Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Tremor and Rigidity in Patients with Parkinson’s Disease: Emphasis on Epidemiology, Pathophysiology and Contributing Factors

Author(s): Shivam Kumar, Lav Goyal and Shamsher Singh*

Volume 21, Issue 7, 2022

Published on: 08 December, 2021

Page: [596 - 609] Pages: 14

DOI: 10.2174/1871527320666211006142100

Price: $65

Abstract

Parkinson's disease (PD) is the second most prominent neurodegenerative movement disorder after Alzheimer’s disease, involving 2-3% of the population aged above 65 years. This is mainly triggered by the depletion of dopaminergic neurons located in substantia nigra pars compacta (SNpc) in the region of basal ganglia. At present, diagnosis for symptoms of PD is clinical, contextual, unspecified and therapeutically incomprehensive. Analysis of various causes of PD is essential for an accurate examination of the disease. Among the different causes, such as tremors and rigidity, unresponsiveness to the current treatment approach contributes to mortality. In the present review article, we describe various key factors of pathogenesis and physiology associated with tremors and rigidity necessary for the treatment of PI (postural instability) in patients with PD. Additionally, several reports showing early tremor and rigidity causes, particularly age, cortex lesions, basal ganglia lesions, genetic abnormalities, weakened reflexes, nutrition, fear of fall, and altered biomechanics, have been explored. By summarizing the factors that contribute to the disease, histopathological studies can assess rigidity and tremor in PD. With a clear understanding of the contributing factors, various prospective studies can be done to assess the incidence of rigidity and tremors.

Keywords: Parkinson’s disease (PD), PD diagnosis, tremor dominant (TD), rigidity, tremor dominant, snpc.

Graphical Abstract

[1]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[2]
Alexander GE. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 2004; 6(3): 259-80.
[http://dx.doi.org/10.31887/DCNS.2004.6.3/galexander] [PMID: 22033559]
[3]
Greenland JC, Barker RA. The differential diagnosis of Parkinson’s disease. Exon Publications 2018; pp. 109-28.
[4]
Magrinelli F, Picelli A, Tocco P, et al. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinson’s disease 2016; 2016
[http://dx.doi.org/10.1155/2016/9832839] [PMID: 27366343]
[5]
Obeso JA, Stamelou M, Goetz CG, et al. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 2017; 32(9): 1264-310.
[http://dx.doi.org/10.1002/mds.27115] [PMID: 28887905]
[6]
Kouli A, Torsney KM, Kuan WL. Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications 2018; 21: 3-26.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1] [PMID: 30702842]
[7]
Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 2013; 62: 132-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.018] [PMID: 23380027]
[8]
Ball N, Teo WP, Chandra S, Chapman J. Parkinson’s disease and the environment. Front Neurol 2019; 10: 218.
[http://dx.doi.org/10.3389/fneur.2019.00218] [PMID: 30941085]
[9]
Gomperts SN. Lewy body dementias: dementia with Lewy bodies and Parkinson disease dementia. Continuum: Lifelong Learning in Neurology 2016; 435
[http://dx.doi.org/10.1212/CON.0000000000000309] [PMID: 27042903]
[10]
DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P&T 2015; 40(8): 504-32.
[PMID: 26236139]
[11]
Ren J, Hua P, Li Y, et al. Comparison of Three Motor Subtype Classifications in de novo Parkinson’s Disease Patients. Front Neurol 2020; 11: 601225.
[http://dx.doi.org/10.3389/fneur.2020.601225] [PMID: 33424750]
[12]
Sharma S, Pandey S. Approach to a tremor patient. Ann Indian Acad Neurol 2016; 19(4): 433-43.
[http://dx.doi.org/10.4103/0972-2327.194409] [PMID: 27994349]
[13]
Zach H, Dirkx M, Bloem BR, Helmich RC. The clinical evaluation of Parkinson’s tremor. J Parkinsons Dis 2015; 5(3): 471-4.
[http://dx.doi.org/10.3233/JPD-150650] [PMID: 26406126]
[14]
Dovzhenok A, Rubchinsky LL. On the origin of tremor in Parkinson’s disease. PLoS One 2012; 7(7): e41598.
[http://dx.doi.org/10.1371/journal.pone.0041598] [PMID: 22848541]
[15]
Perlmutter JS. Assessment of Parkinson disease manifestations. Curr Protoc Neurosci 2009; Chapter 10(1): 10.1.
[PMID: 19802812]
[16]
Forjaz MJ, Martinez-Martin P. Metric attributes of the unified Parkinson’s disease rating scale 3.0 battery: part II, construct and content validity. Mov Disord 2006; 21(11): 1892-8.
[http://dx.doi.org/10.1002/mds.21071] [PMID: 16958134]
[17]
Baradaran N, Tan SN, Liu A, et al. Parkinson’s disease rigidity: relation to brain connectivity and motor performance. Front Neurol 2013; 4: 67.
[http://dx.doi.org/10.3389/fneur.2013.00067] [PMID: 23761780]
[18]
Memar S, Delrobaei M, Pieterman M, McIsaac K, Jog M. Quantification of whole-body bradykinesia in Parkinson’s disease participants using multiple inertial sensors. J Neurol Sci 2018; 387: 157-65.
[http://dx.doi.org/10.1016/j.jns.2018.02.001] [PMID: 29571855]
[19]
Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 2020; 36(1): 1-12.
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[20]
Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine. Neurobiol Dis 2020; 137: 104782.
[http://dx.doi.org/10.1016/j.nbd.2020.104782] [PMID: 31991247]
[21]
Sauerbier A, Aris A, Lim EW, Bhattacharya K, Ray Chaudhuri K. Impact of ethnicity on the natural history of Parkinson disease. Med J Aust 2018; 208(9): 410-4.
[http://dx.doi.org/10.5694/mja17.01074] [PMID: 29764354]
[22]
Rajput AH, Offord KP, Beard CM, Kurland LT. Essential tremor in Rochester, Minnesota: a 45-year study. J Neurol Neurosurg Psychiatry 1984; 47(5): 466-70.
[http://dx.doi.org/10.1136/jnnp.47.5.466] [PMID: 6736976]
[23]
Lee A, Gilbert RM. Epidemiology of Parkinson disease. Neurol Clin 2016; 34(4): 955-65.
[http://dx.doi.org/10.1016/j.ncl.2016.06.012] [PMID: 27720003]
[24]
Mazzoni P, Shabbott B, Cortés JC. Motor control abnormalities in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(6): a009282.
[http://dx.doi.org/10.1101/cshperspect.a009282] [PMID: 22675667]
[25]
Gironell A, Pascual-Sedano B, Aracil I, Marín-Lahoz J, Pagonabarraga J, Kulisevsky J. Tremor types in Parkinson disease: a descriptive study using a new classification. Parkinsons Dis 2018; 2018: 4327597.
[http://dx.doi.org/10.1155/2018/4327597] [PMID: 30363956]
[26]
Bhatia KP, Bain P, Bajaj N, et al. Tremor Task Force of the International Parkinson and Movement Disorder Society. Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord 2018; 33(1): 75-87.
[http://dx.doi.org/10.1002/mds.27121] [PMID: 29193359]
[27]
Vivar G, Almanza-Ojeda DL, Cheng I, Gomez JC, Andrade-Lucio JA, Ibarra-Manzano MA. Contrast and homogeneity feature analysis for classifying tremor levels in Parkinson’s Disease Patients. Sensors (Basel) 2019; 19(9): 2072.
[http://dx.doi.org/10.3390/s19092072] [PMID: 31060214]
[28]
Dirkx MF, Zach H, Bloem BR, Hallett M, Helmich RC. The nature of postural tremor in Parkinson disease. Neurology 2018; 90(13): e1095-103.
[http://dx.doi.org/10.1212/WNL.0000000000005215] [PMID: 29476038]
[29]
Torres-Russotto D, Perlmutter JS. Task-specific dystonias: a review. Ann N Y Acad Sci 2008; 1142: 179-99.
[http://dx.doi.org/10.1196/annals.1444.012] [PMID: 18990127]
[30]
Puschmann A, Wszolek ZK. Diagnosis and treatment of common forms of tremor. In: Seminars in neurology. NIH Public Access 2011; Vol. 31: p. (No. 1)65.
[http://dx.doi.org/10.1055/s-0031-1271312] [PMID: 21321834]
[31]
Thenganatt MA, Louis ED. Distinguishing essential tremor from Parkinson’s disease: bedside tests and laboratory evaluations. Expert Rev Neurother 2012; 12(6): 687-96.
[http://dx.doi.org/10.1586/ern.12.49] [PMID: 22650171]
[32]
Charles PD, Esper GJ, Davis TL, Maciunas RJ, Robertson D. Classification of tremor and update on treatment. Am Fam Physician 1999; 59(6): 1565-72.
[PMID: 10193597]
[33]
Mak MK, Wong EC, Hui-Chan CW. Quantitative measurement of trunk rigidity in parkinsonian patients. J Neurol 2007; 254(2): 202-9.
[http://dx.doi.org/10.1007/s00415-006-0327-4] [PMID: 17334954]
[34]
Xia R, Rymer WZ. The role of shortening reaction in mediating rigidity in Parkinson’s disease. Exp Brain Res 2004; 156(4): 524-8.
[http://dx.doi.org/10.1007/s00221-004-1919-9] [PMID: 15127173]
[35]
Powell D, Hanson N, Threlkeld AJ, Fang X, Xia R. Enhancement of parkinsonian rigidity with contralateral hand activation. Clin Neurophysiol 2011; 122(8): 1595-601.
[http://dx.doi.org/10.1016/j.clinph.2011.01.010] [PMID: 21330199]
[36]
Prochazka A, Bennett DJ, Stephens MJ, et al. Measurement of rigidity in Parkinson’s disease. Mov Disord 1997; 12(1): 24-32.
[http://dx.doi.org/10.1002/mds.870120106] [PMID: 8990050]
[37]
Park BK, Kwon Y, Kim JW, et al. Analysis of viscoelastic properties of wrist joint for quantification of parkinsonian rigidity. IEEE Trans Neural Syst Rehabil Eng 2011; 19(2): 167-76.
[http://dx.doi.org/10.1109/TNSRE.2010.2091149] [PMID: 21075739]
[38]
Watkins KE, Jenkinson N. The anatomy of the basal ganglia.Neurobiology of language. Academic Press 2016; pp. 85-94.
[http://dx.doi.org/10.1016/B978-0-12-407794-2.00008-0]
[39]
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2012; 2(12): a009621.
[http://dx.doi.org/10.1101/cshperspect.a009621] [PMID: 23071379]
[40]
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10): 366-75.
[http://dx.doi.org/10.1016/0166-2236(89)90074-X] [PMID: 2479133]
[41]
Fazl A, Fleisher J. Anatomy, physiology, and clinical syndromes of the basal ganglia: a brief review.Seminars in pediatric neurology. WB Saunders 2018; Vol. 25: pp. 2-9.
[http://dx.doi.org/10.1016/j.spen.2017.12.005]
[42]
Marinus J, Visser M, van Hilten JJ, Lammers GJ, Stiggelbout AM. Assessment of sleep and sleepiness in Parkinson disease. Sleep 2003; 26(8): 1049-54.
[http://dx.doi.org/10.1093/sleep/26.8.1049] [PMID: 14746389]
[43]
Mallick S. Palliative care in Parkinson’s disease: role of cognitive behavior therapy. Indian J Palliat Care 2009; 15(1): 51-6.
[http://dx.doi.org/10.4103/0973-1075.53512] [PMID: 20606856]
[44]
Garza-Ulloa J. Update on Parkinson’s disease. American J Biomed Sci Res 2019; 2(6)
[http://dx.doi.org/10.34297/AJBSR.2019.02.000614]
[45]
Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967; 17(5): 427-42.
[http://dx.doi.org/10.1212/WNL.17.5.427] [PMID: 6067254]
[46]
Bötzel K, Tronnier V, Gasser T. The differential diagnosis and treatment of tremor. Dtsch Arztebl Int 2014; 111(13): 225-35.
[http://dx.doi.org/10.3238/arztebl.2014.0225] [PMID: 24739887]
[47]
Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 2012; 135(Pt 11): 3206-26.
[http://dx.doi.org/10.1093/brain/aws023] [PMID: 22382359]
[48]
Deuschl G, Raethjen J, Lindemann M, Krack P. The pathophysiology of tremor. Muscle Nerve 2001; 24(6): 716-35.
[http://dx.doi.org/10.1002/mus.1063] [PMID: 11360255]
[49]
Deuschl G, Raethjen J, Baron R, Lindemann M, Wilms H, Krack P. The pathophysiology of parkinsonian tremor: a review. J Neurol 2000; 247(5)(Suppl. 5): V33-48.
[http://dx.doi.org/10.1007/PL00007781] [PMID: 11081802]
[50]
Zhang D, Poignet P, Widjaja F, Ang WT. Neural oscillator-based control for pathological tremor suppression via functional electrical stimulation. Control Eng Pract 2011; 19(1): 74-88.
[http://dx.doi.org/10.1016/j.conengprac.2010.08.009]
[51]
Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 2011; 164(4): 1357-91.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01426.x] [PMID: 21486284]
[52]
Raethjen J, Lindemann M, Schmaljohann H, Wenzelburger R, Pfister G, Deuschl G. Multiple oscillators are causing parkinsonian and essential tremor. Mov Disord 2000; 15(1): 84-94.
[http://dx.doi.org/10.1002/1531-8257(200001)15:1<84::AID-MDS1014>3.0.CO;2-K] [PMID: 10634246]
[53]
Baumann CR. Epidemiology, diagnosis and differential diagnosis in Parkinson’s disease tremor. Parkinsonism Relat Disord 2012; 18(Suppl. 1): S90-2.
[http://dx.doi.org/10.1016/S1353-8020(11)70029-3] [PMID: 22166466]
[54]
Romero LE, Chatterjee P, Armentano RL. An IoT approach for integration of computational intelligence and wearable sensors for Parkinson’s disease diagnosis and monitoring. Health Technol (Berl) 2016; 6(3): 167-72.
[http://dx.doi.org/10.1007/s12553-016-0148-0]
[55]
Kamble N, Pal PK. Tremor syndromes: A review. Neurol India 2018; 66(7)(Suppl.): S36-47.
[http://dx.doi.org/10.4103/0028-3886.226440] [PMID: 29503326]
[56]
Assenza G, Capone F, di Biase L, et al. Oscillatory activities in neurological disorders of elderly: Biomarkers to target for neuromodulation. Frontiers in Aging Neuroscience 2017; 9: 189.
[http://dx.doi.org/10.3389/fnagi.2017.00189] [PMID: 28659788]
[57]
Annesi F, De Marco EV, Rocca FE, et al. Association study between the LINGO1 gene and Parkinson’s disease in the Italian population. Parkinsonism Relat Disord 2011; 17(8): 638-41.
[http://dx.doi.org/10.1016/j.parkreldis.2011.06.020] [PMID: 21752692]
[58]
Chen Y, Cao B, Yang J, et al. Analysis and meta-analysis of five polymorphisms of the LINGO1 and LINGO2 genes in Parkinson’s disease and multiple system atrophy in a Chinese population. J Neurol 2015; 262(11): 2478-83.
[http://dx.doi.org/10.1007/s00415-015-7870-9] [PMID: 26254004]
[59]
Inoue H, Lin L, Lee X, et al. Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson’s disease models. Proc Natl Acad Sci USA 2007; 104(36): 14430-5.
[http://dx.doi.org/10.1073/pnas.0700901104] [PMID: 17726113]
[60]
Zhang J, Xing Y, Ma X, Feng L. Differential diagnosis of Parkinson disease, essential tremor, and enhanced physiological tremor with the tremor analysis of EMG. Parkinson’s Disease 2017; 2017.
[http://dx.doi.org/10.1155/2017/1597907] [PMID: 28884038]
[61]
Xia R, Powell D, Rymer WZ, Hanson N, Fang X, Threlkeld AJ. Differentiation between the contributions of shortening reaction and stretch-induced inhibition to rigidity in Parkinson’s disease. Exp Brain Res 2011; 209(4): 609-18.
[http://dx.doi.org/10.1007/s00221-011-2594-2] [PMID: 21347660]
[62]
Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med 2012; 2(6): a008870.
[http://dx.doi.org/10.1101/cshperspect.a008870] [PMID: 22675666]
[63]
Mukherjee A, Chakravarty A. Spasticity mechanisms - for the clinician. Front Neurol 2010; 1: 149.
[http://dx.doi.org/10.3389/fneur.2010.00149] [PMID: 21206767]
[64]
Chandra SR, Isaac TG, Mane M, Bharath S, Nagaraju BC. Long loop reflex 2 in patients with cortical dementias: a pilot study. Indian J Psychol Med 2017; 39(2): 164-8.
[http://dx.doi.org/10.4103/0253-7176.203126] [PMID: 28515553]
[65]
Lee RG. Pathophysiology of rigidity and akinesia in Parkinson’s disease. Eur Neurol 1989; 29(Suppl. 1): 13-8.
[http://dx.doi.org/10.1159/000116448] [PMID: 2653833]
[66]
Martinez-Martin P, Rodriguez-Blazquez C, Alvarez-Sanchez M, et al. Expanded and independent validation of the Movement Disorder Society–Unified Parkinson’s disease rating scale (MDS-UPDRS). J Neurol 2013; 260(1): 228-36.
[http://dx.doi.org/10.1007/s00415-012-6624-1] [PMID: 22865238]
[67]
Goetz CG, Poewe W, Rascol O, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 2004; 19(9): 1020-8.
[http://dx.doi.org/10.1002/mds.20213] [PMID: 15372591]
[68]
Heim B, Krismer F, De Marzi R, Seppi K. Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J Neural Transm (Vienna) 2017; 124(8): 915-64.
[http://dx.doi.org/10.1007/s00702-017-1717-8] [PMID: 28378231]
[69]
Steiner I, Gomori JM, Melamed E. Features of brain atrophy in Parkinson’s disease. A CT scan study. Neuroradiology 1985; 27(2): 158-60.
[http://dx.doi.org/10.1007/BF00343788] [PMID: 3990948]
[70]
Loane C, Politis M. Positron emission tomography neuroimaging in Parkinson’s disease. Am J Transl Res 2011; 3(4): 323-41.
[PMID: 21904653]
[71]
Pretze M, Wängler C, Wängler B. 6-(18F) fluoro-L-DOPA: A well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. BioMed research international 2014; 2014
[http://dx.doi.org/10.1155/2014/674063] [PMID: 24987698]
[72]
Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 2016; 15(12): 1257-72.
[http://dx.doi.org/10.1016/S1474-4422(16)30230-7] [PMID: 27751556]
[73]
Franceschi C, Garagnani P, Morsiani C, et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Frontiers in medicine 2018; 5: 61.
[http://dx.doi.org/10.3389/fmed.2018.00061] [PMID: 29662881]
[74]
Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017; 16(4): 624-33.
[http://dx.doi.org/10.1111/acel.12601] [PMID: 28544158]
[75]
Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 2014; 14: 19-30.
[http://dx.doi.org/10.1016/j.arr.2014.01.004] [PMID: 24503004]
[76]
Carson RG. Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 2005; 49(3): 641-62.
[http://dx.doi.org/10.1016/j.brainresrev.2005.03.005] [PMID: 15904971]
[77]
Palakurthi B, Burugupally SP. Postural instability in parkinson’s disease: A review. Brain Sci 2019; 9(9): 239.
[http://dx.doi.org/10.3390/brainsci9090239] [PMID: 31540441]
[78]
Hindle JV. Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 2010; 39(2): 156-61.
[http://dx.doi.org/10.1093/ageing/afp223] [PMID: 20051606]
[79]
Vrieze SI, Iacono WG, McGue M. Confluence of genes, environment, development, and behavior in a post-GWAS world. Development and psychopathology 2012; 24(4): 1195.
[http://dx.doi.org/10.1017/S0954579412000648] [PMID: 23062291]
[80]
Postuma RB, Lang AE, Munhoz RP, et al. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 2012; 79(7): 651-8.
[http://dx.doi.org/10.1212/WNL.0b013e318263570d] [PMID: 22855866]
[81]
Ren X, Chen JF. Caffeine and Parkinson’s disease: multiple benefits and emerging mechanisms. Front Neurosci 2020; 14: 602697.
[http://dx.doi.org/10.3389/fnins.2020.602697] [PMID: 33390888]
[82]
Shen J. L-Theanine: Neuroprotective against Trichloroethylene-induced Parkinson’s disease hallmarks. J Toxicol Environ Health Sci 2020; 12(3): 36-45.
[http://dx.doi.org/10.5897/JTEHS2020.0468]
[83]
Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS. Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death. Neurotoxicology 2008; 29(4): 656-62.
[http://dx.doi.org/10.1016/j.neuro.2008.03.004] [PMID: 18452993]
[84]
Williams J, Sergi D, McKune AJ, Georgousopoulou EN, Mellor DD, Naumovski N. The beneficial health effects of green tea amino acid l-theanine in animal models: Promises and prospects for human trials. Phytother Res 2019; 33(3): 571-83.
[http://dx.doi.org/10.1002/ptr.6277] [PMID: 30632212]
[85]
Deb S, Dutta A, Phukan BC, et al. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem Int 2019; 129: 104478.
[http://dx.doi.org/10.1016/j.neuint.2019.104478] [PMID: 31145971]
[86]
Roy A, Pahan K. Prospects of statins in Parkinson disease. Neuroscientist 2011; 17(3): 244-55.
[http://dx.doi.org/10.1177/1073858410385006] [PMID: 21252380]
[87]
Ma C, Liu Y, Neumann S, Gao X. Nicotine from cigarette smoking and diet and Parkinson disease: a review. Transl Neurodegener 2017; 6(1): 18.
[http://dx.doi.org/10.1186/s40035-017-0090-8] [PMID: 28680589]
[88]
Martyn C, Gale C. Tobacco, coffee, and Parkinson's disease: Caffeine and nicotine may improve the health of dopaminergic systems.
[http://dx.doi.org/10.1136/bmj.326.7389.561]
[89]
Schildknecht S, Pape R, Meiser J, et al. Preferential extracellular generation of the active parkinsonian toxin MPP+ by transporter-independent export of the intermediate MPDP+. Antioxid Redox Signal 2015; 23(13): 1001-16.
[http://dx.doi.org/10.1089/ars.2015.6297] [PMID: 26413876]
[90]
Kopin IJ. MPTP: an industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson’s disease. Environ Health Perspect 1987; 75: 45-51.
[http://dx.doi.org/10.1289/ehp.877545] [PMID: 3319563]
[91]
von Wrangel C, Schwabe K, John N, Krauss JK, Alam M. The rotenone-induced rat model of Parkinson’s disease: behavioral and electrophysiological findings. Behav Brain Res 2015; 279: 52-61.
[http://dx.doi.org/10.1016/j.bbr.2014.11.002] [PMID: 25446762]
[92]
Sherer TB, Betarbet R, Testa CM, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 2003; 23(34): 10756-64.
[http://dx.doi.org/10.1523/JNEUROSCI.23-34-10756.2003] [PMID: 14645467]
[93]
Wang JY, Zhuang QQ, Zhu LB, et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 2016; 6(1): 36669.
[http://dx.doi.org/10.1038/srep36669] [PMID: 27827408]
[94]
Mochizuki H, Choong CJ, Baba K. Parkinson’s disease and iron. J Neural Transm (Vienna) 2020; 127(2): 181-7.
[http://dx.doi.org/10.1007/s00702-020-02149-3] [PMID: 32025811]
[95]
Knörle R. Neuromelanin in Parkinson’s disease: from Fenton reaction to calcium signaling. Neurotox Res 2018; 33(2): 515-22.
[http://dx.doi.org/10.1007/s12640-017-9804-z] [PMID: 28879408]
[96]
Goldman SM. Trichloroethylene and Parkinson’s disease: dissolving the puzzle. Expert Rev Neurother 2010; 10(6): 835-7.
[http://dx.doi.org/10.1586/ern.10.61] [PMID: 20518596]
[97]
De Miranda BR, Greenamyre JT. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson’s disease. Environ Sci Process Impacts 2020; 22(3): 543-54.
[http://dx.doi.org/10.1039/C9EM00578A] [PMID: 31996877]
[98]
Borja J, Taleon DM, Auresenia J, Gallardo S. Polychlorinated biphenyls and their biodegradation. Process Biochem 2005; 40(6): 1999-2013.
[http://dx.doi.org/10.1016/j.procbio.2004.08.006]
[99]
Hatcher-Martin JM, Gearing M, Steenland K, Levey AI, Miller GW, Pennell KD. Association between polychlorinated biphenyls and Parkinson’s disease neuropathology. Neurotoxicology 2012; 33(5): 1298-304.
[http://dx.doi.org/10.1016/j.neuro.2012.08.002] [PMID: 22906799]
[100]
Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(1): a008888.
[http://dx.doi.org/10.1101/cshperspect.a008888] [PMID: 22315721]
[101]
Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson’s disease: pathophysiology to management. Neurol Sci 2019; 40(1): 13-23.
[http://dx.doi.org/10.1007/s10072-018-3585-x] [PMID: 30267336]
[102]
Rui Q, Ni H, Li D, Gao R, Chen G. The role of LRRK2 in neurodegeneration of Parkinson disease. Curr Neuropharmacol 2018; 16(9): 1348-57.
[http://dx.doi.org/10.2174/1570159X16666180222165418] [PMID: 29473513]
[103]
Sanyal J, Anirudhan A, Banerjee TK, et al. PARK2 and PARK7 Gene Polymorphisms as Risk Factors Associated with Serum Element Concentrations and Clinical Symptoms of Parkinson’s Disease. Cell Mol Neurobiol 2020; 40(3): 357-67.
[http://dx.doi.org/10.1007/s10571-019-00734-z] [PMID: 31512170]
[104]
Xu X, Martin F, Friedman JS. The familial Parkinson’s disease gene DJ-1 (PARK7) is expressed in red cells and plays a role in protection against oxidative damage. Blood Cells Mol Dis 2010; 45(3): 227-32.
[http://dx.doi.org/10.1016/j.bcmd.2010.07.014] [PMID: 20800516]
[105]
Seidl SE, Santiago JA, Bilyk H, Potashkin JA. The emerging role of nutrition in Parkinson’s disease. Front Aging Neurosci 2014; 6: 36.
[http://dx.doi.org/10.3389/fnagi.2014.00036] [PMID: 24639650]
[106]
Hughes KC, Gao X, Kim IY, et al. Intake of dairy foods and risk of Parkinson disease. Neurology 2017; 89(1): 46-52.
[http://dx.doi.org/10.1212/WNL.0000000000004057] [PMID: 28596209]
[107]
El Fari R, Abbaoui A, Bourziq A, et al. Neuroprotective effects of docosahexaenoic acid against sub-acute manganese intoxication induced dopaminergic and motor disorders in mice. J Chem Neuroanat 2019; 102: 101686.
[http://dx.doi.org/10.1016/j.jchemneu.2019.101686] [PMID: 31562917]
[108]
Avallone R, Vitale G, Bertolotti M. Omega-3 fatty acids and neurodegenerative diseases: new evidence in clinical trials. Int J Mol Sci 2019; 20(17): 4256.
[http://dx.doi.org/10.3390/ijms20174256] [PMID: 31480294]
[109]
Liu LX, Chen WF, Xie JX, Wong MS. Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 2008; 60(2): 156-61.
[http://dx.doi.org/10.1016/j.neures.2007.10.005] [PMID: 18054104]
[110]
Siddique YH, Naz F, Jyoti S, Ali F, Rahul . Effect of Genistein on the Transgenic Drosophila Model of Parkinson’s Disease. J Diet Suppl 2019; 16(5): 550-63.
[http://dx.doi.org/10.1080/19390211.2018.1472706] [PMID: 29969325]
[111]
Fullard ME, Duda JE. A review of the relationship between vitamin D and Parkinson disease symptoms. Front Neurol 2020; 11: 454.
[http://dx.doi.org/10.3389/fneur.2020.00454] [PMID: 32536905]
[112]
Rimmelzwaan LM, van Schoor NM, Lips P, Berendse HW, Eekhoff EM. Systematic review of the relationship between vitamin D and Parkinson’s disease. J Parkinsons Dis 2016; 6(1): 29-37.
[http://dx.doi.org/10.3233/JPD-150615] [PMID: 26756741]
[113]
Soliman RH, Oraby MI, Hussein M, Abd El-Shafy S, Mostafa S. Could vitamin D deficiency have an impact on motor and cognitive function in Parkinson’s disease? Egypt J Neurol Psychiat Neurosurg 2019; 55(1): 1-6.
[http://dx.doi.org/10.1186/s41983-019-0084-9]
[114]
Mischley LK, Lau RC, Bennett RD. Role of diet and nutritional supplements in Parkinson’s disease progression. Oxidative medicine and cellular longevity 2017; 2017.
[http://dx.doi.org/10.1155/2017/6405278] [PMID: 29081890]
[115]
Jellinger KA. Significance of brain lesions in Parkinson disease dementia and Lewy body dementia. Dementia in clinical practice 2009; 24: 114-25.
[http://dx.doi.org/10.1159/000197890] [PMID: 19182469]
[116]
Bohnen NI, Albin RL. White matter lesions in Parkinson disease. Nat Rev Neurol 2011; 7(4): 229-36.
[http://dx.doi.org/10.1038/nrneurol.2011.21] [PMID: 21343896]
[117]
de Schipper LJ, Hafkemeijer A, Bouts MJRJ, et al. Age- and disease-related cerebral white matter changes in patients with Parkinson’s disease. Neurobiol Aging 2019; 80: 203-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.05.004] [PMID: 31207552]
[118]
Herman T, Rosenberg-Katz K, Jacob Y, et al. White matter hyperintensities in Parkinson’s disease: do they explain the disparity between the postural instability gait difficulty and tremor dominant subtypes? PLoS One 2013; 8(1): e55193.
[http://dx.doi.org/10.1371/journal.pone.0055193] [PMID: 23383104]
[119]
Lee JY, Kim JS, Jang W, et al. Association between white matter lesions and non-motor symptoms in Parkinson disease. Neurodegener Dis 2018; 18(2-3): 127-32.
[http://dx.doi.org/10.1159/000489311] [PMID: 29870975]
[120]
Dadar M, Gee M, Shuaib A, Duchesne S, Camicioli R. Cognitive and motor correlates of grey and white matter pathology in Parkinson’s disease. Neuroimage Clin 2020; 27: 102353.
[http://dx.doi.org/10.1016/j.nicl.2020.102353] [PMID: 32745994]
[121]
Fioravanti V, Benuzzi F, Codeluppi L, et al. MRI correlates of Parkinson’s disease progression: a voxel based morphometry study. Parkinson’s Disease 2015; 2015.
[http://dx.doi.org/10.1155/2015/378032] [PMID: 25628916]
[122]
Xu X, Han Q, Lin J, Wang L, Wu F, Shang H. Grey matter abnormalities in Parkinson’s disease: a voxel-wise meta-analysis. Eur J Neurol 2020; 27(4): 653-9.
[http://dx.doi.org/10.1111/ene.14132] [PMID: 31770481]
[123]
Piccini P, Pavese N, Canapicchi R, et al. White matter hyperintensities in Parkinson’s disease. Clinical correlations. Arch Neurol 1995; 52(2): 191-4.
[http://dx.doi.org/10.1001/archneur.1995.00540260097023] [PMID: 7848130]
[124]
Goldenberg MM. Medical management of Parkinson’s disease. P&T 2008; 33(10): 590-606.
[PMID: 19750042]
[125]
Galvan A, Devergnas A, Wichmann T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front Neuroanat 2015; 9: 5.
[http://dx.doi.org/10.3389/fnana.2015.00005] [PMID: 25698937]
[126]
Visser JE, Bloem BR. Role of the basal ganglia in balance control. Neural Plast 2005; 12(2-3): 161-74.
[http://dx.doi.org/10.1155/NP.2005.161] [PMID: 16097484]
[127]
Wichmann T, Delong MR. Deep-brain stimulation for basal ganglia disorders. Basal Ganglia 2011; 1(2): 65-77.
[http://dx.doi.org/10.1016/j.baga.2011.05.001] [PMID: 21804953]
[128]
Prodoehl J, Corcos DM, Vaillancourt DE. Basal ganglia mechanisms underlying precision grip force control. Neurosci Biobehav Rev 2009; 33(6): 900-8.
[http://dx.doi.org/10.1016/j.neubiorev.2009.03.004] [PMID: 19428499]
[129]
Wu T, Wang J, Wang C, et al. Basal ganglia circuits changes in Parkinson’s disease patients. Neurosci Lett 2012; 524(1): 55-9.
[http://dx.doi.org/10.1016/j.neulet.2012.07.012] [PMID: 22813979]
[130]
Anderson D, Beecher G, Ba F. Deep brain stimulation in Parkinson’s disease: new and emerging targets for refractory motor and nonmotor symptoms. Parkinson’s disease 2017; 2017.
[http://dx.doi.org/10.1155/2017/5124328] [PMID: 28761773]
[131]
He R, Yan X, Guo J, Xu Q, Tang B, Sun Q. Recent advances in biomarkers for Parkinson’s disease. Front Aging Neurosci 2018; 10: 305.
[http://dx.doi.org/10.3389/fnagi.2018.00305] [PMID: 30364199]
[132]
Emamzadeh FN, Surguchov A. Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 2018; 12: 612.
[http://dx.doi.org/10.3389/fnins.2018.00612] [PMID: 30214392]
[133]
Liu MF, Xue Y, Liu C, et al. Orexin-A exerts neuroprotective effects via OX1R in Parkinson’s disease. Front Neurosci 2018; 12: 835.
[http://dx.doi.org/10.3389/fnins.2018.00835] [PMID: 30524223]
[134]
Sheng Q, Xue Y, Wang Y, et al. The subthalamic neurons are activated by both orexin-A and orexin-B. Neuroscience 2018; 369: 97-108.
[http://dx.doi.org/10.1016/j.neuroscience.2017.11.008] [PMID: 29138106]
[135]
Zhang J, Li B, Yu L, et al. A role for orexin in central vestibular motor control. Neuron 2011; 69(4): 793-804.
[http://dx.doi.org/10.1016/j.neuron.2011.01.026] [PMID: 21338887]
[136]
Liu C, Xue Y, Liu MF, Wang Y, Chen L. Orexin and Parkinson’s disease: A protective neuropeptide with therapeutic potential. Neurochem Int 2020; 138: 104754.
[http://dx.doi.org/10.1016/j.neuint.2020.104754] [PMID: 32422324]
[137]
Kikuchi A, Takeda A, Onodera H, et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis 2002; 9(2): 244-8.
[http://dx.doi.org/10.1006/nbdi.2002.0466] [PMID: 11895375]
[138]
Isobe C, Abe T, Terayama Y. Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett 2010; 469(1): 159-63.
[http://dx.doi.org/10.1016/j.neulet.2009.11.065] [PMID: 19944739]
[139]
Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(2): a009399.
[http://dx.doi.org/10.1101/cshperspect.a009399] [PMID: 22355802]
[140]
Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 2020; 11: 356.
[http://dx.doi.org/10.3389/fphar.2020.00356] [PMID: 32390826]
[141]
Blandini F, Sinforiani E, Pacchetti C, et al. Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology 2006; 66(4): 529-34.
[http://dx.doi.org/10.1212/01.wnl.0000198511.09968.b3] [PMID: 16505307]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy