Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Potential Drug Targets Identification Against Clostridioides Difficile (CD) and Characterization of Indispensable Proteins by a Subtractive Genomics Approach Followed by Virtual Screening

Author(s): Reaz Uddin* and Alina Arif

Volume 19, Issue 2, 2022

Published on: 30 September, 2021

Page: [92 - 107] Pages: 16

DOI: 10.2174/1570180818666210930160128

Price: $65

Abstract

Background: Clostridioides difficile (CD) is an enteric multi-drug resistant pathogenic bacterium. CD-associated infections are the leading cause of nosocomial diarrhea that can further lead to pseudomembranous colitis, toxic mega-colon or sepsis with greater mortality and morbidity risks. CD infection possesses higher rates of recurrence due to its greater resistance to antibiotics. Considering its higher rates of recurrence, it has become a major burden on healthcare facilities. Therefore, there is a dire need to identify novel drug targets to combat antibiotic resistance of Clostridioides difficile.

Objective: To identify and propose new and novel drug targets against the Clostridioides difficile.

Methods: In the current study, a computational subtractive genomics approach was applied to obtain a set of potential drug targets that exist in the multi-drug resistant strain of Clostridioides difficile. Here, the uncharacterized proteins were studied as potential drug targets. The methodology involved several bioinformatics databases and tools. The druggable proteins sequences were retrieved based on non-homology with host proteome and essentiality for the survival of the pathogen. The uncharacterized proteins were functionally characterized using different computational tools, and sub-cellular localization was also predicted. The metabolic pathways were analyzed using the KEGG database. Eventually, the druggable proteome has been fetched using sequence similarity with the already available drug targets present in the DrugBank database. These druggable proteins were further explored for the structural details to identify drug candidates.

Results: A priority list of potential drug targets was provided with the help of the applied method on the complete proteome set of the C. difficile. Moreover, the drug-like compounds have been screened against the potential drug targets to prioritize potential drug candidates. To facilitate the need for drug targets and therapies, the study proposed five potential protein drug targets, out of which three proposed drug targets were subjected to homology modeling to explore their structural and functional activities.

Conclusion: In conclusion, we proposed three unique, unexplored drug targets against C. difficile. The structure-based methods were applied and resulted in a list of top-scoring compounds as potential inhibitors to proposed drug targets.

Keywords: Clostridioides difficile, multi-drug resistant, homology modelling, drug target, virtual screening, DrugBank database.

Graphical Abstract

[1]
Lawson, P.A.; Citron, D.M.; Tyrrell, K.L.; Finegold, S.M. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe, 2016, 40, 95-99.
[http://dx.doi.org/10.1016/j.anaerobe.2016.06.008] [PMID: 27370902]
[2]
Burnham, C.A.; Carroll, K.C. Diagnosis of Clostridium difficile infection: An ongoing conundrum for clinicians and for clinical laboratories. Clin. Microbiol. Rev., 2013, 26(3), 604-630.
[http://dx.doi.org/10.1128/CMR.00016-13] [PMID: 23824374]
[3]
Bartlett, J.G. Narrative review: The new epidemic of Clostridium difficile-associated enteric disease. Ann. Intern. Med., 2006, 145(10), 758-764.
[http://dx.doi.org/10.7326/0003-4819-145-10-200611210-00008] [PMID: 17116920]
[4]
Kelly, C.P.; Pothoulakis, C.; LaMont, J.T. Clostridium difficile colitis. N. Engl. J. Med., 1994, 330(4), 257-262.
[http://dx.doi.org/10.1056/NEJM199401273300406] [PMID: 8043060]
[5]
Kuehne, S.A.; Collery, M.M.; Kelly, M.L.; Cartman, S.T.; Cockayne, A.; Minton, N.P. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J. Infect. Dis., 2014, 209(1), 83-86.
[http://dx.doi.org/10.1093/infdis/jit426] [PMID: 23935202]
[6]
Ghantoji, S.S.; Sail, K.; Lairson, D.R.; DuPont, H.L.; Garey, K.W. Economic healthcare costs of Clostridium difficile infection: A systematic review. J. Hosp. Infect., 2010, 74(4), 309-318.
[http://dx.doi.org/10.1016/j.jhin.2009.10.016] [PMID: 20153547]
[7]
Surawicz, C.M.; Alexander, J. Treatment of refractory and recurrent Clostridium difficile infection. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(6), 330-339.
[http://dx.doi.org/10.1038/nrgastro.2011.59] [PMID: 21502971]
[8]
Centers for Disease Control and Prevention(CDC). CDC’s Antibiotic Resistance Threats in the United States, 2019 (2019 AR Threats Report): Clostridioides difficile. 2019. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fdrugresistance%2Fbiggest_threats.html
[9]
Uddin, R.; Jamil, F. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and Protein-Protein interaction network. Comput. Biol. Chem., 2018, 74, 115-122.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.017] [PMID: 29587180]
[10]
Uddin, R.; Siddiqui, Q.N.; Azam, S.S.; Saima, B.; Wadood, A. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach. Eur. J. Pharm. Sci., 2018, 114, 13-23.
[http://dx.doi.org/10.1016/j.ejps.2017.11.014] [PMID: 29174549]
[11]
Sanober, G.; Ahmad, S.; Azam, S.S. Identification of plausible drug targets by investigating the druggable genome of MDR Staphylococcus epidermidis. Gene Rep., 2017, 7, 147-153.
[http://dx.doi.org/10.1016/j.genrep.2017.04.008]
[12]
Uddin, R.; Rafi, S. Structural and functional characterization of a unique hypothetical protein (WP_003901628. 1) of Mycobacterium tuberculosis: A computational approach. Med. Chem. Res., 2017, 26(5), 1029-1041.
[http://dx.doi.org/10.1007/s00044-017-1822-0]
[13]
Uddin, R.; Saeed, K. Identification and characterization of potential drug targets by subtractive genome analyses of methicillin resistant Staphylococcus aureus. Comput. Biol. Chem., 2014, 48, 55-63.
[http://dx.doi.org/10.1016/j.compbiolchem.2013.11.005] [PMID: 24361957]
[14]
Consortium, U. UniProt: A hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[http://dx.doi.org/10.1093/nar/gku989] [PMID: 25348405]
[15]
Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res., 2007, 35(Database issue)(Suppl. 1), D61-D65.
[http://dx.doi.org/10.1093/nar/gkl842] [PMID: 17130148]
[16]
Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 2012, 28(23), 3150-3152.
[http://dx.doi.org/10.1093/bioinformatics/bts565] [PMID: 23060610]
[17]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[18]
Zhang, R.; Ou, H.Y.; Zhang, C.T. DEG: A database of essential genes. Nucleic Acids Res., 2004, 32(Database issue)(Suppl. 1), D271-D272.
[http://dx.doi.org/10.1093/nar/gkh024] [PMID: 14681410]
[19]
Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res., 2007, 35(Web Server issue)(Suppl.2), W182-5.
[http://dx.doi.org/10.1093/nar/gkm321] [PMID: 17526522]
[20]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[21]
Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; Brinkman, F.S. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 2010, 26(13), 1608-1615.
[http://dx.doi.org/10.1093/bioinformatics/btq249] [PMID: 20472543]
[22]
Li, Y.H.; Xu, J.Y.; Tao, L.; Li, X.F.; Li, S.; Zeng, X.; Chen, S.Y.; Zhang, P.; Qin, C.; Zhang, C.; Chen, Z.; Zhu, F.; Chen, Y.Z. SVM-Prot 2016: A web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One, 2016, 11(8), e0155290.
[http://dx.doi.org/10.1371/journal.pone.0155290] [PMID: 27525735]
[23]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[24]
Webb, B; Sali, A Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2014, 47(1), 5.6. 1-5.6. 32.
[http://dx.doi.org/10.1002/0471250953.bi0506s47]
[25]
Fiser, A. Template-based protein structure modeling. Computational Biology; Springer, 2010, pp. 73-94.
[26]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[27]
Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Meth. Enzymol; Elsevier, 1997, pp. 396-404.
[28]
Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics, 2012, 28(15), 2074-2075.
[http://dx.doi.org/10.1093/bioinformatics/bts310] [PMID: 22628523]
[29]
Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Crystallogr, Sect B: Struct Sci. Cryst Eng Mater., 2016, 72(2), 171-179.
[30]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[31]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[32]
Uddin, R.; Arif, A.; Zahra, N-U-A.; Sufian, M. Comparative proteome-wide study for in-silico identification and characterization of indispensable hypothetical proteins of food borne- pathogen Campylobacter jejuni (CJJ) by subtractive genomics approach. Pak. J. Pharm. Sci., 2021, 34(4), 1359-1367.
[33]
Desguin, B.; Goffin, P.; Viaene, E.; Kleerebezem, M.; Martin-Diaconescu, V.; Maroney, M.J.; Declercq, J.P.; Soumillion, P.; Hols, P. Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nat. Commun., 2014, 5(1), 3615.
[http://dx.doi.org/10.1038/ncomms4615] [PMID: 24710389]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy