High efficacy of drug combinations. Blood, 2006, 108(7), 2332-2338.
[http://dx.doi.org/10.1182/blood-2006-02-004580] [PMID: 16772610]
[49]
Burgess, M.R.; Skaggs, B.J.; Shah, N.P. Comparative analysis of two clinically active BCR-ABL ki-nase inhibitors reveals the role of conformation-specific binding in resistance. Proc. Natl. Acad. Sci. USA, 2005, 102(9), 3395-3400.
[http://dx.doi.org/10.1073/pnas.0409770102] [PMID: 15705718]
[50]
Roychowdhury, S.; Talpaz, M. Managing resistance in chronic myeloid leukemia. Blood Rev., 2011, 25(6), 279-290.
[http://dx.doi.org/10.1016/j.blre.2011.09.001] [PMID: 21982419]
[51]
Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic mye-loid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 2001, 344(14), 1038-1042.
[http://dx.doi.org/10.1056/NEJM200104053441402] [PMID: 11287973]
[52]
Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037.
[http://dx.doi.org/10.1056/NEJM200104053441401] [PMID: 11287972]
[53]
Makeyeva, A.B.; Skublov, S.G. STI571: Targeting BCR-ABL as therapy for CML Mauro. Geochem. Int., 2016, 54, 788-794.
[http://dx.doi.org/10.1634/theoncologist.6-3-233]
[54]
Kantarjian, H.; Sawyers, C.; Hochhaus, A.; Guilhot, F.; Schiffer, C.; Gambacorti-Passerini, C.; Nie-derwieser, D.; Resta, D.; Capdeville, R.; Zoellner, U.; Talpaz, M.; Druker, B.; Goldman, J.; O’Brien, S.G.; Russell, N.; Fischer, T.; Ottmann, O.; Cony-Makhoul, P.; Facon, T.; Stone, R.; Miller, C.; Tallman, M.; Brown, R.; Schuster, M.; Loughran, T.; Gratwohl, A.; Mandelli, F.; Saglio, G.; Lazzarino, M.; Russo, D.; Bac-carani, M.; Morra, E. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med., 2002, 346(9), 645-652.
[http://dx.doi.org/10.1056/NEJMoa011573] [PMID: 11870241]
[55]
Druker, B.J.; Guilhot, F.; O’Brien, S.G.; Gathmann, I.; Kantarjian, H.; Gattermann, N.; Deininger, M.W.; Silver, R.T.; Goldman, J.M.; Stone, R.M.; Cervantes, F.; Hochhaus, A.; Powell, B.L.; Gabrilove, J.L.; Rousselot, P.; Reiffers, J.; Cornelissen, J.J.; Hughes, T.; Agis, H.; Fischer, T.; Verhoef, G.; Shepherd, J.; Sa-glio, G.; Gratwohl, A.; Nielsen, J.L.; Radich, J.P.; Simonsson, B.; Taylor, K.; Baccarani, M.; So, C.; Letvak, L.; Larson, R.A. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med., 2006, 355(23), 2408-2417.
[http://dx.doi.org/10.1056/NEJMoa062867] [PMID: 17151364]
[56]
Deininger, M.; O’Brien, S.G.; Guilhot, F. International randomized study of interferon vs STI571(IRIS) 8-year follow up: consistainded survival and low risk for progression or events in patients with newly diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) treated with imatinib. Blood, 2009, 114(22), 462-462.
[http://dx.doi.org/10.1182/blood.V114.22.1126.1126]
[57]
El-Damasy, A.K.; Jin, H.; Seo, S.H.; Bang, E.K.; Keum, G. Design, synthesis, and biological evalua-tions of novel 3-amino-4-ethynyl indazole derivatives as BCR-ABL kinase inhibitors with potent cellular an-tileukemic activity. Eur. J. Med. Chem., 2020, 207, 112710.
[http://dx.doi.org/10.1016/j.ejmech.2020.112710] [PMID: 32961435]
[58]
Miething, C.; Feihl, S.; Mugler, C.; Grundler, R.; von Bubnoff, N.; Lordick, F.; Peschel, C.; Duyster, J. The BCR-ABL mutations T315I and Y253H do not confer a growth advantage in the absence of imatinib. Leukemia, 2006, 20(4), 650-657.
[http://dx.doi.org/10.1038/sj.leu.2404151] [PMID: 16482207]
[59]
Naqvi, K.; Cortes, J.E.; Luthra, R.; O’Brien, S.; Wierda, W.; Borthakur, G.; Kadia, T.; Garcia-Manero, G.; Ravandi, F.; Rios, M.B.; Dellasala, S.; Pierce, S.; Jabbour, E.; Patel, K.; Kantarjian, H. Characteristics and outcome of chronic myeloid leukemia patients with E255K/V BCR-ABL kinase domain mutations. Int. J. Hematol., 2018, 107(6), 689-695.
[http://dx.doi.org/10.1007/s12185-018-2422-6] [PMID: 29464484]
[60]
Naqvi, K.; Kantarjian, H.; Quintas-Cardama, A. Characteristics and outcome of Chronic Myeloid Leukemia (CML) patients with E255K and E255V BCR-ABL kinase domain mutations. Blood, 2010, 19(21), 524-525.
[http://dx.doi.org/10.1182/blood.V116.21.1226.1226]
[61]
Ivanov, H.Y.; Linev, A.; Zheliazkov, I. Characterizing of five common BCR-ABL kinase domain mutations (T315I, F359V, E255V, E255K, Y253H) in Bulgarian patients with chronic myeloid leukemia pre-liminary results. Eur. J. Hum. Genet., 2019, 27, 1013-1014.
[http://dx.doi.org/10.1038/s41431-019-0408-3]
[62]
Liu, J.; Pei, J.; Lai, L. A combined computational and experimental strategy identifies mutations con-ferring resistance to drugs targeting the BCR-ABL fusion protein. Commun. Biol., 2020, 3(1), 18.
[http://dx.doi.org/10.1038/s42003-019-0743-5] [PMID: 31925328]
[63]
Takawira, C.; Arsuaga-Zorrilla, C.B.; Wilson, L.; Taguchi, T.; Dietrich, M.A.; Stout, R.W.; Lopez, M.J. Association of chronic myelogenous (basophilic) leukemia and the BCR/ABL mutation in a Yucatan barrow (Sus scrofa domestica). Front. Vet. Sci., 2020, 7, 575199.
[http://dx.doi.org/10.3389/fvets.2020.575199] [PMID: 33251261]
[64]
Gupta, P.; Kathawala, R.J.; Wei, L.; Wang, F.; Wang, X.; Druker, B.J.; Fu, L.W.; Chen, Z.S. PBA2, a novel inhibitor of imatinib-resistant BCR-ABL T315I mutation in chronic myeloid leukemia. Cancer Lett., 2016, 383(2), 220-229.
[http://dx.doi.org/10.1016/j.canlet.2016.09.025] [PMID: 27720778]
[65]
Branford, S.; Rudzki, Z.; Walsh, S.; Parkinson, I.; Grigg, A.; Szer, J.; Taylor, K.; Herrmann, R.; Sey-mour, J.F.; Arthur, C.; Joske, D.; Lynch, K.; Hughes, T. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood, 2003, 102(1), 276-283.
[http://dx.doi.org/10.1182/blood-2002-09-2896] [PMID: 12623848]
[66]
Hochhaus, M.A. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia, 2002, 16(11), 2190-2196.
[http://dx.doi.org/10.1038/sj.leu.2402741]
[67]
Donato, N.J.; Wu, J.Y.; Stapley, J.; Lin, H.; Arlinghaus, R.; Aggarwal, B.B.; Shishodia, S.; Albitar, M.; Hayes, K.; Kantarjian, H.; Talpaz, M. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res., 2004, 64(2), 672-677.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1484] [PMID: 14744784]
[68]
Rumpold, H.; Wolf, A.M.; Gruenewald, K.; Gastl, G.; Gunsilius, E.; Wolf, D. RNAi-mediated knock-down of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines. Exp. Hematol., 2005, 33(7), 767-775.
[http://dx.doi.org/10.1016/j.exphem.2005.03.014] [PMID: 15963852]
[69]
Burger, H.; van Tol, H.; Brok, M.; Wiemer, E.A.; de Bruijn, E.A.; Guetens, G.; de Boeck, G.; Sparre-boom, A.; Verweij, J.; Nooter, K. Chronic imatinib mesylate exposure leads to reduced intracellular drug ac-cumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol. Ther., 2005, 4(7), 747-752.
[http://dx.doi.org/10.4161/cbt.4.7.1826] [PMID: 15970668]
[70]
Robin, F.; Sabina, C. Dasatinib-Blinatumomab for pH-positive ALL. N. Engl. J. Med., 2021, 384(2), 384-384.
[http://dx.doi.org/10.1056/NEJMc2033785]
[71]
Hochhaus, A.; Gambacorti-Passerini, C.; Abboud, C.; Gjertsen, B.T.; Brümmendorf, T.H.; Smith, B.D.; Ernst, T.; Giraldo-Castellano, P.; Olsson-Strömberg, U.; Saussele, S.; Bardy-Bouxin, N.; Viqueira, A.; Leip, E.; Russell-Smith, T.A.; Leone, J.; Rosti, G.; Watts, J.; Giles, F.J. Bosutinib for pretreated patients with chronic phase chronic myeloid leukemia: primary results of the phase 4 BYOND study. Leukemia, 2020, 34(8), 2125-2137.
[http://dx.doi.org/10.1038/s41375-020-0915-9] [PMID: 32572189]
[72]
Kantarjian, H.M.; Hughes, T.P.; Larson, R.A.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Boquimpani, C.; Pasquini, R.; Clark, R.E.; Dubruille, V.; Flinn, I.W.; Kyrcz-Krzemien, S.; Medras, E.; Za-nichelli, M.; Bendit, I.; Cacciatore, S.; Titorenko, K.; Aimone, P.; Saglio, G.; Hochhaus, A. Long-term out-comes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia, 2021, 35(2), 440-453.
[http://dx.doi.org/10.1038/s41375-020-01111-2] [PMID: 33414482]
[73]
Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653.
[http://dx.doi.org/10.1182/blood-2004-08-3097] [PMID: 15618470]
[74]
Quach, D.; Tang, G.; Anantharajan, J.; Baburajendran, N.; Poulsen, A.; Wee, J.L.K.; Retna, P.; Li, R.; Liu, B.; Tee, D.H.Y.; Kwek, P.Z.; Joy, J.K.; Yang, W.Q.; Zhang, C.J.; Foo, K.; Keller, T.H.; Yao, S.Q. Strate-gic design of catalytic lysine-targeting reversible covalent BCR-ABL inhibitors. Angew. Chem. Int. Ed. Engl., 2021, 60(31), 17131-17137.
[http://dx.doi.org/10.1002/anie.202105383] [PMID: 34008286]
[75]
Wong, S.; Witte, O.N. The BCR-ABL story: Bench to bedside and back. Annu. Rev. Immunol., 2004, 22, 247-306.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104753] [PMID: 15032571]
[76]
Zimmermann, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N.B.; Traxler, P. Phenylamino-pyrimidine (PAP) - derivatives: a new class of potent and highly selective PDGF-receptor autophosphoryla-tion inhibitors. Bioorg. Med. Chem. Lett., 1996, 6, 1221-1226.
[http://dx.doi.org/10.1016/0960-894X(96)00197-7]
[77]
Zimmermann, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N.B. Potent and selective inhibitors of the ABL-kinase: Phenylamino-Pyrimidine (PAP) derivatives. Bioorg. Med. Chem. Lett., 1997, 7(11), 187-192.
[http://dx.doi.org/10.1016/S0960-894X(96)00601-4]
[78]
Zhao, J.; Quan, H.; Xu, Y.; Kong, X.; Jin, L.; Lou, L. Flumatinib, a selective inhibitor of BCR-ABL/PDGFR/KIT, effectively overcomes drug resistance of certain KIT mutants. Cancer Sci., 2014, 105(1), 117-125.
[http://dx.doi.org/10.1111/cas.12320] [PMID: 24205792]
[79]
Gong, A.; Chen, X.; Deng, P.; Zhong, D. Metabolism of flumatinib, a novel antineoplastic tyrosine kinase inhibitor, in chronic myelogenous leukemia patients. Drug Metab. Dispos., 2010, 38(8), 1328-1340.
[http://dx.doi.org/10.1124/dmd.110.032326] [PMID: 20478851]
[80]
Xu, G.; Shen, H.; Tong, T.F. Synthesis, crystal structure, and spectral characterization of flumatinib mesylate. Synth. Commun., 2010, 40(17), 2564-2570.
[http://dx.doi.org/10.1080/00397910903289248]
[81]
Cowan-Jacob, S.W.; Fendrich, G.; Floersheimer, A.; Furet, P.; Liebetanz, J.; Rummel, G.; Rhein-berger, P.; Centeleghe, M.; Fabbro, D.; Manley, P.W. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr., 2007, 63(Pt 1), 80-93.
[http://dx.doi.org/10.1107/S0907444906047287] [PMID: 17164530]
[82]
Zhang, L.; Meng, L.; Liu, B.; Zhang, Y.; Zhu, H.; Cui, J.; Sun, A.; Hu, Y.; Jin, J.; Jiang, H.; Zhang, X.; Li, Y.; Liu, L.; Zhang, W.; Liu, X.; Gu, J.; Qiao, J.; Ouyang, G.; Liu, X.; Luo, J.; Jiang, M.; Xie, X.; Li, J.; Zhao, C.; Zhang, M.; Yang, T.; Wang, J. Flumatinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: a phase III, randomized, open-label, multi-center FESTnd study. Clin. Cancer Res., 2021, 27(1), 70-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1600] [PMID: 32928796]
[83]
Ramirez, P.; DiPersio, J.F. Therapy options in imatinib failures. Oncologist, 2008, 13(4), 424-434.
[http://dx.doi.org/10.1634/theoncologist.2007-0170] [PMID: 18448557]
[84]
Chen, J.; Guo, S.; Yu, X.; Lei, J.; Xu, T.; Zhu, S.; Chen, L.; Xu, P.; Zhou, X.; Yu, L. Metabolic inter-actions between flumatinib and the CYP3A4 inhibitors erythromycin, cyclosporine, and voriconazole. Pharmazie, 2020, 75(9), 424-429.
[http://dx.doi.org/10.1691/ph.2020.0068] [PMID: 32797767]
[85]
Gschwind, H.P.; Pfaar, U.; Waldmeier, F.; Zollinger, M.; Sayer, C.; Zbinden, P.; Hayes, M.; Pokorny, R.; Seiberling, M.; Ben-Am, M.; Peng, B.; Gross, G. Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab. Dispos., 2005, 33(10), 1503-1512.
[http://dx.doi.org/10.1124/dmd.105.004283] [PMID: 16006570]
[86]
Todd, M.; Meyers, M.L.; Charnas, R.; Acharya, M.; Molina, A. Fast and flawed or scientifically sound: the argument for administering oral oncology drugs during fasting. J. Clin. Oncol., 2012, 30(8), 888-889.
[http://dx.doi.org/10.1200/JCO.2011.39.7851] [PMID: 22331950]
[87]
Yang, Y.; Liu, K.; Zhong, D.; Chen, X. Simultaneous determination of flumatinib and its two major metabolites in plasma of chronic myelogenous leukemia patients by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 895-896, 25-30.
[http://dx.doi.org/10.1016/j.jchromb.2012.03.008] [PMID: 22472641]
[88]
Kishino, E.; Ogata, R.; Saitoh, W.; Koike, Y.; Ohta, Y.; Kanomata, N.; Kurebayashi, J. Anti-cell growth and anti-cancer stem cell activity of the CDK4/6 inhibitor palbociclib in breast cancer cells. Breast Cancer, 2020, 27(3), 415-425.
[http://dx.doi.org/10.1007/s12282-019-01035-5] [PMID: 31823286]
[89]
Khalaf, D.J.; Annala, M.; Taavitsainen, S.; Finch, D.L.; Oja, C.; Vergidis, J.; Zulfiqar, M.; Sunder-land, K.; Azad, A.A.; Kollmannsberger, C.K.; Eigl, B.J.; Noonan, K.; Wadhwa, D.; Attwell, A.; Keith, B.; Ellard, S.L.; Le, L.; Gleave, M.E.; Wyatt, A.W.; Chi, K.N. Optimal sequencing of enzalutamide and abi-raterone acetate plus prednisone in metastatic castration-resistant prostate cancer: a multicentre, randomised, open-label, phase 2, crossover trial. Lancet Oncol., 2019, 20(12), 1730-1739.
[http://dx.doi.org/10.1016/S1470-2045(19)30688-6] [PMID: 31727538]
[90]
Ramanathan, S.; Jin, F.; Sharma, S.; Kearney, B.P. Clinical pharmacokinetic and pharmacodynamic profile of idelalisib. Clin. Pharmacokinet., 2016, 55(1), 33-45.
[http://dx.doi.org/10.1007/s40262-015-0304-0] [PMID: 26242379]
[91]
de Jong, J.; Sukbuntherng, J.; Skee, D.; Murphy, J.; O’Brien, S.; Byrd, J.C.; James, D.; Hellemans, P.; Loury, D.J.; Jiao, J.; Chauhan, V.; Mannaert, E. The effect of food on the pharmacokinetics of oral ibrutinib in healthy participants and patients with chronic lymphocytic leukemia. Cancer Chemother. Pharmacol., 2015, 75(5), 907-916.
[http://dx.doi.org/10.1007/s00280-015-2708-9] [PMID: 25724156]
[92]
Kuang, Y.; Song, H.L.; Yang, G.P.; Pei, Q.; Yang, X.Y.; Ye, L.; Yang, S.; Wu, S.T.; Guo, C.; He, Q.N.; Huang, J. Effect of high-fat diet on the pharmacokinetics and safety of flumatinib in healthy Chinese subjects. Cancer Chemother. Pharmacol., 2020, 86(3), 339-346.
[http://dx.doi.org/10.1007/s00280-020-04117-w] [PMID: 32757049]
[93]
Reddy, E.P.; Aggarwal, A.K. The ins and outs of BCR-ABL inhibition. Genes Cancer, 2012, 3(5-6), 447-454.
[http://dx.doi.org/10.1177/1947601912462126] [PMID: 23226582]
[94]
Kim, D.Y.; Cho, D.J.; Lee, G.Y.; Kim, H.Y.; Woo, S.H.; Kim, Y.S.; Lee, S.A.; Han, B.C. Preparation of N-phenyl-2- pyrimidinamines as anticancer drugs. U.S. Patent 20,080,096,899, 2007.
[95]
Dong, L.S. High-yield synthesis method of radotinib. C.N. Patent 111,039,932, 2019.
[96]
Noh, H.; Jung, S.Y.; Kwak, J.Y.; Kim, S.H.; Oh, S.J.; Zang, D.Y.; Lee, S.; Park, H.L.; Jo, D.J.; Shin, J.S.; Do, Y.R.; Kim, D.W.; Lee, J.I. Determination of a radotinib dosage regimen based on dose-response re-lationships for the treatment of newly diagnosed patients with chronic myeloid leukemia. Cancer Med., 2018, 7(5), 1766-1773.
[http://dx.doi.org/10.1002/cam4.1436] [PMID: 29577681]
[97]
Talpaz, M.; Shah, N.P.; Kantarjian, H.; Donato, N.; Nicoll, J.; Paquette, R.; Cortes, J.; O’Brien, S.; Nicaise, C.; Bleickardt, E.; Blackwood-Chirchir, M.A.; Iyer, V.; Chen, T.T.; Huang, F.; Decillis, A.P.; Saw-yers, C.L. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2006, 354(24), 2531-2541.
[http://dx.doi.org/10.1056/NEJMoa055229] [PMID: 16775234]
[98]
Lee, J.; Jung, S.Y.; Choi, M.Y.; Park, J.S.; Park, S.K.; Lim, S.A.; Cho, K.H.; Oh, S.Y.; Ha, J.; Kim, D.W.; Lee, J. Development of a dried blood spot sampling method towards therapeutic monitoring of ra-dotinib in the treatment of chronic myeloid leukaemia. J. Clin. Pharm. Ther., 2020, 45(5), 1006-1013.
[http://dx.doi.org/10.1111/jcpt.13124] [PMID: 32022312]
[99]
Lee, S.; Kim, S.; Park, Y.J.; Yun, S.P.; Kwon, S.H.; Kim, D.; Kim, D.Y.; Shin, J.S.; Cho, D.J.; Lee, G.Y.; Ju, H.S.; Yun, H.J.; Park, J.H.; Kim, W.R.; Jung, E.A.; Lee, S.; Ko, H.S. The c-ABL inhibitor, Ra-dotinib HCl, is neuroprotective in a preclinical Parkinson’s disease mouse model. Hum. Mol. Genet., 2018, 27(13), 2344-2356.
[http://dx.doi.org/10.1093/hmg/ddy143] [PMID: 29897434]
[100]
Kim, K.E.; Park, S.; Cheon, S.; Kim, D.Y.; Cho, D.J.; Park, J.M.; Hur, D.Y.; Park, H.J.; Cho, D. Novel application of radotinib for the treatment of solid tumors via natural killer cell activation. J. Immunol. Res., 2018, 2018, 9580561.
[http://dx.doi.org/10.1155/2018/9580561] [PMID: 30687767]
[101]
Heo, S.K.; Noh, E.K.; Kim, J.Y.; Jo, J.C.; Choi, Y.; Koh, S.; Baek, J.H.; Min, Y.J.; Kim, H. Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells. Eur. J. Pharmacol., 2017, 804, 52-56.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.040] [PMID: 28322836]
[102]
Heo, S.K.; Noh, E.K.; Gwon, G.D.; Kim, J.Y.; Jo, J.C.; Choi, Y.; Koh, S.; Baek, J.H.; Min, Y.J.; Kim, H. Radotinib inhibits acute myeloid leukemia cell proliferation via induction of mitochondrial-dependent apoptosis and CDK inhibitors. Eur. J. Pharmacol., 2016, 789, 280-290.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.049] [PMID: 27477352]
[103]
Breccia, M.; Colafigli, G.; Scalzulli, E.; Martelli, M. Asciminib: An investigational agent for the treatment of chronic myeloid leukemia. Expert Opin. Investig. Drugs, 2021, 30(8), 803-811.
[http://dx.doi.org/10.1080/13543784.2021.1941863] [PMID: 34130563]
[104]
Hughes, T.P.; Mauro, M.J.; Cortes, J.E.; Minami, H.; Rea, D.; DeAngelo, D.J.; Breccia, M.; Goh, Y.T.; Talpaz, M.; Hochhaus, A.; le Coutre, P.; Ottmann, O.; Heinrich, M.C.; Steegmann, J.L.; Deininger, M.W.N.; Janssen, J.J.W.M.; Mahon, F.X.; Minami, Y.; Yeung, D.; Ross, D.M.; Tallman, M.S.; Park, J.H.; Druker, B.J.; Hynds, D.; Duan, Y.; Meille, C.; Hourcade-Potelleret, F.; Vanasse, K.G.; Lang, F.; Kim, D.W. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N. Engl. J. Med., 2019, 381(24), 2315-2326.
[http://dx.doi.org/10.1056/NEJMoa1902328] [PMID: 31826340]
[105]
Pan, D.; Niu, Y.; Ning, L. Computational study on the binding and unbinding mechanism of HCV NS5B with the inhibitor GS-461203 and substrate using conventional and steered molecular dynamics simulations. Chemom. Intell. Lab. Syst., 2016, 156, 72-80.
[http://dx.doi.org/10.1016/j.chemolab.2016.05.015]
[106]
Mian, A.A.; Rafiei, A.; Haberbosch, I.; Zeifman, A.; Titov, I.; Stroylov, V.; Metodieva, A.; Stroganov, O.; Novikov, F.; Brill, B.; Chilov, G.; Hoelzer, D.; Ottmann, O.G.; Ruthardt, M. PF-114, a potent and selective inhibitor of native and mutated BCR/ABL is active against Philadelphia chromosome-positive (Ph+) leukemias harboring the T315I mutation. Leukemia, 2015, 29(5), 1104-1114.
[http://dx.doi.org/10.1038/leu.2014.326] [PMID: 25394714]
[107]
Wang, H.; Kellogg, G.E.; Xu, P.; Zhang, Y. Exploring the binding mechanisms of dia-minopimelic acid analogs to meso-diaminopimelate dehydrogenase by molecular modeling. J. Mol. Graph. Model., 2018, 83, 100-111.
[http://dx.doi.org/10.1016/j.jmgm.2018.05.011] [PMID: 29885593]
[108]
Zhang, J.; Adrián, F.J.; Jahnke, W.; Cowan-Jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Pow-ers, J.; Dierks, C.; Sun, F.; Guo, G.R.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. Targeting BCR-ABL by combining allosteric with ATP-binding-site inhibitors. Nature, 2010, 463(7280), 501-506.
[http://dx.doi.org/10.1038/nature08675] [PMID: 20072125]
[109]
Warmuth, M.; Kim, S.; Gu, X.J.; Xia, G.; Adrián, F. Ba/F3 cells and their use in kinase drug discovery. Curr. Opin. Oncol., 2007, 19(1), 55-60.
[http://dx.doi.org/10.1097/CCO.0b013e328011a25f] [PMID: 17133113]
[110]
Adrián, F.J.; Ding, Q.; Sim, T.; Velentza, A.; Sloan, C.; Liu, Y.; Zhang, G.; Hur, W.; Ding, S.; Manley, P.; Mestan, J.; Fabbro, D.; Gray, N.S. Allosteric inhibitors of BCRABL-dependent cell proliferation. Nat. Chem. Biol., 2006, 2(2), 95-102.
[http://dx.doi.org/10.1038/nchembio760] [PMID: 16415863]
[111]
Schoepfer, J.; Jahnke, W.; Berellini, G.; Buonamici, S.; Cotesta, S.; Cowan-Jacob, S.W.; Dodd, S.; Drueckes, P.; Fabbro, D.; Gabriel, T.; Groell, J.M.; Grotzfeld, R.M.; Hassan, A.Q.; Henry, C.; Iyer, V.; Jones, D.; Lombardo, F.; Loo, A.; Manley, P.W.; Pellé, X.; Rummel, G.; Salem, B.; Warmuth, M.; Wylie, A.A.; Zoller, T.; Marzinzik, A.L.; Furet, P. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem., 2018, 61(18), 8120-8135.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01040] [PMID: 30137981]
[112]
Massaro, F.; Colafigli, G.; Molica, M.; Breccia, M. Novel tyrosine-kinase inhibitors for the treatment of chronic myeloid leukemia: Safety and efficacy. Expert Rev. Hematol., 2018, 11(4), 301-306.
[http://dx.doi.org/10.1080/17474086.2018.1451322] [PMID: 29522367]
[113]
Eadie, L.N.; Saunders, V.A.; Branford, S.; White, D.L.; Hughes, T.P. The new allosteric inhib-itor asciminib is susceptible to resistance mediated by ABCB1 and ABCG2 over expression in vitro. Oncotarget, 2018, 9(17), 13423-13437.
[http://dx.doi.org/10.18632/oncotarget.24393] [PMID: 29568367]
[114]
Qiang, W.; Antelope, O.; Zabriskie, M.S.; Pomicter, A.D.; Vellore, N.A.; Szankasi, P.; Rea, D.; Cayuela, J.M.; Kelley, T.W.; Deininger, M.W.; O’Hare, T. Mechanisms of resistance to the BCR-ABL1 allosteric inhibitor asciminib. Leukemia, 2017, 31(12), 2844-2847.
[http://dx.doi.org/10.1038/leu.2017.264] [PMID: 28819281]
[115]
Sahin, I.; Reagan, J.L. Asciminib in relapsed chronic myeloid leukemia. N. Engl. J. Med., 2020, 382(14), 1378-1379.
[http://dx.doi.org/10.1056/NEJMc2000116] [PMID: 32242375]
[116]
Eide, C.A.; Zabriskie, M.S.; Stevens, S.L.S.; Antelope, O.; Vellore, N.A.; Than, H. Asciminib with ponatinib lowers resistance in chronic myeloid leukemia. Cancer Discov., 2019, 9(11), 1481-1481.
[http://dx.doi.org/10.1158/2159-8290.CD-RW2019-149] [PMID: 34468348]
[117]
Eide, C.A.; Zabriskie, M.S.; Savage Stevens, S.L.; Antelope, O.; Vellore, N.A.; Than, H.; Schultz, A.R.; Clair, P.; Bowler, A.D.; Pomicter, A.D.; Yan, D.; Senina, A.V.; Qiang, W.; Kelley, T.W.; Szan-kasi, P.; Heinrich, M.C.; Tyner, J.W.; Rea, D.; Cayuela, J.M.; Kim, D.W.; Tognon, C.E.; O’Hare, T.; Druker, B.J.; Deininger, M.W. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell, 2019, 36(4), 431-443.
[http://dx.doi.org/10.1016/j.ccell.2019.08.004] [PMID: 31543464]
[118]
Mauro, M.J.; Hochhaus, A.; Boquimpani, C. A multicenter, randomized phase 3 study of asciminib (ABL001) vs. bosutinib in patients with Chronic Myeloid Leukemia in chronic phase (CML-CP) previously treated with >= 2 TKIs. Cl Lymph Myelom. Leuke., 2019, 19, S286-S287.
[http://dx.doi.org/10.1016/j.clml.2019.07.230]
[119]
Menssen, H.D.; Quinlan, M.; Kemp, C.; Tian, X. Relative bioavailability and food effect evaluation for 2 tablet formulations of asciminib in a 2-arm, crossover, randomized, open-label study in healthy volunteers. Clin. Pharmacol. Drug Dev., 2019, 8(3), 385-394.
[http://dx.doi.org/10.1002/cpdd.602] [PMID: 30059193]
[120]
Manley, P.W.; Drueckes, P.; Fendrich, G.; Furet, P.; Liebetanz, J.; Martiny-Baron, G.; Mestan, J.; Trappe, J.; Wartmann, M.; Fabbro, D. Extended kinase profile and properties of the protein kinase inhibi-tor nilotinib. Biochim. Biophys. Acta, 2010, 1804(3), 445-453.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.008] [PMID: 19922818]
[121]
Zhan, J.Y.; Ma, J.; Zheng, Q.C. Molecular dynamics investigation on the Asciminib resistance mechanism of I502L and V468F mutations in BCR-ABL. J. Mol. Graph. Model., 2019, 89, 242-249.
[http://dx.doi.org/10.1016/j.jmgm.2019.03.018] [PMID: 30927708]
[122]
Nesr, G.; Laffan, M.; Claudiani, S.; Innes, A.; Apperley, J.; Milojkovic, D. Platelet function in patients with chronic myeloid leukemia treated with asciminib. Leuk. Lymphoma, 2020, 61(12), 3021-3023.
[http://dx.doi.org/10.1080/10428194.2020.1791856] [PMID: 32654575]
[123]
Lindstrom, H.J.G.; Friedman, R. The effects of combination treatments on drug resistance in chronic myeloid leukaemia: An evaluation of the tyrosine kinase inhibitors axitinib and asciminib. BMC Cancer, 2020, 20, 397.
[http://dx.doi.org/10.1186/s12885-020-06782-9]
[124]
Manley, P.W.; Barys, L.; Cowan-Jacob, S.W. The specificity of asciminib, a potential treat-ment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interac-tions with mutant forms of BCR-ABL1 kinase. Leuk. Res., 2020, 98, 106458.
[http://dx.doi.org/10.1016/j.leukres.2020.106458] [PMID: 33096322]
[125]
Anagnostou, T.; Litzow, M.R. Spotlight on ponatinib in the treatment of chronic myeloid leu-kemia and Philadelphia chromosome-positive acute lymphoblastic leukemia: Patient selection and perspec-tives. Blood Lymphat. Cancer, 2017, 8, 1-9.
[http://dx.doi.org/10.2147/BLCTT.S130197] [PMID: 31360088]
[126]
Wylie, A.A.; Schoepfer, J.; Jahnke, W.; Cowan-Jacob, S.W.; Loo, A.; Furet, P.; Marzinzik, A.L.; Pelle, X.; Donovan, J.; Zhu, W.; Buonamici, S.; Hassan, A.Q.; Lombardo, F.; Iyer, V.; Palmer, M.; Ber-ellini, G.; Dodd, S.; Thohan, S.; Bitter, H.; Branford, S.; Ross, D.M.; Hughes, T.P.; Petruzzelli, L.; Vanasse, K.G.; Warmuth, M.; Hofmann, F.; Keen, N.J.; Sellers, W.R. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature, 2017, 543(7647), 733-737.
[http://dx.doi.org/10.1038/nature21702] [PMID: 28329763]
[127]
Shi, D.; Bai, Q.; Zhou, S.; Liu, X.; Liu, H.; Yao, X. Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity. Proteins, 2018, 86(1), 43-56.
[http://dx.doi.org/10.1002/prot.25401] [PMID: 29023988]
[128]
Chilov, G.G.; Titov, I.Y. Protein kinase inhibitor (versions), use thereof for treating oncological diseases and based pharmaceutical composition. R.U. Patent 2,477,723, 2017.
[129]
Ivanova, E.S.; Tatarskiy, V.V.; Yastrebova, M.A.; Khamidullina, A.I.; Shunaev, A.V.; Kalini-na, A.A.; Zeifman, A.A.; Novikov, F.N.; Dutikova, Y.V.; Chilov, G.G.; Shtil, A.A. PF 114, a novel selective inhibitor of BCR ABL tyrosine kinase, is a potent inducer of apoptosis in chronic myelogenous leukemia cells. Int. J. Oncol., 2019, 55(1), 289-297.
[http://dx.doi.org/10.3892/ijo.2019.4801] [PMID: 31115499]
[130]
Wan, H.X.; Li, C.L.; Han, Y.A.; Zhou, Z.L.; Ma, K.; Liu, H.Y.; Zhang, L.D. Preparation of acetylene derivatives having antineoplastic activity. W.O. Patent 2,013,170,774, 2013.
[131]
Zhou, Q.; Chen, Y.; Chen, X.; Zhao, W.; Zhong, Y.; Wang, R.; Jin, M.; Qiu, Y.; Kong, D. In vitro anti leukemia activity of ZSTK474 on K562 and multidrug resistant K562/A02 cells. Int. J. Biol. Sci., 2016, 12(6), 631-638.
[http://dx.doi.org/10.7150/ijbs.14878] [PMID: 27194941]
[132]
Cortes, J.E.; Kantarjian, H.; Shah, N.P.; Bixby, D.; Mauro, M.J.; Flinn, I.; O’Hare, T.; Hu, S.; Narasimhan, N.I.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Druker, B.J.; Deininger, M.W.; Talpaz, M. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2012, 367(22), 2075-2088.
[http://dx.doi.org/10.1056/NEJMoa1205127] [PMID: 23190221]
[133]
Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; DiPersio, J.; DeAngelo, D.J.; Abruzzese, E.; Rea, D.; Baccarani, M.; Müller, M.C.; Gambacorti-Passerini, C.; Wong, S.; Lustgarten, S.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Guilhot, F.; Deininger, M.W.; Hochhaus, A.; Hughes, T.; Goldman, J.M.; Shah, N.P.; Kantarjian, H. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2013, 369(19), 1783-1796.
[http://dx.doi.org/10.1056/NEJMoa1306494] [PMID: 24180494]
[134]
Turkina, A.G.; Prof, M.D.; Vinogradova, O. PF-114: A 4th generation tyrosine kinase-inhibitor for chronic phase chronic myeloid leukaemia including BCRABL1(T315I). Blood, 2019, 134(134), 1638.
[http://dx.doi.org/10.1182/blood-2019-127951]
[135]
Hoy, S.M. Ponatinib: A review of its use in adults with chronic myeloid leukaemia or Phila-delphia chromosome-positive acute lymphoblastic leukaemia. Drugs, 2014, 74(7), 793-806.
[http://dx.doi.org/10.1007/s40265-014-0216-6] [PMID: 24807266]
[136]
Moslehi, J.J.; Deininger, M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J. Clin. Oncol., 2015, 33(35), 4210-4218.
[http://dx.doi.org/10.1200/JCO.2015.62.4718] [PMID: 26371140]
[137]
Seymour, J.F.; Kim, D.W.; Rubin, E.; Haregewoin, A.; Clark, J.; Watson, P.; Hughes, T.; Dufva, I.; Jimenez, J.L.; Mahon, F.X.; Rousselot, P.; Cortes, J.; Martinelli, G.; Papayannidis, C.; Nagler, A.; Giles, F.J. A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leu-kemia and philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Cancer J., 2014, 4, e238.
[http://dx.doi.org/10.1038/bcj.2014.60] [PMID: 25127392]
[138]
Yang, H.; Zeng, Q.; He, Z.; Wu, D.; Li, H. Interaction of novel Aurora kinase inhibitor MK-0457 with human serum albumin: Insights into the dynamic behavior, binding mechanism, conformation and esterase activity of human serum albumin. J. Pharm. Biomed., 2020, 178, 112962.
[http://dx.doi.org/10.1016/j.jpba.2019.112962] [PMID: 31711864]
[139]
Salah, E.; Ugochukwu, E.; Barr, A.J.; von Delft, F.; Knapp, S.; Elkins, J.M. Crystal structures of ABL-related gene (ABL2) in complex with imatinib, tozasertib (VX-680), and a type I inhibitor of the tria-zole carbothioamide class. J. Med. Chem., 2011, 54(7), 2359-2367.
[http://dx.doi.org/10.1021/jm101506n] [PMID: 21417343]
[140]
Giles, F.J.; Swords, R.T.; Nagler, A.; Hochhaus, A.; Ottmann, O.G.; Rizzieri, D.A.; Talpaz, M.; Clark, J.; Watson, P.; Xiao, A.; Zhao, B.; Bergstrom, D.; Le Coutre, P.D.; Freedman, S.J.; Cortes, J.E. MK-0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia. Leukemia, 2013, 27(1), 113-117.
[http://dx.doi.org/10.1038/leu.2012.186] [PMID: 22772060]
[141]
Mancini, M.; Leo, E.; Aluigi, M.; Marcozzi, C.; Borsi, E.; Barbieri, E.; Santucci, M.A. Gadd45a transcriptional induction elicited by the Aurora kinase inhibitor MK-0457 in BCR-ABL-expressing cells is driven by Oct-1 transcription factor. Leuk. Res., 2012, 36(8), 1028-1034.
[http://dx.doi.org/10.1016/j.leukres.2012.03.025] [PMID: 22521726]
[142]
Bebbington, D.; Binch, H.; Charrier, J.D.; Everitt, S.; Fraysse, D.; Golec, J.; Kay, D.; Knegtel, R.; Mak, C.; Mazzei, F.; Miller, A.; Mortimore, M.; O’Donnell, M.; Patel, S.; Pierard, F.; Pinder, J.; Pollard, J.; Ramaya, S.; Robinson, D.; Rutherford, A.; Studley, J.; Westcott, J. The discovery of the potent aurora inhibi-tor MK-0457 (VX-680). Bioorg. Med. Chem. Lett., 2009, 19(13), 3586-3592.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.136] [PMID: 19447622]
[143]
Fiskus, W.; Wang, Y.; Joshi, R.; Rao, R.; Yang, Y.; Chen, J.; Kolhe, R.; Balusu, R.; Eaton, K.; Lee, P.; Ustun, C.; Jillella, A.; Buser, C.A.; Peiper, S.; Bhalla, K. Cotreatment with vorinostat enhances activi-ty of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells. Clin. Cancer Res., 2008, 14(19), 6106-6115.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0721] [PMID: 18829489]
[144]
Okabe, S.; Tauchi, T.; Ohyashiki, K. Efficacy of MK-0457 and in combination with vori-nostat against Philadelphia chromosome positive acute lymphoblastic leukemia cells. Ann. Hematol., 2010, 89(11), 1081-1087.
[http://dx.doi.org/10.1007/s00277-010-0998-x] [PMID: 20563869]
[145]
Zhang, B.; Li, Y.; Zhang, H.; Ai, C. 3D-QSAR and molecular docking studies on derivatives of MK-0457, GSK1070916 and SNS-314 as inhibitors against Aurora B kinase. Int. J. Mol. Sci., 2010, 11(11), 4326-4347.
[http://dx.doi.org/10.3390/ijms11114326] [PMID: 21151441]
[146]
Donato, N.J.; Fang, D.; Sun, H.; Giannola, D.; Peterson, L.F.; Talpaz, M. Targets and effectors of the cellular response to aurora kinase inhibitor MK-0457 (VX-680) in imatinib sensitive and resistant chronic myelogenous leukemia. Biochem. Pharmacol., 2010, 79(5), 688-697.
[http://dx.doi.org/10.1016/j.bcp.2009.10.009] [PMID: 19874801]
[147]
Zhang, L.N.; Ji, K.; Sun, Y.T.; Hou, Y.B.; Chen, J.J. Aurora kinase inhibitor tozasertib sup-presses mast cell activation in vitro and in vivo. Br. J. Pharmacol., 2020, 177(12), 2848-2859.
[http://dx.doi.org/10.1111/bph.15012] [PMID: 32017040]
[148]
Martens, S.; Goossens, V.; Devisscher, L.; Hofmans, S.; Claeys, P.; Vuylsteke, M.; Takahashi, N.; Augustyns, K.; Vandenabeele, P. RIPK1-dependent cell death: A novel target of the Aurora kinase inhibi-tor Tozasertib (VX-680). Cell Death Dis., 2018, 9(2), 211.
[http://dx.doi.org/10.1038/s41419-017-0245-7] [PMID: 29434255]
[149]
Okabe, S.; Tauchi, T.; Ohyashiki, J.H.; Ohyashiki, K. Mechanism of MK-0457 efficacy against BCR-ABL positive leukemia cells. Biochem. Biophys. Res. Commun., 2009, 380(4), 775-779.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.141] [PMID: 19338751]
[150]
Yin, C.; Huang, G.F.; Sun, X.C.; Guo, Z.; Zhang, J.H. Tozasertib attenuates neuronal apopto-sis via DLK/JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neuropharmacology, 2016, 108, 316-323.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.013] [PMID: 27084696]
[151]
Hofmans, S.; Devisscher, L.; Martens, S.; Van Rompaey, D.; Goossens, K.; Divert, T.; Ne-rinckx, W.; Takahashi, N.; De Winter, H.; Van Der Veken, P.; Goossens, V.; Vandenabeele, P.; Augustyns, K. Tozasertib analogues as inhibitors of necroptotic cell death. J. Med. Chem., 2018, 61(5), 1895-1920.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01449] [PMID: 29437386]
[152]
Choi, J.E.; Woo, S.M.; Min, K.J.; Kang, S.H.; Lee, S.J.; Kwon, T.K. Combined treatment with ABT-737 and VX-680 induces apoptosis in Bcl-2- and c-FLIP-overexpressing breast carcinoma cells. Oncol. Rep., 2015, 33(3), 1395-1401.
[http://dx.doi.org/10.3892/or.2015.3728] [PMID: 25592064]
[153]
Pezzani, R.; Rubin, B.; Bertazza, L.; Redaelli, M.; Barollo, S.; Monticelli, H.; Baldini, E.; Mi-an, C.; Mucignat, C.; Scaroni, C.; Mantero, F.; Ulisse, S.; Iacobone, M.; Boscaro, M. The aurora kinase inhibi-tor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line. Invest. New Drugs, 2016, 34(5), 531-540.
[http://dx.doi.org/10.1007/s10637-016-0358-3] [PMID: 27177645]
[154]
Cookson, E. Olverembatinib in chronic myeloid leukaemia. Lancet Haematol., 2021, 8(1), E16-E16.
[http://dx.doi.org/10.1016/S2352-3026(20)30407-5] [PMID: 33316215]
[155]
Ren, X.; Pan, X.; Zhang, Z.; Wang, D.; Lu, X.; Li, Y.; Wen, D.; Long, H.; Luo, J.; Feng, Y.; Zhuang, X.; Zhang, F.; Liu, J.; Leng, F.; Lang, X.; Bai, Y.; She, M.; Tu, Z.; Pan, J.; Ding, K. Identification of GZD824 as an orally bioavailable inhibitor that targets phosphorylated and nonphosphorylated breakpoint cluster region-Abelson (BCR-ABL) kinase and overcomes clinically acquired mutation-induced resistance against imatinib. J. Med. Chem., 2013, 56(3), 879-894.
[http://dx.doi.org/10.1021/jm301581y] [PMID: 23301703]
[156]
Kato, Y.; Kunimasa, K.; Takahashi, M.; Harada, A.; Nagasawa, I.; Osawa, M.; Sugimoto, Y.; Tomida, A. GZD824 inhibits GCN2 and sensitizes cancer cells to amino acid starvation stress. Mol. Pharmacol., 2020, 98(6), 669-676.
[http://dx.doi.org/10.1124/molpharm.120.000070] [PMID: 33033108]
[157]
Jiang, Q.; Huang, X.J.; Chen, Z. Safety and efficacy of HQP1351, a 3rd generation oral BCR-ABL inhibitor in patients with tyrosine kinase inhibitor-resistant chronic myelogenous leukemia: Preliminary results of phase I study. Blood, 2018, 132(Suppl_1), 791.
[http://dx.doi.org/10.1182/blood-2018-99-119142]
[158]
Liu, X.; Wang, G.; Yan, X.; Qiu, H.; Min, P.; Wu, M.; Tang, C.; Zhang, F.; Tang, Q.; Zhu, S.; Qiu, M.; Zhuang, W.; Fang, D.D.; Zhou, Z.; Yang, D.; Zhai, Y. Preclinical development of HQP1351, a mul-tikinase inhibitor targeting a broad spectrum of mutant KIT kinases, for the treatment of imatinib-resistant gastrointestinal stromal tumors. Cell Biosci., 2019, 9(1), 88.
[http://dx.doi.org/10.1186/s13578-019-0351-6] [PMID: 31673329]
[159]
Wang, D.; Zhang, Z.; Lu, X.; Feng, Y.; Luo, K.; Gan, J.; Yingxue, L.; Wan, J.; Li, X.; Zhang, F.; Tu, Z.; Cai, Q.; Ren, X.; Ding, K. Hybrid compounds as new Bcr/Abl inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(7), 1965-1968.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.029] [PMID: 21376587]
[160]
Robles-Escajeda, E.; Das, U.; Ortega, N.M.; Parra, K.; Francia, G.; Dimmock, J.R.; Varela-Ramirez, A.; Aguilera, R.J. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell Oncol. (Dordr.), 2016, 39(3), 265-277.
[http://dx.doi.org/10.1007/s13402-016-0272-x] [PMID: 26920032]
[161]
Fabian, M.A.; Biggs, W.H., III; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; Ford, J.M.; Galvin, M.; Gerlach, J.L.; Grotzfeld, R.M.; Herrgard, S.; Insko, D.E.; Insko, M.A.; Lai, A.G.; Lélias, J.M.; Mehta, S.A.; Milanov, Z.V.; Velasco, A.M.; Wodicka, L.M.; Patel, H.K.; Zarrinkar, P.P.; Lockhart, D.J. A small molecule-kinase interaction map for clin-ical kinase inhibitors. Nat. Biotechnol., 2005, 23(3), 329-336.
[http://dx.doi.org/10.1038/nbt1068] [PMID: 15711537]
[162]
Melo, J.V.; Deininger, M.W.N. Biology of chronic myelogenous leukemia-signaling pathways of initiation and transformation. Hematol. Oncol. Clin. North Am., 2004, 18(3), 545-568.
[http://dx.doi.org/10.1016/j.hoc.2004.03.008] [PMID: 15271392]
[163]
Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer, 2005, 5(3), 172-183.
[http://dx.doi.org/10.1038/nrc1567] [PMID: 15719031]
[164]
Ye, W.; Jiang, Z.; Lu, X.; Ren, X.; Deng, M.; Lin, S.; Xiao, Y.; Lin, S.; Wang, S.; Li, B.; Zheng, Y.; Lai, P.; Weng, J.; Wu, D.; Ma, Y.; Chen, X.; Wen, Z.; Chen, Y.; Feng, X.; Li, Y.; Liu, P.; Du, X.; Pei, D.; Yao, Y.; Xu, B.; Ding, K.; Li, P. GZD824 suppresses the growth of human B cell precursor acute lymphoblastic leukemia cells by inhibiting the SRC kinase and PI3K/AKT pathways. Oncotarget, 2016, 8(50), 87002-87015.
[http://dx.doi.org/10.18632/oncotarget.10881] [PMID: 29152059]
[165]
Li, P.; Ye, W.; Ding, K.; Lu, X.Y. A new application of naiketini and its medically acceptable salts in the treatment of diseases. C.N. Patent 106,580,993, 2017.
[166]
Goodrich, A.D. Ponatinib in the leukemia world: Why a reevaluation is necessary for Phila-delphia chromosome-positive patients with T315I mutation. Expert Rev. Hematol., 2014, 7(5), 513-515.
[http://dx.doi.org/10.1586/17474086.2014.958465] [PMID: 25199408]
[167]
Jiang, Q.; Huang, X.J.; Chen, Z. Novel BCR-ABL1 Tyrosine Kinase Inhibitor (TKI) HQP1351 (Olverembatinib) is efficacious and well tolerated in patients with T315I-mutated Chronic Myeloid Leukemia (CML): Results of pivotal (phase II) trials. Blood, 2020, 136, 50-51.
[http://dx.doi.org/10.1182/blood-2020-142142]
[168]
Wang, Y.; Zhang, L.; Tang, X.; Luo, J.; Tu, Z.; Jiang, K.; Ren, X.; Xu, F.; Chan, S.; Li, Y.; Zhang, Z.; Ding, K. GZD824 as a FLT3, FGFR1 and PDGFRα inhibitor against leukemia in vitro and in vivo. Transl. Oncol., 2020, 13(4), 100766.
[http://dx.doi.org/10.1016/j.tranon.2020.100766] [PMID: 32247263]
[169]
Jiang, Q.; Huang, X.J.; Chen, Z. An updated safety and efficacy results of phase 1 study of HQP1351, a novel 3rd generation of BCR-ABL Tyrosine Kinase Inhibitor (TKI), in patients with TKI re-sistant chronic myeloid leukemia. Blood, 2019, 134, 493.
[http://dx.doi.org/10.1182/blood-2019-124295]
[170]
Lu, M.; Deng, C.H. Exposure-Response (E-R) analysis of olverembatinib (HQP1351) in Chi-nese patients with Chronic Myeloid Leukemia (CML). Blood, 2020, 5, 5-6.
[http://dx.doi.org/10.1182/blood-2020-141268]
[171]
Chinchilla, R.; Najera, C. The Sonogashira reaction: A booming methodology in synthetic or-ganic chemistry. Chem. Rev., 2007, 107(3), 874-922.
[http://dx.doi.org/10.1021/cr050992x] [PMID: 17305399]
[172]
Amala, K.; Bhujanga Rao, A.K.; Gorantla, B.; Gondi, C.S.; Rao, J.S. Design, synthesis and preclinical evaluation of NRC-AN-019. Int. J. Oncol., 2013, 42(1), 168-178.
[http://dx.doi.org/10.3892/ijo.2012.1697] [PMID: 23151973]
[173]
Digumarti, R.; Myneni, P.C.; Gogula, V.R. Phase I study of NRC-an-019, a tyrosine kinase inhibitor, in imatinib-resistant Chronic Myeloid Leukemia (CML) in an Indian tertiary care hospital. J. Clin. Oncol., 2013, 31(15)
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.7080]
[174]
Gondi, C.S.; Gorantla, B.; Bhujanga Rao, A.K.; Amala, K.; Naidu, M.U.; Jogi, K.V.; Venkat Ramana, G.; Myneni, P.C.; Junnarkar, A.; Rao, J.S. Antitumor activity of NRC-AN-019 in a pre-clinical breast cancer model. Int. J. Oncol., 2011, 39(3), 641-648.
[http://dx.doi.org/10.3892/ijo.2011.1079] [PMID: 21674127]
[175]
Kompella, A.K.; Rao, A.K.S.B.; Rachakonda, V.C.A. Preparation of crystal form of (3,5-bistrifluoromethyl)-N-[4- methyl-3-(4-pyridin-3-yl-pyrimidin-2- ylamino)phenyl]benzamide (AN-019). I.N. Patent 20,09C,H00,475, 2016.
[176]
Kim, D.D.; Hamad, N.; Lee, H.G.; Kamel-Reid, S.; Lipton, J.H. BCR/ABL level at 6 months identifies good risk CML subgroup after failing early molecular response at 3 months following imatinib therapy for CML in chronic phase. Am. J. Hematol., 2014, 89(6), 626-632.
[http://dx.doi.org/10.1002/ajh.23707] [PMID: 24619861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy