Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Treatment of Triple Negative Cell Lines with Olaparib to Block DNA Repair

Author(s): Marina Gobbe Moschetta-Pinheiro*, Jucimara Colombo, Murillo de Souza Tuckumantel, Gabriela Karam Rebolho and Debora Aparecida Pires de Campos Zuccari

Volume 22, Issue 10, 2022

Published on: 11 January, 2022

Page: [2036 - 2045] Pages: 10

DOI: 10.2174/1871520621666211008104543

Price: $65

Abstract

Background: The most aggressive breast cancer is the triple negative histological type, and the gold standard for its treatment is platinum salts, such as carboplatin. Due to high recurrence, there is a need to test new drugs, such as PARP inhibitors (PARPi), that induce lethality in cells with DNA damage. Olaparib is a PARPi, already used in some tumors but not tested in canine species. Thus, the aim of this study was to demonstrate the efficacy of olaparib in inhibiting DNA repair and control disease progression by decreasing the migration capacity of mammary tumor cells.

Methods: The cell lines CF41.Mg and MDA-MB-468 were cultured and MTT was performed to define the best dose of carboplatin. Next, the cells were treated with 10 μM carboplatin, olaparib, and with a combination of both for 24 hours. PARP-1 protein and gene expression were evaluated by immunofluorescence, western blotting, and qRT-PCR, respectively. The analysis of cell migration was performed in transwell chambers.

Results: For CF41.Mg and MDA-MB-468 cell lines, there was a decrease in PARP-1 protein and gene expression after treatment with carboplatin, olaparib, and both in combination compared to the group without treatment (control) (p<0.05). Moreover, in both lines, a reduction in invasion rate was observed after treatment with carboplatin, olaparib and when combined, compared to the control group (p<0.05).

Conclusion: Our data suggest that carboplatin and olaparib were able to block DNA repair and control the cancer invasion, especially when used in combination. The results with olaparib in the canine line are unpublished. The olaparib should be a possible agent against human breast cancer and canine mammary tumors.

Keywords: Carboplatin, mammary tumors, PARP-1, olaparib, triple negative cell lines, DNA.

« Previous
Graphical Abstract

[1]
Tutt, A.; Tovey, H.; Cheang, M.C.U.; Kernaghan, S.; Kilburn, L.; Gazinska, P.; Owen, J.; Abraham, J.; Barrett, S.; Barrett-Lee, P.; Brown, R.; Chan, S.; Dowsett, M.; Flanagan, J.M.; Fox, L.; Grigoriadis, A.; Gutin, A.; Harper-Wynne, C.; Hatton, M.Q.; Hoadley, K.A.; Parikh, J.; Parker, P.; Perou, C.M.; Roylance, R.; Shah, V.; Shaw, A.; Smith, I.E.; Timms, K.M.; Wardley, A.M.; Wilson, G.; Gillett, C.; Lanchbury, J.S.; Ashworth, A.; Rahman, N.; Harries, M.; Ellis, P.; Pinder, S.E.; Bliss, J.M. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat. Med., 2018, 24(5), 628-637.
[http://dx.doi.org/10.1038/s41591-018-0009-7] [PMID: 29713086]
[2]
Bergin, A.R.T.; Loi, S. Triple-negative breast cancer: recent treatment advances. F1000 Res., 2019, 8, 1342.
[http://dx.doi.org/10.12688/f1000research.18888.1]
[3]
Pandy, JGP.; Balolong-Garcia, J.C.; Cruz-Ordinario, MVB.; Que, FVF. Triple negative breast cancer and platinum-based systemic treatment: a meta-analysis and systematic review. BMC Cancer, 2019, 19(1), 1065.
[http://dx.doi.org/10.1186/s12885-019-6253-5]
[4]
Varallo, G.R.; Gelaleti, G.B.; Maschio-Signorini, L.B.; Moschetta, M.G.; Lopes, J.R.; De Nardi, A.B.; Tinucci-Costa, M.; Rocha, R.M.; De Campos Zuccari, D.A.P. Prognostic phenotypic classification for canine mammary tumors. Oncol. Lett., 2019, 18(6), 6545-6553.
[http://dx.doi.org/10.3892/ol.2019.11052] [PMID: 31807173]
[5]
Thumser-Henner, P.; Nytko, K.J.; Rohrer Bley, C. Mutations of BRCA2 in canine mammary tumors and their targeting potential in clinical therapy. BMC Vet. Res., 2020, 16(1), 30.
[http://dx.doi.org/10.1186/s12917-020-2247-4] [PMID: 32005245]
[6]
Lee, A.; Moon, B.I.; Kim, T.H. BRCA1/BRCA2 pathogenic variant breast cancer: Treatment and prevention strategies. Ann. Lab. Med., 2020, 40(2), 114-121.
[http://dx.doi.org/10.3343/alm.2020.40.2.114] [PMID: 31650727]
[7]
Han, H.S.; Diéras, V.; Robson, M.; Palácová, M.; Marcom, P.K.; Jager, A.; Bondarenko, I.; Citrin, D.; Campone, M.; Telli, M.L.; Domchek, S.M.; Friedlander, M.; Kaufman, B.; Garber, J.E.; Shparyk, Y.; Chmielowska, E.; Jakobsen, E.H.; Kaklamani, V.; Gradishar, W.; Ratajczak, C.K.; Nickner, C.; Qin, Q.; Qian, J.; Shepherd, S.P.; Isakoff, S.J.; Puhalla, S. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study. Ann. Oncol., 2018, 29(1), 154-161.
[http://dx.doi.org/10.1093/annonc/mdx505] [PMID: 29045554]
[8]
Telli, M.L.; Jensen, K.C.; Vinayak, S.; Kurian, A.W.; Lipson, J.A.; Flaherty, P.J.; Timms, K.; Abkevich, V.; Schackmann, E.A.; Wapnir, I.L.; Carlson, R.W.; Chang, P.J.; Sparano, J.A.; Head, B.; Goldstein, L.J.; Haley, B.; Dakhil, S.R.; Reid, J.E.; Hartman, A.R.; Manola, J.; Ford, J.M.; Phase, I.I. Phase II study of gemcitabine, carboplatin, and iniparib as neoadjuvant therapy for triple-negative and BRCA1/2 mutation-associated breast cancer with assessment of a tumor-based measure of genomic instability: PrECOG 0105. J. Clin. Oncol., 2015, 33(17), 1895-1901.
[http://dx.doi.org/10.1200/JCO.2014.57.0085] [PMID: 25847929]
[9]
Sharma, P.; López-Tarruella, S.; García-Saenz, J.A.; Khan, Q.J.; Gómez, H.L.; Prat, A.; Moreno, F.; Jerez-Gilarranz, Y.; Barnadas, A.; Picornell, A.C.; Monte-Millán, M.D.; González-Rivera, M.; Massarrah, T.; Pelaez-Lorenzo, B.; Palomero, M.I.; Val, RGD.; Cortés, J.; Fuentes-Rivera, H.; Morales, D.B.; Márquez-Rodas, I.; Perou, C.M.; Lehn, C.; Wang, Y.Y.; Klemp, J.R.; Mammen, J.V.; Wagner, J.L.; Amin, A.L.; O’dea, A.P.; Heldstab, J.; Jensen, R.A.; Kimler, B.F.; Godwin, A.K.; Martín, M. Pathological response and survival in triple-negative breast cancer following neoadjuvant carboplatin plus docetaxel. Clin. Cancer Res., 2018, 24(23), 5820-5829.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0585]
[10]
Machado, M.C.; da Costa-Neto, J.M.; Portela, R.D.; D’Assis, M.J.M.H.; Martins-Filho, O.A.; Barrouin-Melo, S.M.; Borges, N.F.; Silva, F.L.; Estrela-Lima, A. The effect of naltrexone as a carboplatin chemotherapy-associated drug on the immune response, quality of life and survival of dogs with mammary carcinoma. PLoS One, 2018, 13(10) ,e0204830
[http://dx.doi.org/10.1371/journal.pone.0204830] [PMID: 30286124]
[11]
Turk, A.A.; Wisinski, K.B. PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside. Cancer, 2018, 124(12), 2498-2506.
[http://dx.doi.org/10.1002/cncr.31307] [PMID: 29660759]
[12]
Zimmer, A.S.; Gillard, M.; Lipkowitz, S.; Lee, J.M. Update on PARP inhibitors in breast cancer. Curr. Treat. Options Oncol., 2018, 19(5), 21.
[http://dx.doi.org/10.1007/s11864-018-0540-2] [PMID: 29644491]
[13]
Loibl, S.; O’Shaughnessy, J.; Untch, M.; Sikov, W.M.; Rugo, H.S.; McKee, M.D.; Huober, J.; Golshan, M.; von Minckwitz, G.; Maag, D.; Sullivan, D.; Wolmark, N.; McIntyre, K.; Ponce Lorenzo, J.J.; Metzger Filho, O.; Rastogi, P.; Symmans, W.F.; Liu, X.; Geyer, C.E., Jr Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol., 2018, 19(4), 497-509.
[http://dx.doi.org/10.1016/S1470-2045(18)30111-6] [PMID: 29501363]
[14]
Custódio, P.R.; Colombo, J.; Ventura, F.V.; Castro, T.B.; Zuccari, D.A.P.C. Melatonin treatment combined with TGF-β silencing inhibits epithelial- mesenchymal transition in CF41 canine mammary cancer cell line. Anticancer. Agents Med. Chem., 2020, 20(8), 989-997.
[http://dx.doi.org/10.2174/1871520620666200407122635] [PMID: 32264814]
[15]
Borin, T.F.; Arbab, A.S.; Gelaleti, G.B.; Ferreira, L.C.; Moschetta, M.G.; Jardim-Perassi, B.V.; Iskander, A.S.M.; Varma, N.R.S.; Shankar, A.; Coimbra, V.B.C.; Fabri, V.A.; de Oliveira, J.G.; Zuccari, D.A. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res., 2016, 60(1), 3-15.
[http://dx.doi.org/10.1111/jpi.12270] [PMID: 26292662]
[16]
Hu, Y.; Guo, R.; Wei, J.; Zhou, Y.; Ji, W.; Liu, J.; Zhi, X.; Zhang, J. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis., 2015, 6(12) ,e2020
[http://dx.doi.org/10.1038/cddis.2015.363] [PMID: 26673665]
[17]
Gelaleti, G.B.; Borin, T.F.; Maschio-Signorini, L.B.; Moschetta, M.G.; Jardim-Perassi, B.V.; Calvinho, G.B.; Facchini, M.C.; Viloria-Petit, A.M.V.; de Campos Zuccari, D.A.P. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life Sci., 2017, 183, 98-109.
[http://dx.doi.org/10.1016/j.lfs.2017.06.013] [PMID: 28624391]
[18]
Jardim-Perassi, B.V.; Arbab, A.S.; Ferreira, L.C.; Borin, T.F.; Varma, N.R.S.; Iskander, A.S.M.; Shankar, A.; Ali, M.M.; de Campos Zuccari, D.A. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One, 2014, 9(1) ,e85311
[http://dx.doi.org/10.1371/journal.pone.0085311] [PMID: 24416386]
[19]
Moschetta, M.G.; Leonel, C.; Maschio-Signorini, L.B.; Borin, T.F.; Gelaleti, G.B.; Jardim-Perassi, B.V.; Ferreira, L.C.; Sonehara, N.M.; Carvalho, L.G.S.; Hellmén, E.; de Campos Zuccari, D.A.P. Evaluation of angiogenesis process after metformin and LY294002 treatment in mammary tumor. Anticancer. Agents Med. Chem., 2019, 19(5), 655-666.
[http://dx.doi.org/10.2174/1871520619666181218164050] [PMID: 30569877]
[20]
Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 2008, 3(6), 1101-1108.
[http://dx.doi.org/10.1038/nprot.2008.73] [PMID: 18546601]
[21]
Galeti, A.O.C.; Oliveira, J.G.; Moschetta-Pinheiro, M.G.; Dos Santos, M.B.; Colombo, J.; Chuffa, L.G.A. Zuccari, DAPC. Verification of agomelatine in comparison with melatonin as a therapeutic agent to treat breast cancer. Melatonin Res, 2021, 4(1), 141-151.
[http://dx.doi.org/10.32794/mr11250087]
[22]
Ma, X.; Dang, C.; Min, W.; Diao, Y.; Hui, W.; Wang, X.; Dai, Z.; Wang, X.; Kang, H. Downregulation of APE1 potentiates breast cancer cells to olaparib by inhibiting PARP-1 expression. Breast Cancer Res. Treat., 2019, 176(1), 109-117.
[http://dx.doi.org/10.1007/s10549-019-05189-w] [PMID: 30989461]
[23]
Egger, S.J.; Willson, M.L.; Morgan, J.; Walker, H.S.; Carrick, S.; Ghersi, D.; Wilcken, N. Platinum-containing regimens for metastatic breast cancer. Cochrane Database Syst. Rev., 2017, 6(6) ,CD003374
[PMID: 28643430]
[24]
Kidane, D.; Chae, W.J.; Czochor, J.; Eckert, K.A.; Glazer, P.M.; Bothwell, A.L.M.; Sweasy, J.B. Interplay between DNA repair and inflammation, and the link to cancer. Crit. Rev. Biochem. Mol. Biol., 2014, 49(2), 116-139.
[http://dx.doi.org/10.3109/10409238.2013.875514] [PMID: 24410153]
[25]
Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov., 2017, 7(7), 675-693.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0226] [PMID: 28630051]
[26]
Nickoloff, J.A.; Jones, D.; Lee, S.H.; Williamson, E.A.; Hromas, R. Drugging the cancers addicted to DNA repair. J. Natl. Cancer Inst., 2017, 109(11) ,djx059
[http://dx.doi.org/10.1093/jnci/djx059] [PMID: 28521333]
[27]
Alnajjar, K.S.; Sweasy, J.B. A new perspective on oxidation of DNA repair proteins and cancer. DNA Repair (Amst.), 2019, 76, 60-69.
[http://dx.doi.org/10.1016/j.dnarep.2019.02.006] [PMID: 30818170]
[28]
Nagel, Z.D.; Chaim, I.A.; Samson, L.D. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst.), 2014, 19, 199-213.
[http://dx.doi.org/10.1016/j.dnarep.2014.03.009] [PMID: 24780560]
[29]
Primo, L.M.F.; Teixeira, L.K. DNA replication stress: oncogenes in the spotlight. Genet. Mol. Biol., 2019, 43(1)(Suppl. 1) ,e20190138
[PMID: 31930281]
[30]
Zhou, J.; Zhou, X.A.; Zhang, N.; Wang, J. Evolving insights: how DNA repair pathways impact cancer evolution. Cancer Biol. Med., 2020, 17(4), 805-827.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0177] [PMID: 33299637]
[31]
Abdelmegeed, S.M.; Mohammed, S. Canine mammary tumors as a model for human disease. Oncol. Lett., 2018, 15(6), 8195-8205.
[http://dx.doi.org/10.3892/ol.2018.8411] [PMID: 29928319]
[32]
Visan, S.; Balacescu, O.; Berindan-Neagoe, I.; Catoi, C. In vitro comparative models for canine and human breast cancers. Clujul Med., 2016, 89(1), 38-49.
[PMID: 27004024]
[33]
Wang, S.; Scharadin, T.M.; Zimmermann, M.; Malfatti, M.A.; Turteltaub, K.W.; de Vere White, R.; Pan, C.X.; Henderson, P.T. Correlation of platinum cytotoxicity to drug-DNA adduct levels in a breast cancer cell line panel. Chem. Res. Toxicol., 2018, 31(12), 1293-1304.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00170] [PMID: 30381944]
[34]
Waqar, S.N.; Mann, J.; Baggstrom, M.Q.; Waqar, M.A.; Chitneni, P.; Williams, K.; Gao, F.; Morgensztern, D.; Govindan, R. Delayed nausea and vomiting from carboplatin doublet chemotherapy. Acta Oncol., 2016, 55(6), 700-704.
[http://dx.doi.org/10.3109/0284186X.2016.1154603] [PMID: 27145068]
[35]
Al-Mahmood, S.; Sapiezynski, J.; Garbuzenko, O.B.; Minko, T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv. Transl. Res., 2018, 8(5), 1483-1507.
[http://dx.doi.org/10.1007/s13346-018-0551-3] [PMID: 29978332]
[36]
Zhao, J.; Zhang, H.; Lei, T.; Liu, J.; Zhang, S.; Wu, N.; Sun, B.; Wang, M. Drug resistance gene expression and chemotherapy sensitivity detection in Chinese women with different molecular subtypes of breast cancer. Cancer Biol. Med., 2020, 17(4), 1014-1025.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0157] [PMID: 33299650]
[37]
Hou, S.; Shan, M.; Gao, C.; Feng, X.; Yang, Y.; Zhang, R.; He, Y.; Zhang, G.; Zhang, L. PCDHGB7 increases chemosensitivity to carboplatin by inhibiting HSPA9 via inducing apoptosis in breast cancer. Dis. Markers, 2019, 2019 ,6131548
[http://dx.doi.org/10.1155/2019/6131548] [PMID: 31379979]
[38]
Zhao, H.; Yang, Q.; Hu, Y.; Zhang, J. Antitumor effects and mechanisms of olaparib in combination with carboplatin and BKM120 on human triple negative breast cancer cells. Oncol. Rep., 2018, 40(6), 3223-3234.
[http://dx.doi.org/10.3892/or.2018.6716] [PMID: 30272286]
[39]
Bartelink, I.H.; Prideaux, B.; Krings, G.; Wilmes, L.; Lee, P.R.E.; Bo, P.; Hann, B.; Coppé, J.P.; Heditsian, D.; Swigart-Brown, L.; Jones, E.F.; Magnitsky, S.; Keizer, R.J.; de Vries, N.; Rosing, H.; Pawlowska, N.; Thomas, S.; Dhawan, M.; Aggarwal, R.; Munster, P.N.; Esserman, L.J.; Ruan, W.; Wu, A.H.B.; Yee, D.; Dartois, V.; Savic, R.M.; Wolf, D.M.; van ’t Veer, L. Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors. Breast Cancer Res., 2017, 19(1), 107.
[http://dx.doi.org/10.1186/s13058-017-0896-4] [PMID: 28893315]
[40]
Daemen, A.; Wolf, D.M.; Korkola, J.E.; Griffith, O.L.; Frankum, J.R.; Brough, R.; Jakkula, L.R.; Wang, N.J.; Natrajan, R.; Reis-Filho, J.S.; Lord, C.J.; Ashworth, A.; Spellman, P.T.; Gray, J.W.; van’t Veer, L.J. Cross-platform pathway-based analysis identifies markers of response to the PARP inhibitor olaparib. Breast Cancer Res. Treat., 2012, 135(2), 505-517.
[http://dx.doi.org/10.1007/s10549-012-2188-0] [PMID: 22875744]
[41]
Karginova, O.; Siegel, M.B.; Van Swearingen, A.E.; Deal, A.M.; Adamo, B.; Sambade, M.J.; Bazyar, S.; Nikolaishvili-Feinberg, N.; Bash, R.; O’Neal, S.; Sandison, K.; Parker, J.S.; Santos, C.; Darr, D.; Zamboni, W.; Lee, Y.Z.; Miller, C.R.; Anders, C.K. Efficacy of carboplatin alone and in combination with ABT888 in intracranial murine models of BRCA-mutated and BRCA-wild-type triple-negative breast cancer. Mol. Cancer Ther., 2015, 14(4), 920-930.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0474] [PMID: 25824335]
[42]
Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther., 2016, 160, 65-83.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.003] [PMID: 26896565]
[43]
Jividen, K.; Kedzierska, K.Z.; Yang, C.S.; Szlachta, K.; Ratan, A.; Paschal, B.M. Genomic analysis of DNA repair genes and androgen signaling in prostate cancer. BMC Cancer, 2018, 18(1), 960..
[http://dx.doi.org/10.1186/s12885-018-4848-x] [PMID: 30305041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy