Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-Angiogenic and Cytotoxicity Effects of Selachyl Alcohol Analogues

Author(s): René Momha*, Damien Le Bot, Paul Mosset and Alain Bernard Legrand

Volume 22, Issue 10, 2022

Published on: 17 January, 2022

Page: [1913 - 1920] Pages: 8

DOI: 10.2174/1871520621666211012090411

Price: $65

Abstract

Background: The active ingredients in the shark liver oil (SLO) mixture were found to be a group of etherlinked glycerol known as alkylglycerols (AKGs). During the last century, initial clinical use of the SLO mixture was for treating leukemias and later preventing radiation sickness from cancer x-ray therapy. Selachyl alcohol is one of the most abundant AKGs in the SLO mixture and it displayed strong activity in reducing lung metastasis number on a model of grafted tumor in mice (Lewis lung carcinoma cells).

Objectives: In this study, selachyl alcohol analogue containing methoxyl (7), gem-difluorinated (8), azide (9) and hydroxyl (10) group at the 12 position in the alkyl chain were synthesized and compared regarding their cytotoxicity and anti-migratory effects on Human Umbilical Vein Endothelial Cell line.

Methods: AKGs 7-10 were synthesized according to the literature procedure. The cytotoxicity of the studied AKGs was evaluated by the MTT test and Human Umbilical Vein Endothelial Cell line (HUVEC) was used as an in vitro model to evaluate their anti-migratory effects.

Results: The four AKGs have substantially the same toxicity threshold (≥ 12 μM), whereas they have an anti-migratory activity significantly different on endothelial cells. AKGs 9 and 10 significantly reduce the chemotactic migration induced by VEGF, but analogue (10) containing the hydroxyl group at the 12 position in the alkyl chain was the most potent anti-VEGF inhibitor.

Conclusion: We presented here a series of four synthetic selachyl alcohol analogues, among which AKGs 9 and 10 showed the ability to inhibit endothelial cell migration. The relationship structures and anti-VEGF effects of these analogues were also evaluated and discussed. Unnatural synthesized AKGs could be explored as one new source of anticancer agents.

Keywords: Alkylglycerols, angiogenesis, endothelial cell migration, cytotoxicity, anticancer, MTT-test, platelet-activating factor.

Graphical Abstract

[1]
Ferrara, N.; Houck, K.; Jakeman, L.; Leung, D.W. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev., 1992, 13(1), 18-32.
[http://dx.doi.org/10.1210/edrv-13-1-18] [PMID: 1372863]
[2]
Boocock, C.A.; Charnock-Jones, D.S.; Sharkey, A.M.; McLaren, J.; Barker, P.J.; Wright, K.A.; Twentyman, P.R.; Smith, S.K. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J. Natl. Cancer Inst., 1995, 87(7), 506-516.
[http://dx.doi.org/10.1093/jnci/87.7.506] [PMID: 7707437]
[3]
Itakura, J.; Ishiwata, T.; Shen, B.; Kornmann, M.; Korc, M. Concomitant over-expression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int. J. Cancer, 2000, 85(1), 27-34.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000101)85:1<27:AID-IJC5>3.0.CO;2-8] [PMID: 10585578]
[4]
Sunderkötter, C.; Steinbrink, K.; Goebeler, M.; Bhardwaj, R.; Sorg, C. Macrophages and angiogenesis. J. Leukoc. Biol., 1994, 55(3), 410-422.
[http://dx.doi.org/10.1002/jlb.55.3.410] [PMID: 7509844]
[5]
Verheul, H.M.; Hoekman, K.; Luykx-de Bakker, S.; Eekman, C.A.; Folman, C.C.; Broxterman, H.J.; Pinedo, H.M. Platelet: Transporter of vascular endothelial growth factor. Clin. Cancer Res., 1997, 3(12 Pt 1), 2187-2190.
[PMID: 9815613]
[6]
Frank, S.; Hübner, G.; Breier, G.; Longaker, M.T.; Greenhalgh, D.G.; Werner, S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J. Biol. Chem., 1995, 270(21), 12607-12613.
[http://dx.doi.org/10.1074/jbc.270.21.12607] [PMID: 7759509]
[7]
Iijima, K.; Yoshikawa, N.; Connolly, D.T.; Nakamura, H. Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability factor. Kidney Int., 1993, 44(5), 959-966.
[http://dx.doi.org/10.1038/ki.1993.337] [PMID: 8264155]
[8]
Gerber, H.P.; Vu, T.H.; Ryan, A.M.; Kowalski, J.; Werb, Z.; Ferrara, N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med., 1999, 5(6), 623-628.
[http://dx.doi.org/10.1038/9467] [PMID: 10371499]
[9]
Ferrara, N.; Carver-Moore, K.; Chen, H.; Dowd, M.; Lu, L.; O’Shea, K.S.; Powell-Braxton, L.; Hillan, K.J.; Moore, M.W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 1996, 380(6573), 439-442.
[http://dx.doi.org/10.1038/380439a0] [PMID: 8602242]
[10]
Chintalgattu, V.; Nair, D.M.; Katwa, L.C. Cardiac myofibroblasts: A novel source of Vascular Endothelial Growth Factor (VEGF) and its receptors Flt-1 and KDR. J. Mol. Cell. Cardiol., 2003, 35(3), 277-286.
[http://dx.doi.org/10.1016/S0022-2828(03)00006-3] [PMID: 12676542]
[11]
Reichardt, L.F.; Tomaselli, K.J. Extracellular matrix molecules and their receptors: Functions in neural development. Annu. Rev. Neurosci., 1991, 14, 531-570.
[http://dx.doi.org/10.1146/annurev.ne.14.030191.002531] [PMID: 1851608]
[12]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[13]
Heath, V.L.; Bicknell, R. Anticancer strategies involving the vasculature. Nat. Rev. Clin. Oncol., 2009, 6(7), 395-404.
[http://dx.doi.org/10.1038/nrclinonc.2009.52] [PMID: 19424102]
[14]
Liekens, S.; De Clercq, E.; Neyts, J. Angiogenesis: Regulators and clinical applications. Biochem. Pharmacol., 2001, 61(3), 253-270.
[http://dx.doi.org/10.1016/S0006-2952(00)00529-3] [PMID: 11172729]
[15]
Presta, M.; Dell’Era, P.; Mitola, S.; Moroni, E.; Ronca, R.; Rusnati, M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev., 2005, 16(2), 159-178.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.004] [PMID: 15863032]
[16]
Okada-Ban, M.; Thiery, J.P.; Jouanneau, J. Fibroblast growth factor-2. Int. J. Biochem. Cell Biol., 2000, 32(3), 263-267.
[http://dx.doi.org/10.1016/S1357-2725(99)00133-8] [PMID: 10716624]
[17]
Nishizuka, Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J., 1995, 9(7), 484-496.
[http://dx.doi.org/10.1096/fasebj.9.7.7737456] [PMID: 7737456]
[18]
van Dijk, M.C.; van Blitterswijk, W.J. Lipid metabolism in fibroblast growth factor-stimulated L6 myoblasts: A receptor mutation (Y766F) abrogates phospholipase D and diacylglycerol kinase activities. Biochim. Biophys. Acta, 1998, 1391(2), 273-279.
[http://dx.doi.org/10.1016/S0005-2760(98)00016-2] [PMID: 9555056]
[19]
Folkman, J. Antiangiogenesis in cancer therapy - endostatin and its mechanisms of action. Exp. Cell Res., 2006, 312(5), 594-607.
[http://dx.doi.org/10.1016/j.yexcr.2005.11.015] [PMID: 16376330]
[20]
Fuso Nerini, I.; Cesca, M.; Bizzaro, F.; Giavazzi, R. Combination therapy in cancer: Effects of angiogenesis inhibitors on drug pharmacokinetics and pharmacodynamics. Chin. J. Cancer, 2016, 35(1), 61.
[http://dx.doi.org/10.1186/s40880-016-0123-1] [PMID: 27357621]
[21]
Hallgren, B.; Larsson, S. Theglycerylethers in man and cow. J. Lipid Res., 1962, 3, 39-43.
[http://dx.doi.org/10.1016/S0022-2275(20)40445-6]
[22]
Bakes, M.J.; Nichols, P.D. Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern Australian waters. Comp. Biochem. Physiol., 1995, 110B, 267-275.
[http://dx.doi.org/10.1016/0305-0491(94)00083-7]
[23]
Brohult, A.; Brohult, J.; Brohult, S. Regression of tumour growth after administration of alkoxyglycerols. Acta Obstet. Gynecol. Scand., 1978, 57(1), 79-83.
[http://dx.doi.org/10.3109/00016347809154203] [PMID: 622894]
[24]
Linman, J.W. Hemopoietic effects of glyceryl ethers. III. Inactivity of selachyl alcohol. Proc. Soc. Exp. Biol. Med., 1960, 104, 703-706.
[http://dx.doi.org/10.3181/00379727-104-25959] [PMID: 13762473]
[25]
Ngwenya, B.Z.; Foster, D.M. Enhancement of antibody production by lysophosphatidylcholine and alkylglycerol. Proc. Soc. Exp. Biol. Med., 1991, 196(1), 69-75.
[http://dx.doi.org/10.3181/00379727-196-43165] [PMID: 1984244]
[26]
Marigny, K.; Pedrono, F.; Martin-Chouly, C.A.E.; Youmine, H.; Saiag, B.; Legrand, A.B. Modulation of endothelial permeability by 1-O-alkylglycerols. Acta Physiol. Scand., 2002, 176(4), 263-268.
[http://dx.doi.org/10.1046/j.1365-201X.2002.01037.x] [PMID: 12444931]
[27]
Hichami, A.; Duroudier, V.; Leblais, V.; Vernhet, L.; Le Goffic, F.; Ninio, E.; Legrand, A. Modulation of platelet-activating-factor production by incorporation of naturally occurring 1-O-alkylglycerols in phospholipids of human leukemic monocyte-like THP-1 cells. Eur. J. Biochem., 1997, 250(2), 242-248.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0242a.x] [PMID: 9428670]
[28]
Bates, D.O.; Hillman, N.J.; Williams, B.; Neal, C.R.; Pocock, T.M. Regulation of microvascular permeability by vascular endothelial growth factors. J. Anat., 2002, 200(6), 581-597.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00066.x] [PMID: 12162726]
[29]
Daniel, L.W.; Small, G.W.; Schmitt, J.D.; Marasco, C.J.; Ishaq, K.; Piantadosi, C. Alkyl-linked diglycerides inhibit protein kinase C activation by diacylglycerols. Biochem. Biophys. Res. Commun., 1988, 151(1), 291-297.
[http://dx.doi.org/10.1016/0006-291X(88)90592-X] [PMID: 3348778]
[30]
Pédrono, F.; Martin, B.; Leduc, C.; Le Lan, J.; Saïag, B.; Legrand, P.; Moulinoux, J.P.; Legrand, A.B. Natural alkylglycerols restrain growth and metastasis of grafted tumors in mice. Nutr. Cancer, 2004, 48(1), 64-69.
[http://dx.doi.org/10.1207/s15327914nc4801_9] [PMID: 15203379]
[31]
Pédrono, F.; Saïag, B.; Moulinoux, J.P.; Legrand, A.B. 1-O-alkylglycerols reduce the stimulating effects of bFGF on endothelial cell proliferation in vitro. Cancer Lett., 2007, 251(2), 317-322.
[http://dx.doi.org/10.1016/j.canlet.2006.11.028] [PMID: 17207571]
[32]
Deniau, A.L.; Mosset, P.; Pédrono, F.; Mitre, R.; Le Bot, D.; Legrand, A.B. Multiple beneficial health effects of natural alkylglycerols from shark liver oil. Mar. Drugs, 2010, 8(7), 2175-2184.
[http://dx.doi.org/10.3390/md8072175]
[33]
Deniau, A.L.; Mosset, P.; Pédrono, F.; Mitre, R.; Le Bot, D.; Legrand, A.B. Activités antitumorale et antimétastasique des alkylglycérols naturels: Relation structure-activité. OCL, 2010, 17, 236-237.
[http://dx.doi.org/10.1051/ocl.2010.0319]
[34]
Deniau, A.L.; Mosset, P.; Le Bot, D.; Legrand, A.B. Which alkylglycerols from shark liver oil have anti-tumour activities? Biochimie, 2011, 93(1), 1-3.
[http://dx.doi.org/10.1016/j.biochi.2009.12.010] [PMID: 20036307]
[35]
Wang, H.; Rajagopal, S.; Reynolds, S.; Cederberg, H.; Chakrabarty, S. Differentiation-promoting effect of 1-O (2 methoxy) hexadecyl glycerol in human colon cancer cells. J. Cell. Physiol., 1999, 178(2), 173-178.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199902)178:2<173:AID-JCP6>3.0.CO;2-Q] [PMID: 10048581]
[36]
DiPietro, L.A. Angiogenesis and wound repair: When enough is enough. J. Leukoc. Biol., 2016, 100(5), 979-984.
[http://dx.doi.org/10.1189/jlb.4MR0316-102R] [PMID: 27406995]
[37]
Pemha, R.; Kuete, V.; Pagès, J.M.; Pegnyemb, D.E.; Mosset, P. Synthesis and biological evaluation of four new ricinoleic acid-derived 1-O-alkylglycerols. Mar. Drugs, 2020, 18(2), 113.
[http://dx.doi.org/10.3390/md18020113] [PMID: 32075231]
[38]
Goodwin, A.M. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc. Res., 2007, 74(2-3), 172-183.
[http://dx.doi.org/10.1016/j.mvr.2007.05.006] [PMID: 17631914]
[39]
Rajabi, M.; Hossaini, Z.; Khalilzadeh, M.A.; Datta, S.; Halder, M.; Mousa, S.A. Synthesis of a new class of furo[3,2-c]coumarins and its anticancer activity. J. Photochem. Photobiol. B, 2015, 148, 66-72.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.027] [PMID: 25889947]
[40]
Wei, J.; Yang, Y.; Li, Y.; Mo, X.; Guo, X.; Zhang, X.; Xu, X.; Jiang, Z.; You, Q. Synthesis and evaluation of N-(benzofuran-5-yl)aromaticsulfonamide derivatives as novel HIF-1 inhibitors that possess anti-angiogenic potential. Bioorg. Med. Chem., 2017, 25(6), 1737-1746.
[http://dx.doi.org/10.1016/j.bmc.2016.06.021] [PMID: 28209257]
[41]
Zhang, C.; Zhong, B.; Yang, S.; Pan, L.; Yu, S.; Li, Z.; Li, S.; Su, B.; Meng, X. Synthesis and biological evaluation of thiabendazole derivatives as anti-angiogenesis and vascular disrupting agents. Bioorg. Med. Chem., 2015, 23(13), 3774-3780.
[http://dx.doi.org/10.1016/j.bmc.2015.03.085] [PMID: 25936258]
[42]
Skopinska-Rózewska, E.; Krotkiewski, M.; Sommer, E.; Rogala, E.; Filewska, M.; Bialas-Chromiec, B.; Pastewka, K.; Skurzak, H. Inhibitory effect of shark liver oil on cutaneous angiogenesis induced in Balb/c mice by syngeneic sarcoma L-1, human urinary bladder and human kidney tumour cells. Oncol. Rep., 1999, 6(6), 1341-1344.
[http://dx.doi.org/10.3892/or.6.6.1341] [PMID: 10523708]
[43]
Magnusson, C.D.; Haraldsson, G.G. Synthesis of enantiomerically pure (Z)-(2¢R)-1-O-(2¢-methoxyhexadec-4¢-enyl)-sn-glycerol present in the liver oil of cartilaginous fish. Tetrahedron Asymmetry, 2010, 21, 2841-2847.
[http://dx.doi.org/10.1016/j.tetasy.2010.10.033]
[44]
Hallgren, B.; Ställberg, G. Occurrence, synthesis and biological effects of substituted glycerol ethers. Prog. Chem. Fats Other Lipids, 1978, 16, 45-58.
[http://dx.doi.org/10.1016/0079-6832(78)90036-8] [PMID: 358270]
[45]
Magnusson, C.D.; Haraldsson, G.G. Ether lipids. Chem. Phys. Lipids, 2011, 164(5), 315-340.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.04.010] [PMID: 21635876]
[46]
Welh, J.T. Tetrahedron report number 221: Advances in the preparation of biologically active organofluorine compounds. Tetrahedron, 1987, 43, 3123-3197.
[http://dx.doi.org/10.1016/S0040-4020(01)90286-8]
[47]
Pemha, R.; Pegnyemb, D.E.; Mosset, P. Synthesis of halogenated 1-O-alkylglycerols from ricinoleic acid derivatives. Synth. Commun., 2020, 50, 1656-1664.
[http://dx.doi.org/10.1080/00397911.2020.1750034]
[48]
Houck, K.L.; Fox, T.E.; Sandirasegarane, L.; Kester, M. Etherlinked diglycerides inhibit vascular smooth muscle cell growth via decreased MAPK and PI3K/Akt signaling. Am. J. Physiol. Heart Circ. Physiol.,. 2008, 295(4), H1657-H1668.
[http://dx.doi.org/10.1152/ajpheart.00141.2008] [PMID: 18723771]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy