Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Synthesis and Liquid Crystalline Properties of Low Molecular Weight Bis- Chalcone Compounds

Author(s): Anju K. Sasidharan, Jomon Mathew , Ammathnadu S. Achalkumar and Manoj Mathews*

Volume 19, Issue 3, 2022

Published on: 02 December, 2021

Page: [463 - 475] Pages: 13

DOI: 10.2174/1570179418666211006144308

Price: $65

Abstract

Aims: In this paper, we report on the synthesis and liquid crystalline properties of some low molecular weight bis-chalcone compounds derived from acetone, cyclopentanone and cyclohexanone mesogenic cores.

Background: Structurally bis-chalcones belong to a broader family of chalcone compounds. Chalcone is a compound that consists of two aromatic rings linked by an unsaturated α, β-ketone.

Objective: Liquid crystalline chalcones are prepared by aliphatic chain substituents on two aromatic rings. Chalcones are well studied for their mesomorphic properties. Compared to a large number of chalcone based LCs reported, only a few articles have been published on the mesomorphic properties of bis-chalcone compounds. The target compounds of the present study varied not only in their central core but also in number and position of terminal aliphatic chain substitution-a key structural unit in deciding the liquid crystalline properties of a compound.

Methods: All target compounds were synthesized in good yield by base catalyzed Claisen-Schmidt condensation reaction. Molecular structures were confirmed by FT-IR, 1H NMR, 13C NMR, and mass spectroscopic methods. Liquid crystalline property of these compounds was evaluated using polarizing optical microscopy and differential scanning calorimetry.

Results: Although none of the acetone based compounds exhibited mesomorphism, cyclopentanone and cyclohexanone based compounds with octyloxy chain at para position on either side of the dibenzylidine ring stabilized liquid crystalline smectic (SmA and SmC) and nematic (N) phases. The observed structure-liquid crystalline property relationship was explained by structural analysis of molecules using DFT calculations. Considering the inherent photoluminescence nature of the chalcone moiety, a preliminary study was carried out on a selected compound to reveal its fluorescence property.

Conclusion: Our study brings about an important structure-liquid crystalline property relationship in a relatively unexplored class of bis-chalcone liquid crystals.

Keywords: Liquid crystals, self-assembly, bis-chalcones, claisen-schmidt reaction, structure-property, smectic and nematic.

« Previous
Graphical Abstract

[1]
Goodby, J. W. Structures and properties of smectic liquid crystals. Handb. Liq. Cryst., 2014, 1-26.
[2]
Dierking, I.; Neto, A.M.F. Novel trends in lyotropic liquid crystals. Crystals (Basel), 2020, 10(7), 1-24.
[http://dx.doi.org/10.3390/cryst10070604]
[3]
O’Neill, M.; Kelly, S.M. Ordered materials for organic electronics and photonics. Adv. Mater., 2011, 23(5), 566-584.
[http://dx.doi.org/10.1002/adma.201002884] [PMID: 21274907]
[4]
Schadt, M. Nematic Liquid Crystals and Twisted-Nematic LCDs. Liq. Cryst., 2015, 42(5–6), 646-652.
[5]
Hegde, G.; Xu, P.; Pozhidaev, E.; Chigrinov, V.; Kwok, H.S. Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals. Liq. Cryst., 2008, 35(9), 1137-1144.
[http://dx.doi.org/10.1080/02678290802398226]
[6]
Sergeyev, S.; Pisula, W.; Geerts, Y.H. Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev., 2007, 36(12), 1902-1929.
[http://dx.doi.org/10.1039/b417320c] [PMID: 17982517]
[7]
Bushby, R.J.; Kawata, K. Liquid crystals that affected the world: Discotic liquid crystals. Liq. Cryst., 2011, 38(11–12), 1415-1426.
[http://dx.doi.org/10.1080/02678292.2011.603262]
[8]
Bisoyi, H.K.; Kumar, S. Discotic nematic liquid crystals: Science and technology. Chem. Soc. Rev., 2010, 39(1), 264-285.
[http://dx.doi.org/10.1039/B901792P] [PMID: 20023852]
[9]
Gupta, R.K.; Sudhakar, A.A. Perylene-based liquid crystals as materials for organic electronics applications. Langmuir, 2019, 35(7), 2455-2479.
[http://dx.doi.org/10.1021/acs.langmuir.8b01081] [PMID: 29929366]
[10]
Vishwakarma, V.K.; Nath, S.; Gupta, M.; Dubey, D.K.; Swayamprabha, S.S.; Jou, J-H.; Pal, S.K.; Sudhakar, A.A. Room-Temperature columnar liquid crystalline materials based on pyrazino[2,3-g]quinoxaline for bright green organic light-emitting diodes. ACS Appl. Electron. Mater., 2019, 1(9), 1959-1969.
[http://dx.doi.org/10.1021/acsaelm.9b00477]
[11]
Iino, H.; Hanna, J.I. Liquid crystalline organic semiconductors for organic transistor applications. Polym. J., 2017, 49(1), 23-30.
[http://dx.doi.org/10.1038/pj.2016.101]
[12]
Niori, T.; Sekine, T.; Watanabe, J.; Furukawa, T.; Takezoe, H. Distinct Ferroelectric smectic liquid crystals consisting of achiral molecules with banana shape. J. Mater. Chem., 1996, 301(6), 1231-1233.
[13]
Reddy, R.A.; Tschierske, C. Bent-core liquid crystals: Polar order, superstructural chirality and spontaneous desymmetrisation in soft matter systems. J. Mater. Chem., 2006, 16(10), 907-961.
[http://dx.doi.org/10.1039/B504400F]
[14]
Jákli, A.; Bailey, C.; Harden, J. Physical Properties of banana liquid crystals. In: Thermotropic Liquid Crystals; Ayyalusamy, Ramamoorthy, Ed.; Springer, Dordrecht, 2007; pp. 59-83.
[http://dx.doi.org/10.1007/1-4020-5354-1_2]
[15]
Punjani, V.; Mohiuddin, G.; Kaur, S.; Khan, R.K.; Ghosh, S.; Pal, S.K. Observation of polar order and thermochromic behaviour in a chiral bent-core system exhibiting exotic mesophases due to superstructural frustration. Chem. Commun. (Camb.), 2018, 54(28), 3452-3455.
[http://dx.doi.org/10.1039/C7CC08885J] [PMID: 29557481]
[16]
Westphal, E.; Gallardo, H.; Sebastián, N.; Eremin, A.; Prehm, M.; Alaasar, M.; Tschierske, C. Liquid crystalline self-assembly of 2,5-diphenyl-1,3,4-oxadiazole based bent-core molecules and the influence of carbosilane End-Groups. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(10), 3064-3081.
[http://dx.doi.org/10.1039/C8TC06591H]
[17]
Mathews, M.; Kang, S.; Kumar, S.; Li, Q. Designing bent-core nematogens towards biaxial nematic liquid crystals. Liq. Cryst., 2011, 38(1), 31-40.
[http://dx.doi.org/10.1080/02678292.2010.524716]
[18]
Van Le, K.; Mathews, M.; Chambers, M.; Harden, J.; Li, Q.; Takezoe, H.; Jákli, A. Electro-optic technique to study biaxiality of liquid crystals with positive dielectric anisotropy: the case of a bent-core material. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2009, 79(3 Pt 1), 030701.
[http://dx.doi.org/10.1103/PhysRevE.79.030701] [PMID: 19391886]
[19]
Kato, T.; Mizoshita, N.; Kishimoto, K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed., 2005, 45(1), 38-68.
[http://dx.doi.org/10.1002/anie.200501384] [PMID: 16353263]
[20]
Leaw, W.L.; Mamat, C.R.; Triwahyono, S.; Jalil, A.A.; Bidin, N. Liquid crystal physical gel formed by cholesteryl stearate for light scattering display material. J. Colloid Interface Sci., 2016, 483, 41-48.
[http://dx.doi.org/10.1016/j.jcis.2016.08.020] [PMID: 27552412]
[21]
Chen, J.W.; Kuo, Y.Y.; Wang, C.R.; Chao, C.Y. The formation of supramolecular liquid-crystal gels for enhancing the electro-optical properties of twisted nematic liquid crystals. Org. Electron., 2015, 27, 24-28.
[http://dx.doi.org/10.1016/j.orgel.2015.08.027]
[22]
Bisoyi, H.K.; Li, Q. Light-driven liquid crystalline materials: From photo-induced phase transitions and property modulations to applications. Chem. Rev., 2016, 116(24), 15089-15166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00415] [PMID: 27936632]
[23]
Sridurai, V.; Mathews, M.; Yelamaggad, C.V.; Nair, G.G. Electrically tunable soft photonic gel formed by blue phase liquid crystal for switchable color-reflecting mirror. ACS Appl. Mater. Interfaces, 2017, 9(45), 39569-39575.
[http://dx.doi.org/10.1021/acsami.7b10952] [PMID: 29067801]
[24]
Mathews, M.; Zola, R.S.; Yang, D.K.; Li, Q. Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals. J. Mater. Chem., 2011, 21(7), 2098-2103.
[http://dx.doi.org/10.1039/C0JM03479G]
[25]
Mathews, M.; Tamaoki, N. Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule. Chem. Commun. (Camb.), 2009, (24), 3609-3611.
[http://dx.doi.org/10.1039/b905305k] [PMID: 19521624]
[26]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[27]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett., 2020, 18(2), 433-458.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[28]
Sidharth, S.N.; Yuvaraj, A.R.; Hui, T.J.; Sarojini, B.K.; Mashitah, M.Y.; Hegde, G. Light induced properties of chalcones correlated with molecular structure and photophysical properties for permanent optical storage device. Adv. Mat. Res., 2014, 1033–1034, 1149-1153.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.1033-1034.1149]
[29]
Ramkumar, V.; Anandhi, S.; Kannan, P.; Gopalakrishnan, R. Substitution effect on chalcone based materials for corrosion and photocrosslinking applications. RSC Advances, 2015, 5(1), 586-596.
[http://dx.doi.org/10.1039/C4RA10884A]
[30]
Wei, Y.; Qin, G.; Wang, W.; Bian, W.; Shuang, S.; Dong, C. Development of fluorescent feiii sensor based on chalcone. J. Lumin., 2011, 131(8), 1672-1676.
[http://dx.doi.org/10.1016/j.jlumin.2011.03.062]
[31]
Sidharthan, J.; Peter Amaladhas, T. Synthesis and characterization of photo-crosslinkable liquid crystalline copolyesters containing arylidene-keto and chalcone moieties. J. Polym. Res., 2017, 24(3), 1-12.
[http://dx.doi.org/10.1007/s10965-017-1206-7]
[32]
Srinivasa, H.T.; Kumar, S. Synthesis and characterisation of some new chalcone liquid crystals. Liq. Cryst., 2017, 44(10), 1506-1514.
[http://dx.doi.org/10.1080/02678292.2017.1290283]
[33]
Zhu, X.; Yin, F.; Zhao, H.; Chen, S.; Bian, Z. Some new azobenzene liquid crystals involving chalcone and ester linkages. RSC Advances, 2017, 7(73), 46344-46353.
[http://dx.doi.org/10.1039/C7RA06958H]
[34]
Karuppusamy, A.; Ramkumar, V.; Kannan, P.; Balamurugan, S.; Said, S.M. Effect of linking groups on 2, 5-disubstituted thiophene with chalcone as the side arm containing bent-core materials. Soft Mater., 2017, 15(2), 132-144.
[http://dx.doi.org/10.1080/1539445X.2016.1242499]
[35]
Sharma, V.S.; Patel, R.B. Design and investigation of calamatic liquid crystals: Schiff base (‒CH˭N), chalcone (‒CO‒CH˭CH‒), and ester (‒COO‒) linkage group contain rigid rod shape with various terminal parts. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2017, 643(1), 141-158.
[http://dx.doi.org/10.1080/15421406.2016.1263115]
[36]
Al-Karawi, A.J.M.; Hammood, A.J.; Awad, A.A. OmarAli, A. A. B.; Khudhaier, S. R.; Al- Heetimi, D. T. A.; Majeed, S. G. Synthesis and mesomorphism behaviour of chalcones and pyrazoles type compounds as photo-luminescent materials. Liq. Cryst., 2018, 45(11), 1603-1619.
[http://dx.doi.org/10.1080/02678292.2018.1446553]
[37]
Yelamaggad, C.V.; Achalkumar, A.S.; Bonde, N.L.; Prajapati, A.K. Liquid crystal abrikosov flux phase: the exclusive wide thermal range enantiotropic occurrence. Chem. Mater., 2006, 18(5), 1076-1078.
[http://dx.doi.org/10.1021/cm052570+]
[38]
Yelamaggad, C.V.; Bonde, N.L.; Achalkumar, A.S.; Shankar Rao, D.S.; Prasad, S.K.; Prajapati, A.K. Frustrated liquid crystals: Synthesis and mesomorphic behavior of unsymmetrical dimers possessing chiral and fluorescent entities. Chem. Mater., 2007, 19(10), 2463-2472.
[http://dx.doi.org/10.1021/cm0625880]
[39]
Nitti, A.; Debattista, F.; Abbondanza, L.; Bianchi, G.; Po, R.; Pasini, D. Donor-Acceptor conjugated copolymers incorporating tetrafluorobenzene as the π-electron deficient unit. J. Polym. Sci. A Polym. Chem., 2017, 55(9), 1601-1610.
[http://dx.doi.org/10.1002/pola.28532]
[40]
Caricato, M.; Coluccini, C.; Vander Griend, D.A.; Forni, A.; Pasini, D. From red to blue shift: switching the binding affinity from the acceptor to the donor end by increasing the π-bridge in push-pull chromophores with coordinative ends. New J. Chem., 2013, 37(9), 2792-2799.
[http://dx.doi.org/10.1039/c3nj00466j]
[41]
Nitti, A.; Villafiorita-Monteleone, F.; Pacini, A.; Botta, C.; Virgili, T.; Forni, A.; Cariati, E.; Boiocchi, M.; Pasini, D. Structure-activity relationship for the solid state emission of a new family of “push-pull”π-extended chromophores. Faraday Discuss., 2017, 196, 143-161.
[http://dx.doi.org/10.1039/C6FD00161K] [PMID: 27901153]
[42]
Pasini, D.; Righetti, P.P.; Rossi, V. Malonate crown ethers as building blocks for novel D-π-A chromophores. Org. Lett., 2002, 4(1), 23-26.
[http://dx.doi.org/10.1021/ol016798o] [PMID: 11772081]
[43]
Achalkumar, A.S.; Shankar Rao, D.S.; Yelamaggad, C.V. Non-symmetric dimers comprising chalcone and cholesterol entities: An investigation on structure-property correlations. New J. Chem., 2014, 38(9), 4235-4248.
[http://dx.doi.org/10.1039/C4NJ00426D]
[44]
Matsunaga, Y.; Miyamoto, S. Mesomorphic Behavior of 2,4-Bis-(4-Alkoxybenzylidene)Cyclopentanones and Related Compounds. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst., 1993, 237(1), 311-317.
[http://dx.doi.org/10.1080/10587259308030145]
[45]
Bucovicean, C.M.; Dong, H.; Zeng, X.; Pana, A.M.; Pausescu, I.; Costisor, O.; Cseh, L. Study of molecular order, mesogenic and fluorescent properties of 2,4-bis(4-dodecyloxybenzylidene) cyclohe-xanone. J. Mol. Liq., 2014, 195, 69-72.
[http://dx.doi.org/10.1016/j.molliq.2014.02.005]
[46]
Patel, K.N.; Prajapati, A.K.; Kamath, B.V.; Bedekar, A.V. Synthesis and study of mesomorphic properties of unsymmetrical cyclohexa-none-derived bis-chalcones. Liq. Cryst., 2016, 43(6), 729-734.
[http://dx.doi.org/10.1080/02678292.2016.1142011]
[47]
Hope-Ross, K.A.; Heiney, P.A.; Kadla, J.F. A new family of bent-core c2-symmetric liquid crystals. Can. J. Chem., 2010, 88(7), 639-645.
[http://dx.doi.org/10.1139/V10-056]
[48]
Hagar, M.; Ahmed, H.A.; El-Sayed, T.H.; Alnoman, R. mesophase behavior and DFT conformational analysis of new symmetrical diester chalcone liquid crystals. J. Mol. Liq., 2019, 285, 96-105.
[http://dx.doi.org/10.1016/j.molliq.2019.04.083]
[49]
Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four m06-class functionals and 12 other function. Theor. Chem. Acc., 2008, 120(1–3), 215-241.
[http://dx.doi.org/10.1007/s00214-007-0310-x]
[50]
Goodby, J.W.; Mandle, R.J.; Davis, E.J.; Zhong, T.; Cowling, S.J. What makes a liquid crystal? the effect of free volume on soft matter. Liq. Cryst., 2015, 42(5–6), 593-622.
[http://dx.doi.org/10.1080/02678292.2015.1030348]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy